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Preface

The idea of writing this book first took its root, while I was working with Bechtel way
back in 1996–97. The company was building a power plant in India and it was my
first interaction with US engineers sitting across the table. The work was executed in
an extremely congenial atmosphere, except for concerning one aspect, which amused
me to no end. Whenever it came to any structures or foundations, related to dynamic
analysis, I could very well sense the innate reluctance of my overseas colleagues, who
were not so sure about the capability of the New Delhi office and the Indian Engineers
on this topic. It surely took me by surprise, for, from 1970–1990, India has taken giant
leaps in terms of technology. We have installed our own power plants ranging from
210 to 500 MW. We have indigenously built our own nuclear power plants, developed
our own short and long range missiles ameliorating our defense, designed and built our
own offshore facilities in Bombay, etc. Rummaging through literature, I was genuinely
shocked to realize that though many Indian engineers, scientists and academician
have contributed significantly in terms of national and international research papers,
enriching this magnificent subject, yet nobody had written a book on dynamics that
could compete in international market. Except for the book titled A Handbook of
Machine foundation by Vaidyanathan and Srinivasalu there is hardly any long standing
book prevalent in the national or international market, which has emerged out of India,
pertaining to dynamics!

Dynamics per se is a funny subject. In spite of its firm existence in the realm of
civil engineering for last 70 years or more, it is a topic that is still abhorred by many
and loved by few. I believe this is mostly due to the terse and oblique way many
academicians often teach the subject, without giving the requisite background.

I would not like to furnish any apologies (except for in very few cases) we have never
tried to pose that we are smart (or elegant for that matter) and tried to show you the
intricacies and subtle nuances of this mystic topic in almost a story-telling session.

If you are really interested in this subject, I do believe that reading this book would
be a fun session for you; for we firmly believe that if you do not enjoy what you are
reading, learning a topic is always difficult.

There are of course some background topics like elasticity, mechanical vibration,
etc. that we have presented in a factual fashion, for we felt these are preparatory



xvi Preface

background topics that you may or may not have (those of you who know this already
can skip).

I sincerely wish you happy reading and expect, you would enjoy it as much as reading
a Frederick Forsyth or an Agatha Christie novel, unraveling the majestic mystery of
soil and structural dynamics.

In my long and arduous journey through this book I have been lucky to get immense
support of many friends and colleagues without whose active cooperation I could never
have finished this book.

I therefore take this opportunity to convey my profound thanks and gratitude
to my company, Petrofac International Limited, Sharjah, without whose sustained
and unflinching support I could have never completed this voluminous work. My
Oliver Twist gang of Messrs. Anindya Roy, Hitesh Roy, Dr. J.P. Singh, M.N. Ravi,
Mrs. Negar Sadeghpour owe hearty thanks for patiently going through many of my
drafts. I immensely enjoyed their subtle as well as blunt criticism (at times) that often
made me look at things as to how the reader would react. I was extremely lucky
to have such a brilliant team, equipped with such brilliant technical minds. A very
special thanks to Mr. Prabir Kumar Som, Dr. Nirmalya Bandopadhay, Prof. Bratish
Sengupta (my ex-teacher) for going through the draft manuscript and giving many
valuable suggestions for improvements in the presentation.

My sincere gratitude goes to . . . . . .
My Mother for, always having that unshakeable faith in my academic ability, though

I was spending too much time (as a student) in the ground playing serious-level cricket.
To my family, my wife Tinku, son Rohan and my giant Great Dane Timmy, for their
infinite patience and standing by my self- imposed social seclusion, while working on
this book.

I guess this section cannot end without mentioning Dr. Sambhu P. Dasgupta,
present Head of Civil Engineering Department of Indian Institute of Technology
(Kharagpur) and my co author. It all started in 1982–83 when he was my formal
teacher in Dynamics and then went on to become my graduate thesis advisor. For an
academician like Dr. Dasgupta it is “business as usual”, as a number of students come
and go like this every year. However, in our case the relationship jelled into something
more than usual possible, because of our common and intense passion for dynamics
and also perhaps due to our innate curiosity daring us to trespass beyond any line of
specialization (geotechnical/structural engineering) and to look at it in totality. That
jeans and T-shirt clad thin student 24 years ago, has of course changed to today’s
middle aged slightly pot bellied executive. While Dr. Dasgupta has also grayed suf-
ficiently with time, but our relationship has become strengthier over the years. His
guidance, support and advises on a number of technical and non-technical issues had
always stood like an unwavering lighthouse in all my good and bad times for the last 25
years. Irrespective of my corporate commitments and his heavy academic and research
load, whenever I posed him a problem or a solution from any corner of the globe, he
would always make time to go through it carefully and give his considered opinion.
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This has resulted in a number of innovative techniques we developed together, which
now constitute many portions of this book.

Thus, when I thought of writing this book, I could think of nobody else but him
to guide, support and work as a team with me in this venture. For whatever I did
or for what has been my reputation in industry, is based on the philosophies he has
rigourously taught me in those early days.

Indrajit Chowdhury(IC)
Sharjah, 7th November 2007



xviii Preface

This book is intended to serve the purpose of a graduate-level text and a reference for
practicing engineers. Our approach is to write to the students rather to the instructors
using the book. Here we have made a long and detailed text that strives for the com-
pleteness and rigour on one hand and, on the other, we poise to distribute complete
handouts for the designers in the field. In fact, there is no clash as such and we have
tried to bridge the gap as far as possible.

The material in this book grew out of texts used for teaching the graduate students
at Indian Institute of Technology, Kharagpur and my co-author’s experiences at the
Design Offices of Development Consultant at Kolkata, Bechtel Corporation, New
Delhi, Siemens Corporation, New Delhi, Petrofac International at Sharjah.

Even the recruiters from industry under the present global scenario are now asking
for people who are proficient in their area of expertise and candidates need now more-
than-ever a sound, basic in-depth knowledge of solid mechanics, building carefully
from that point onwards. Playing with softwares and ‘canned’ programs without this
sound and carefully developed background are leading to the careers as technicians
rather than as engineers.

I am grateful to my teachers, Professors N.S.V. Kameswara Rao, M.R. Madhav,
M. Anandakrishnan, Navin. C. Nigam of the Indian Institute of Technology Kanpur,
who have introduced and encouraged me to work in the area foundation dynamics
and dynamic soil-structure interaction. This book is my offering to these teachers as
a token of my gratitude for their gift of knowledge and inspiration. I recollect the
excellent academic environment fostered by them in my student days at IIT, Kanpur.

I am grateful for the encouragement received from a number of colleagues and
students during the preparation of the book. Early versions of most of the chapters
of this book were distributed to my graduate students, and I gratefully acknowledge
their assistance and encouragement.

I would finally like to express my tender appreciation to my wife Tapati who cheer-
fully devoted herself in the task of inspiring me in every way in finishing this lofty task
and my daughter Satarupa a lot for instilling me with her deep affection. For their
continued encouragement, smiling assistance in the various stages of writing the book
will remain forever in my mind.

Numerical modeling of foundation dynamics and constitutive modeling have been
the areas of my personal research over two decades and this book emphasizes these
research areas. My association with Indrajit Chowdhury goes back to the 80s when
he took up a problem on dynamic soil-structure interaction. With the dawn of the
present millennium we were associated again in jointly venturing research in the area
of dynamic soil structure interaction. It has been an enjoyable and challenging expe-
rience and the present book is the testimony of those long years of labour, dream and
aspiration.

We would love to see that this book is being used by the students with utmost care
and reverence, also after the course is over. We hope to see the unending beginning
and that reading the book will stimulate a new impetus for them and for the future
generation.
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It is quite natural that some errors might have crept into the text of this volume; we
shall appreciate if such errors are brought to our notice. Suggestions for improvement
of the book are most welcome.

We greatly appreciate the kind of support extended to us by the staff of CRC Press
(Taylor & Francis Group, A Balkema Book), The Netherlands.

Shambhu P. Dasgupta
I.I.T., Kharagpur, 9th November, 2007





Chapter 1

Introduction

1.1 WHY THIS BOOK

It is said that authorship of any kind is a tremendous boost to one’s ego. Readers, who
would care to go through these pages, can be rest assured that this book has not been
written to gratify one’s ego trip.

Reason for its birth has been our deep-rooted concern on the way profession of
engineering and especially civil engineering is going – in terms of teaching and practice.
Civil Engineering is perhaps the oldest profession amongst the realms of technology,
which has been practiced by human being from the early dawn of civilization. It is also
indeed a fact that umpteen numbers of books have been written addressing various
topics on Civil and Structural engineering from the time of Galileo (1594) till date. So
what made us write this book when many of the things mentioned herein may or may
not be available in other literature?

The reason for its birth can be attributed as follows:
Civil engineering community in India, in spite of making a lot of progress, very few

authors have addressed the topics that we have tried to cover under one platform.
Topics related to structural and soil dynamics that are taught in the universities

or referred to in design offices are still dependent on very limited number of books1,
or code of practices (often outdated) or research papers not readily available to an
average student/engineer.

Finally, in last two decades we have seen a very peculiar trend and that which has
affected the profession globally, and could have a long lasting influence on it.

If we look around the world in terms of books published in civil engineering in
the last two decades (1980–2000) it will be observed that unlike the period 1960–70
almost all books have been authored by academicians where practicing engineers rarely
contributed!

Whatever could be the reason for this apathy from engineers in the industry the
point remains that students coming out of engineering institutes, unlike 30 years ago
are being exposed minimally to practice as prevalent in industry.

And this we believe is creating a serious gap in engineering education. Till such
times practicing engineers are encouraged like in developed countries to participate in

1 Many of them are again out of print. . .
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teaching we are fearful that engineering especially civil engineering will metamorphose
into more an advance course in mathematical physics rather than a scientific art where
theory is honed by intuitive practices and field realties.

Engineering is not only a maze of differential equations, tensors, matrix algebra, or
developing software program. It is much beyond these, where all these mathematical
techniques are mere tools in the hands of a capable engineer who can intuitively visu-
alize the behavior of the structure and foundation he is going to design and check his
intuitive deduction based on the above tools in hands and this makes it essential to
synthesize theory and practice that becomes the hallmark of a complete engineer.

1.2 WHY THE TOPIC OF DYNAMICS?

Again why did we choose a topic as abstract as dynamics? When writing a book
on Soil mechanics/Foundation engineering or say Reinforced Concrete design would
surely have been a more profitable and less laborious a venture.

The motivation behind the same was that dynamics as a subject we have found car-
ries a peculiar stigma, where it is either loved or pathologically abhorred by engineers
in the industry and even in academics by many.

While its mathematical beauty fascinates and charm many an intellectual mind, the
same thing others find it too intimidating and abstract which creates a mind block that
the topic is far too theoretical, not worth professional attention and can well be taken
care off by proper detailing be it a steel or a concrete structure2.

The value of proper detailing can never be undermined. However, mathematical
models far too simplified to avoid a little bit of mathematics can well result in moments
and shear that could be out by 200% from reality. We can assure you that no amount
of excellent detailing would save the structure if the moment and shear that are derived
are unrealistic in the first place.

Having counseled many such anti-dynamists in last 25 years in industry and aca-
demics we have found the root cause for this aversion culminates from how the topic
has been presented to him during his initiation to the subject. Our observation has
been that:

• The apathy/mind block has developed due to the way it has been presented to
many of them-which they found difficult to comprehend with instructor showing
little or no sympathy to make it interesting or understandable.

• Compulsion to complete the coursework within inadequate time frame leaving
the instructor with very little time to cite examples from real world to make things
look easy and comprehensible – this has further complicated the issue.

• Tendency of some to make things look mathematically elegant thus unnecessarily
resorting to complex mathematical presentation without preparing the students
to comprehend the physical significance of the same in the first place.

2 Or at worst, use commercially available software as a black box and follow the results blindly.
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• Finally lack of experience of some instructors in real world practices thus pre-
senting the topic in an extremely theoretical fashion3 does not make things easy
at all.

The study of dynamics has thus become almost like the philosophy of Tantra –
powerful yet fear evoking. Understood by few, while abhorred and misunderstood
by most. And this what we have tried to eradicate here.

To unravel many unpopular myths the topic unjustifiably bears, trying to present
the reader with its divine yet mysterious charm.

In our presentation of the subject we have not demarcated it into either structural
dynamics or soil dynamics but has rather attributed it as a unified approach.

For we strongly feel that it is high time this barrier is broken between structural
and geo-technical engineering. Without sounding prophetic, it is our strong convic-
tion that structural and soil dynamics will ultimately merge into one unified topic of
“Dynamic Soil Structure Interaction (DSSI)” and which as a subject will surely regain
its importance and strength in years to come.

Research and development on DSSI got a strong impetus in the late 70 and 80s (in
India)4 but somehow lost the momentum in between.

The reason for its faltering to our perception could be attributed to the following:

1 Decline in development of Nuclear power plants in India from the late 80’s due
to the CTBT issues.

2 Reluctance of the geotechnical and structural engineers to sit together and look
into the thing in totality and show the courage to digress beyond the boundary
they have always been taught not to cross.

At the start of the 21st century if we look at the energy scenario of our country things
surely do not look very promising. We have almost exhausted our reserve of first class
coal which is an essential ingredient of a thermal power plant. Whatever balance coal
we have the ash content is far too high and using the same to generate power would
surely make it a serious environmental issue. With environmental scientists drawing
a bleak picture of future due to global warming and green house effect, building
thermal power plants with second grade coal compounded by expensive and tedious
ash handling, and tough environmental legislation that one has to now abide by would
indubitably make conventional fossil fuel power plants a less and less potential choice
as an energy source in future.

3 It is sad to see some of these academicians adept with Laplace and Fourier transforms, Gaussian distri-
bution of power spectrum but ask them to provide technical advice for a real life structure where money
and human life is at stake, they would drop the same like a hot potato at first instance.

They live in their own Cinderella world where dynamics is a branch of theoretical physics they use
conveniently to advance their academic career by publishing one paper after another (mostly having
insignificant or no relevance to any real world engineering practice). It is unfortunate that many of these
paper tigers having little practical experience and are the very people who dominate the engineering
education scenario in our country today.

4 Like Finite Element Method burst into the scene in early 70s.
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With ever spiraling cost of these two commodities in global market (presently touch-
ing $120 per barrel) running power plants with LPG or gas (combined cycle power
plant) one would have to import the same and would surely not be a cost effective pub-
lic utility venture – for the electric tariff to cover the cost would be far too expensive
for a common man to bear.

Considering our geographical location utilization of alternate source of energy like
hydel, solar or wind is only limited. Thus for mass generation of electricity which is
essential for industrialization and economic development, nuclear power plant would
thus surely play an important role in near future, where dynamic analysis/DSSI would
again possibly be a crucial issue to ensure its safety adhering to the international norms
for such power plants5.

Leaving aside Nuclear power plants, there are number of other industrial plants
like Petrochemical, Chemical, Mineral beneficiation plants that handles a number of
hazardous items like methyl iso-cyanide, hydrogen sulfide, liquefied natural gas (highly
inflammable) to name only a few. Leakage of these items even due to a moderate
earthquake can create sufficient damage to environment that could take centuries to
recover. Buildings (high rise or other wise) are getting destroyed inevitably in almost
all strong motion earthquakes that take place around the world- killing millions of
people and destroying properties worth billions of dollars. Thus irrespective of our
reluctance to adapt the technology “dynamic analysis of structures and foundations”
have become an important weapon in our arsenal to fight the awesome fury of the
mother nature whose ways are still known little to us.

1.3 THE DEMOGRAPHY OF THE BOOK

The book has been divided into two volumes of which the present book is the Volume-
1. This volume introduces the theoretical aspects of dynamic analysis. Volume-2 uses
these background theories and applies them to different structures and foundations
that are considered important and major infrastructures in civil engineering.

Volume-1 consists of five chapters of which three chapters (Chapters II, III and
IV) are preparatory. It creates the background for your initiation to dynamics and
soil-structure interaction as a subject of study.

Chapter II deals with Theory of Elasticity and Numerical Methods. Theory of
elasticity as we know is mother of all stress analysis and is used by all stress engi-
neers in their profession. It forms the backbone of all static and dynamic analysis in
civil engineering. People wanting to develop a background on dynamics we presume
already have some background on this. However just for quick recapitulation and
reference the major results and concepts have been furnished in a heuristic form for
ready reference.

Numerical methods, in last twenty years with the advent of digital computers have
become one of the most powerful tool in the analytical arsenal of an engineer. We
have observed, that many engineers beyond a level often find it difficult to cope with

5 Nobody would surely want a Charnobyl in hand. Considering the population density of India it is indeed
a fearful prospect.
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many a practical problem related to dynamics, simply because his background in
numerical analysis is inadequate or insufficient. As such, we have dealt this in sufficient
detail especially finite difference and finite element method (FEM) so that an engineer
feels confident in handling a problem either static or dynamic in his research and
professional work.

While penning this section we had to make some very careful choice as to what to
put herein that gives the reader a broad overall picture, while at the same time ensure
that he does not get lost into too much of mathematical intricacy of many higher order
elements whose presentations are surely mathematically very elegant but has limited
use. Since this book is not essentially a book on Finite Element method we have taken
the liberty of presenting only those key elements that are most popular and has a high
usage in practice. We sincerely hope that on going through this section many engineers
would give up the habit of using a finite element software simply as a “black box” –
a trend which is not only deplorable but could have a devastating consequence if left
unabated.

Another point which few of the readers might find intriguing is that we have not
presented any software in terms of finite element which is the generic trend in most of
the memoirs available in the market.

Our motive is to make you understand the basics underlying the method, thus
enabling you to use a number of commercially available FEM software available in
the market efficiently as well as with confidence. We would much appreciate to have
some feedback from you to evaluate if we could fulfill this aspiration of ours.

Chapter III deals with vibration of discrete systems and you might just wonder,
why have we started with this topic here? Historically, civil engineers started tinker-
ing around with bodies subjected to motion quite late (1950s) while mechanical and
aerospace engineers started working on this area much ahead of them (1920). It started
possibly from the time when Den Hartog (1924) began giving series of lectures to the
Westinghouse Engineers who were designing Turbines and engines. Civil engineers
when started developing the theory of structural dynamics in late 1950s they thus
depended heavily on these theories of mechanical vibration to develop realistic model
of structures based on lumped mass, springs and dashpots. It will be seen subsequently
when we take up the theories of structural dynamics (in Chapter V) that the theories
are same in many cases and so are many of the results. Thus we felt having some
background on mechanical vibration will only enhance your knowledge data base
and make subsequent understanding better when we take up the theory of structural
dynamics in later chapter.

Chapter IV deals with some fundamental concepts of Static soil-structure interac-
tion. Like in structural analysis as a prelude to dynamic analysis one must have a clear
concept on behavior of structures under static load similarly for DSSI one must have a
clear concept of how does the structure and soil behave in tandem under static loading.
One of the major tool that is used for such coupled analysis (both static and dynamic
problems) is obviously Numerical methods especially FEM and this is where lies the
roots of many mistakes due to improper modeling. This we have discussed here in
quite a detail trying to elaborate on some of the common mistakes people often make
during the mathematical idealization. We sincerely hope that this will help you to
come up with a reasonably correct mathematical model in many cases and enhance
your skill as a FEM modeler.
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This is relatively a short chapter yet it deals with a number of key problems con-
ceptually that many engineers face in their work and often find them difficult if not
confusing to handle.

Chapter V constitutes of basic theories pertaining to structural and soil dynamics.
We start this chapter with the theories of structural dynamics starting from a body

having single degree of freedom to multi-degrees freedom – all possible mathematical
models have been dealt herein with a number of solved problems to give you a better
insight into the system. You will see in many cases as to how the models considered
becomes similar to many we have considered in Chapter III under the heading of
theory of mechanical vibration. One of the major stumbling blocks in the analysis of
multi-degree freedom system has been to assume modal damping ratio to be constant
for all modes6. An innovative solution has been suggested herein where the damping
can be forced to vary with modes giving a more realistic output – we hope you will
enjoy the technique.

Time history analysis (THA) is another area where many engineers squirm out of
discomfort and would try their level best to restrict their analysis within the domain of
modal analysis. Leaving aside the intense calculation THA calls for, the main reason for
this apathy is again due to the far too concise treatment meted out to such an important
topic in most of the books in dynamics. On this we have again cut no corners and
have solved sufficient numbers of problems (including the damping effect) that you
can even manage with only a calculator to make you comfortable with the issue.

All the concepts in this section is explained based on harmonic loading which
makes the understanding and insight to the problem in hand easy to understand and
yet may offend an earthquake specialist who might feel we have by passed such an
important issue. However, such impression would be unjustified as dynamic analysis
of structures subjected to earthquake has been dealt in sufficient detail in Volume-2
of this book where a complete chapter is dedicated to this very important topic.

The second part of the chapter deals with soil and elasto-dynamics. We agree and
confess that it was the toughest section that we wrote and took considerable time
and planning from our end as to what and how to present. To our experience soil
and elasto-dynamics as a topic is though now a part of curriculum at post graduate
level in many institutes- but is still given a very cursory treatment where the thrust is
more on laboratory investigation rather than treating the mathematical issues7. Thus,
no wonder that the soil dynamics is a topic which has remained a source of acute
discomfort to many people in research and industry alike. We have tried to give it
a most comprehensive treatment in starting with Lamb’s (1904) solution to Pekeris
(1955), Pekeris and Lifson (1957) and then slowly digressing into the formulations
of Lysmer (1965), Holzohner (1969), Novak and Berdugo (1972) etc. The objective
has been to give a step by step commentary as to how it developed from Lamb to
where it is presently when dynamic finite element analysis with paraxial and viscous

6 Structural Engineers are forced to use this as there are no mathematical model available till date which
caters to the progressive increment of damping ratio with each mode.

7 The book titled “Wave Motion in Elastic solid” – Karl Graff Dover publication or “Wave Propaga-
tion through Elastic media” – J.D. Achenbach; North Holland Publication, is still not a part of regular
curriculum for students taking coursework in soil dynamics in many Engineering colleges!
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boundaries are used to model infinite domain problem. In this process we have also
shown how at one stage soil dynamics digressed into a new area of technology often
termed as geotechnical earthquake engineering now a days.

At the very outset, we would like to pacify those readers who might get impatient
with the pages of fearful looking integral equation that invariably generates due to
wave propagation through an elastic medium under mixed boundary conditions that
prevail in foundation dynamics – a topic often not addressed properly in many graduate
courses.

But we can surely assure you that wrestling with a few fundamental theorems in
advanced calculus and a referring to a decent mathematical handbook would suffice
as they are surely not unconquerable. Even if the theoretical implications belies one’s
comprehension due to his lack of practice with such mathematics – the end results
are sufficiently complete and clear for usage and programming – and these have very
important applications.

One of the major reason based on which we went on to work out many of these
formulations in such detail is because we have observed that many engineers who
use these solutions in their day to day work in the design of machine foundation and
earthquake analysis do it mechanically without a basis as to how some of them have
evolved. It is heartbreaking to hear people believe Lysmer’s or Wolf’s spring which
they have possibly used hundred times (if not more) “are derived based on experiment”
and even “empirical”!

We would rather feel our effort has not gone in vain if we can eradicate such
misconceptions through this book.





Chapter 2

Theory of elasticity and numerical
methods in engineering

2.1 MECHANICS OF CONTINUA: STRESS AND STRAIN

Mechanics of continua constitutes the backbone of civil engineering analysis of elasto
and dynamic problems. Irrespective of whether one is working in the area of structural
or geotechnical engineering, all are based on the basic ideas of the theory of elasticity.

Considering that the book is basically focused on the dynamic analysis of structure
and foundation, we presume that the reader already has some background on this
topic. As such, essence of this section is not to elaborate on the fundamentals, but to
present the basic equations of elasticity in a heuristic manner for ready reference, since
many of these equation are often used for various analysis or calculating the stresses
and strains that a body is induced to under static and dynamic loads.

2.2 CONCEPT OF STRAIN

In our colloquial world of communication when we see somebody is working very
hard we often use sentences like “Oh! Mr. X is going through a lot of strain.” Or,
“Do not stress yourself by working so hard – it is not good for your health etc.” If
you carefully note these sentences you will observe that words like work, stress and
strain are used in the same breathe. Though the words have been used in literary sense
however in terms of physics this is absolutely correct for the phenomena are truly
inter-related. Going back to our high school physics we can say that when a force F is
applied to a body and it undergoes a deformation δ, we say the external work done is
F · δ. If the un-deformed length of the body in one dimension is L say, then the strain ε
induced is ε = δ/L and corresponding stress is expressed as σ = E · ε where E is the
Young’s modulus of the body. The science of elasticity is nothing but study of these
stresses and strains in one, two and three dimensions.

2.2.1 Displacement field

Consider a body � in a three dimensional Cartesian space (X, Y, Z) and let there
be a point P(x, y, z). The straight line joining OP is known as position vector,
r = xi + yj + zk, where i, j, k are unit vectors along X, Y, and Z-axis. Let the
body occupies a position �′ as a result of straining and P now occupies the position
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P′(x′, y′, z′)

u

Z

X

r′

r
P(x, y, z)

Y

Figure 2.2.1 Definition of displacement field.

P(x′, y′, z ′), having position vector, r′ = x′i + y′j + z ′k. The vector,

u � uxi + uyj + uzk (2.2.1)

is called a displacement vector [also written as, u = ux, v = uy, w = uz, respectively
in the x, y and z-direction]. Geometric definition of the displacement field u is shown
in Figure 2.2.1. If we assume u to be a continuous function varying continuously from
point to point, u will be called a vector field. Thus u is defined as displacement field
and expressed as a function of coordinates of the undeformed geometry (x, y, z) and
as such denoted by u (x, y, z). In Cartesian tensor form this may be written as

u = uiεi (2.2.2)

Repetitive subscripts imply summation of indices, i = 1, 2, 3, denoting axes X, Y
and Z respectively and εi are the unit vectors in i-th direction.

2.2.2 Concept of small domain

Consider a body, �, shown in Figure 2.2.2, undergoing deformation. Select two arbi-
trary points P and Q which forms a vector A. In the deformed state; P changes to P′
and Q to Q′. As a consequence, A is changed to A′.

We may denote: δA�A′ − A
Again, we have

uP + A′ = A + uQ ➔ δA = A′ − A = uQ − uP (2.2.3)

The displacement field u, we assume, always to be an analytic function [i.e. single-
valued function having continuous first derivative]. We now assume Q to be a
neighbouring point of P and, as such, expand uQ around uP in Taylor’s series:
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Z

X

P

Y

P ′

Q

Q

up uq

A

A

′

Figure 2.2.2 Small domain concept.
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In general: If, f = f (x, y, z), then f (x + h, y + k, z + �)

=
N−1∑
n=0

1
n!
[
h
∂

∂x
+ k

∂

∂y
+ �

∂

∂z

]n

f (x, y, z)+ 1
N!
[
h
∂

∂x
+ k

∂

∂y
+ �

∂

∂z

]N

f (x + θh, y + θk, z + θ�); 0 < θ < 1.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

using, �x = h, �y = k and �z = �,

uQ = uP +�x
(
∂u
∂x

)
P

+�y
(
∂u
∂y

)
P

+�z
(
∂u
∂z

)
P

+ · · · (2.2.4)

Substituting,

�x = A1 = ∣∣A∣∣ cos(a, x) : �y = A2 = ∣∣A∣∣ cos(a, y) :

�z = A3 = ∣∣A∣∣ cos(a, z) and n = 1;

cos(a, x) = direction cosine of a with x, and so on . . . . (2.2.5)

We have ➔ uQ = uP +
(
∂u
∂xj

)
Aj + higher order terms. (2.2.6)

in which j = 1, 2, 3, i.e. the directions of x, y and z.
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If the vector A is very small in magnitude, i.e. we limit our attention to a very small
domain about P, the higher order terms in the Taylor’s series can be neglected. Thus
for small domain, we can write

uQ = uP +
(
∂u
∂xj

)
P

Aj – this is in tensor form. (2.2.7)

From Equation (2.2.3) we have, δA =
(
∂u
∂xj

)
P

Aj (2.2.8)

and (δA)i = δAi and
(
∂u
∂xj

)
i
= ∂ui

∂xj
or δAi = ∂ui

∂xj
Aj (2.2.9)

Equation (2.2.9) represents the change in any vector A in a vanishingly small domain
about a point (x, y, z).

Example 2.2.1

Let the displacement field be: u = (xyi + 3 x2z j + 4xz k) × 10−2 m. A very small
segment �P has direction cosines apx = 0.1, apy = 0.7 and apz = 0.707. This
segment is directed away from (1, 1, 5). What is the new vector �P′ after this
displacement field has been imposed?

Solution:

∂u1

∂x
= ∂u1

∂x1
= 0.01y

∂u1

∂y
= ∂u1

∂x2
= 0.01x

∂u1

∂z
= ∂u1

∂x3
= 0.0

∂u2

∂x
= ∂u2

∂x1
= 0.06xz

∂u2

∂y
= ∂u2

∂x2
= 0.0

∂u2

∂z
= ∂u2

∂x3
= 0.03x2

∂u3

∂x
= ∂u3

∂x1
= 0.04z

∂u3

∂y
= ∂u3

∂x2
= 0.0

∂u3

∂z
= ∂u3

∂x3
= 0.04x

Thus

∂ui

∂xj
=
⎡
⎢⎣

0.01y 0.01x 0
0.06xz 0 0.03x2

0.04z 0 0.04x

⎤
⎥⎦

➔

(
∂ui

∂xj

)
at (1,1,5)

=
⎡
⎢⎣

0.01 0.01 0
0.30 0 0.03
0.20 0 0.04

⎤
⎥⎦ .
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Now, [δ(�p)]1 =
(
∂u1

∂xj

)
P
(�p)j =

(
∂u1

∂x

)
P
(�p)aPx

+
(
∂u1

∂y

)
P
(�p)aPy +

(
∂u1

∂z

)
P
(�p)aPz

= �P [0.01(0.1)+ 0.01(0.7)+ 0(0.707)] = 0.008�P.

Similarly, [δ(�p)]2 =
(
∂u2

∂xj

)
P
(�p)j =

(
∂u2

∂x

)
P
(�p)aPx

+
(
∂u2

∂y

)
P
(�p)aPy +

(
∂u2

∂z

)
P
(�p)aPz

= �P [0.3(0.1)+ 0(0.7)+ 0.03(0.707)] = 0.05121�P.

and, [δ(�p)]3 =
(
∂u3

∂xj

)
P
(�p)j =

(
∂u3

∂x

)
P
(�p)aPx

+
(
∂u3

∂y

)
P
(�p)aPy +

(
∂u3

∂z

)
P
(�p)aPz

= �P [0.2(0.1)+ 0(0.7)+ 0.04(0.707)] = 0.04828�P.

➔ δ(�P) = [0.008i + 0.05121j + 0.04828k]�P.

Hence, the new vector, �P′ takes the form:

�P′ = �P + δ(�P) = (0.1i + 0.7j + 0.707k)�P

+ (0.008i + 0.05121j + 0.04828k)�P

= (0.108i + 0.7512j + 0.7552k)�P

= (0.094i + 0.655j + 0.659k)1.146�P.

2.2.3 Body undergoing small deformation

Consider a body � in a three-dimensional space (x, y, z) and subsequent deformed
states are �′ and �′′ respectively under two deformation fields u1 and u2. This is
shown in Figure 2.2.3.

At undeformed state, the vector A is at ‘a’ and, under subsequent deformations a
moves to a′, and finally to a′′. In any small domain, the change of a vector A as a
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Undeformed state

Z

X

Y

a″

a′

A″

A′

A

Figure 2.2.3 Small domain concept.

result of the first deformation field u1, using Equation (2.2.9) can be written (Shames
1975) as

δAi =
(
∂u1

i

∂xj

)
a

Aj (2.2.10)

in which
(
∂u1

i
∂xj

)
a

is evaluated in the undeformed geometry at a.

Thus for A′
i, we have A′

i = Ai +
(
∂u1

i

∂xj

)
a

Aj (2.2.11)

For the deformation field, u2
i

A′′
i = A′

i +
(
∂u2

i

∂xk

)
a ′

A′
k (2.2.12)

Thus A′′
i = Ai +

(
∂u1

i

∂xj

)
a

Aj +
(
∂u2

i

∂xk

)
a ′

Ak +
(
∂u2

i

∂xk

)
a ′

(
∂u1

k

∂xj

)
a

Aj (2.2.13)

That is A′′
i = Ai +

[(
∂u1

i

∂xj

)
a

+
(
∂u2

i

∂xj

)
a ′

]
Aj +

(
∂u2

i

∂xk

)
a ′

(
∂u1

k

∂xk

)
a

Aj (2.2.14)
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Now, express
(
∂u2

i /∂xk
)
a ′ about the position a by Taylor’s series [we shall use

Cartesian tensor notation for brevity]:

(
∂u2

i

∂xj

)
a ′

=
(
∂u2

i

∂xj

)
a

+
[
∂

∂xk

(
∂u2

i

∂xj

)]
a

u1
k +

[
∂2

∂xk∂x�

(
∂u2

i

∂xj

)]
u1

ku1
�

2
+ · · ·

(2.2.15)

We now impose small deformation restrictions by saying that u1
i , u2

i ,
(
∂u1

i
∂xj

)
a

and(
∂u2

i
∂xj

)
a ′

to be very small and we retain, thus the first order term,

i.e.

(
∂u2

i

∂xj

)
a ′

=
(
∂u2

i

∂xj

)
a

(2.2.16)

The above mentioned expression results in a conclusion that we can use the
undeformed geometry for computing the effects of successive deformations.

Neglecting product of derivatives, we have

A′′
i − Ai = (δAi)total =

(
∂u1

i

∂xj
+ ∂u2

i

∂xj

)
Aj (2.2.17)

Finally

1 This results in the superposition principle for infinitesimal displacement.
2 Order of imposing infinitesimal displacements does not have an effect on the total

deformation.

We can handle most of the engineering problems using the small deformation theory.
Small domain view-point has nothing to do with large or small deformation; it can
be used for the both. The use of small domain view-point and the small deformation
restriction means that we shall be considering the deformation of small elements of a
body undergoing small deformations.

2.2.4 Strain tensor

In a vanishingly small element undergoing small deformation, the changes of length
and orientation of line segments were found in the preceding sections. Accordingly
∂ui/∂xj will be the key quantity in studying such deformation.

We can express
∂ui

∂xj
= 1

2

(
∂ui

∂xj
+ ∂uj

∂xi

)
+ 1

2

(
∂ui

∂xj
− ∂uj

∂xi

)
= εij + ωij (2.2.18)

Thus δAi = (εij + ωij)Aj (2.2.19)
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εij → is a symmetrical matrix, called pure deformation, strain matrix, also the
strain tensor,
ωij → is an antisymmetric matrix.

Description of εij and ωij (Using: u1 = ux – x-component of displacement vector u
and so on . . . ):

ε11 = εxx = ∂u1

∂x1
= ∂ux

∂x
: ε22 = εyy = ∂u2

∂x2
= ∂uy

∂y
: ε33 = εzz = ∂u3

∂x3
= ∂uz

∂z

ε12 = εxy = ε21 = εyx = 1
2
γxy = 1

2
γyx = 1

2

(
∂u1

∂x2
+ ∂u2

∂x1

)
= 1

2

(
∂ux

∂y
+ ∂uy

∂x

)

ε13 = εxz = ε31 = εzx = 1
2
γxz = 1

2
γzx = 1

2

(
∂u1

∂x3
+ ∂u3

∂x1

)
= 1

2

(
∂ux

∂z
+ ∂uz

∂x

)

ε23 = εyz = ε32 = εzy = 1
2
γyz = 1

2
γzy = 1

2

(
∂u2

∂x3
+ ∂u3

∂x2

)
= 1

2

(
∂uy

∂z
+ ∂uz

∂y

)

ω11 = ωxx = 1
2

(
∂u1

∂x1
− ∂u1

∂x1

)
= 1

2

(
∂ux

∂x
− ∂ux

∂x

)
= 0, (2.2.20)

similarly ω22 = ωyy = ω33 = ωzz = 0 and,

ω12 = ωxy = 1
2

(
∂u1

∂x2
− ∂u2

∂x1

)
= 1

2

(
∂ux

∂y
− ∂uy

∂x

)
;

ω21 = ωyx = 1
2

(
∂u2

∂x1
− ∂u1

∂x2

)
= 1

2

(
∂uy

∂x
− ∂ux

∂y

)

ω31 = ωzx = 1
2

(
∂u3

∂x1
− ∂u1

∂x3

)
= 1

2

(
∂uz

∂x
− ∂ux

∂z

)
; (2.2.21)

ω13 = ωxz = 1
2

(
∂u1

∂x3
− ∂u3

∂x1

)
= 1

2

(
∂ux

∂z
− ∂uz

∂x

)

ω23 = ωyz = 1
2

(
∂u2

∂x3
− ∂u3

∂x2

)
= 1

2

(
∂uy

∂z
− ∂uz

∂y

)
;

ω32 = ωxx = 1
2

(
∂u3

∂x2
− ∂u2

∂x3

)
= 1

2

(
∂uz

∂y
− ∂uy

∂z

)

Consider an element of a body at point P undergoing infinitesimal deformation as
shown in Figure 2.2.4.
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Z′

Y′

X′
Y

Z
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P

Figure 2.2.4 Translation.

uy

∂uy

uz

∂uzuz +
∂z

∂yy′
z

z

y

Z′

Y′

X′

P

uy +

Figure 2.2.5 Translation as result of rotation in y-z plane.

As a result of deformation P → P′ : Translation of element is given by u(P). Now
consider (X ′, Y ′, Z ′) frame in Figure 2.2.5.

Rotation about X or X ′ axis:

Due to change in uz = ∂uz

∂y
: due to change in uy = −∂uy

∂z
.

Total rotation about x-axis = (δφ)x = ∂uz

∂y
− ∂uy

∂z
= ∂u3

∂x2
− ∂u2

∂x3
= 2ωzy = 2ω32.

(2.2.22)

Similarly (δφ)y = ∂ux

∂z
− ∂uz

∂x
= ∂u1

∂x3
− ∂u3

∂x1
= 2ωxz = 2ω13. (2.2.23)

(δφ)z = ∂ux

∂y
− ∂uy

∂x
= ∂u1

∂x2
− ∂u2

∂x1
= 2ωxy = 2ω12. (2.2.24)
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Now since ux, uy and uz are analytic functions of (x, y, z), we can write

dux = ∂ux

∂x
dx + ∂ux

∂y
dy + ∂ux

∂z
dz : duy = ∂uy

∂x
dx + ∂uy

∂y
dy + ∂uy

∂z
dz;

duz = ∂uz

∂x
dx + ∂uz

∂y
dy + ∂uz

∂z
dz. (2.2.25)

Specifying εxx = εyy = εzz = εxy = εyz = εzx = 0 : that is no strain, from Equations
(2.2.18) and (2.2.25)

dux = ∂ux

∂y
dy + ∂ux

∂z
dz (2.2.26)

Again, εxy = 0 ➔
∂ux

∂y
= −∂uy

∂x
: εzx = 0 ➔

∂ux

∂z
= −∂uz

∂x

Hence dux = −∂uy

∂x
dy − ∂uz

∂x
dz (2.2.27)

Adding Equations (2.2.26) and (2.2.27), we have

dux = 1
2

(
∂ux

∂z
− ∂uz

∂x

)
dz − 1

2

(
∂uy

∂x
− ∂ux

∂y

)
dy (2.2.28)

➔ dux = ωxzdz − ωxydy

Similarly duy = ωyxdx − ωyzdz (2.2.29)

duz = ωxydy − ωzxdx

Thus ωij contributes to rigid body rotation to the deformation of a body undergo-
ing infinitesimal deformation. ωij is also called the rotation matrix. From Equations
(2.2.22), (2.2.23) and (2.2.24) one may write the rotation matrix as

δφ = ωzyi + ωxzj + +ωyxk = φxi + φyj + φzk (2.2.30)

➔ Contribution of ωij to δAi is the result of rigid body rotation.

2.2.5 Derivative of a vector fixed in a moving reference

We know that if a body is rotating with an angular velocity ω and if a vector V is
attached to the body at point P as shown in Figure 2.2.6.

Now ωd = |ω||r| sin γ = speed of P; and V = dr̄
dt

= ω X r
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V
P

d
r

V

P

i j k

A1 A2 A3

ω

γ
ϕx ϕy ϕzϕ × A =

Figure 2.2.6a Real system. Figure 2.2.6b Ideal case.

Consider the following path s in (X, Y, Z) reference axes shown in Figure 2.2.7.

dr
dt

= lim
�t→0

�r
�t

= lim
�t→0

�r
�s

�s
�t

Now �r approaches �s as �t → 0

➔
�r
�t

→ εt = unit tangent vector to the trajectory.

Thus,
dr
dt

= ds
dt
εt. (2.2.31)

Hence dr/dt leads to a vector having magnitude equal to the speed of the point and
direction tangent to the trajectory.

If r(t) = x(t)i + y(t)j + z(t)k,

then dr
dt = V(t) = ẋ(t)i + ẏ(t)j + ż(t)k and d2r

dt2 = a(t) = ẍ(t)i + ÿ(t)j + z̈(t)k.

Again V(t) = ds
dt
εt

∴ dV
dt

= a = d2s
dt2 εt + ds

dt
dεt

dt
= d2s

dt2 εt + ds
dt

dεt

ds
ds
dt

= d2s
dt2 εt +

(
ds
dt

)2 dεt

ds
(2.2.32)

Again, dεt
ds = lim

�s→0

εt(s+�s)−εt(s)
�s and this can be represented as shown in Figure 2.2.8

∴ dεt

ds
= lim

�s→0

�εt

�s
that is

∣∣�εt

∣∣ ≈ |εt|�φ = �φ
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t = time

path

r (r+ t)

r (t)

Z

Y
X

s

r

s

Figure 2.2.7 Derivative of a vector in moving references.

t(s)

t(s)

t(s+ s)

Figure 2.2.8

i.e. |�εt| ≈ �s
R

, as �φ = �s
R

, R = radius of curvature.

➔ �εt ≈ �s
R
εn, εn is unit normal vector to εt(s). (2.2.33)

Thus,
dεt

ds
= lim

�s→0

[
(�s/R)
�s

εn

]
= εn

R
a = d2s

dt2 εt +
(
ds/dt

)2
R

εn. (2.2.34)

First term is tangent to the path and the second term is in the osculating plane (i.e.
the plane formed by εt(s) and εt(s +�s) in the limit as �s → 0) at right angles to the
path and directly towards the centre of curvature.

Let we have two references X, Y, Z and x, y, z moving arbitrarily relative to one
another. Let XYZ → xyz as shown in Figure 2.2.9.

Choosing ‘O’ as origin, translational velocity Ṙ equal to the velocity of the origin
of xyz plus a rotational velocity ω with an axis of rotation through ‘O’ fully describe
the motion of xyz relative to XYZ.
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Figure 2.2.9

Let the vector A of fixed length and of fixed orientation as seen from xyz (i.e. A is
fixed with respect to xyz). Thus,

(
dA/dt

)
xyz = 0. However, w.r.t. XYZ,

(
dA/dt

)
need

not be zero.
To evaluate

(
dA
dt

)
XYZ

consider the following sequence [Chasle’s theorem]:

1 The translation motion R for the whole system does not alter the direction of A,
as the magnitude of A is fixed there can be no change of A as a result of such
motion.

2 A pure rotation contribution about an axis of rotation through ‘O’. Ends of vector
A forms circular arcs about the axis of rotation.

Let us resolve A into cylindrical components with the axis of rotation forming the
axial direction Z (Figure 2.2.10).

Thus, A = AZ′ εZ′ + Aφ εφ + Arεr

As A rotates about Z ′ axis, Ar = Aφ = AZ ′ = 0. Also εZ ′ = 0, as ends of the vector
form circular arcs.

➔

(
dA
dt

)
XYZ

= Aφ

(
dεφ
dt

)
XYZ

+ Ar

(
dεr

dt

)
XYZ

= −Aφ ω εr + Ar ω εφ (2.2.35)

ωX A = ω εZ ′ X(AZ ′εZ ′ + Aφεφ + Arεr) = −ωAφεr + ωArεφ

➔

(
dA
dt

)
XYZ

= ω × A. (2.2.36)
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Ar

A

Az′

z′

A

Figure 2.2.10

So
dA
dt

= ω × A that is dA = ω dt × A or δA = δφ × A

i.e. δAi = (δ φ × A)i = δφyA3 − δφzA2 or δA1 = ω13A3 −ω21A2 = ω11A1 +ω12A2 +
ω13A3, as ω11 = 0 and ω12 = −ω21, Equation (2.2.30) reduces to

➔ δAi = ωijAj (2.2.37)

So, ωij gives rigid body rotation contribution to the deformation of an element of
the body undergoing infinitesimal deformation.

Example 2.2.2

A body has deformed under a displacement field u with its rectangular
components

u1 = ux = 0.004x1 + 0.001x2 + 0.005x3

u2 = uy = −0.005x1 + 0.0003x2

u3 = uz = 0.0001x1 + 0.005x2 − 0.006x3

Compute strain and rotation components.

Solution:

∂ui

∂xj
=
⎡
⎣ .004 .001 .005

−.005 .0003 0
.0001 .005 −.006

⎤
⎦
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Strain components: εij = 1
2

[
∂ui

∂xj
+ ∂uj

∂xi

]

ε11 = 0.004 : ε22 = 0.0003 : ε33 = −0.006 : ε12 = −0.002 : ε21 = −0.002 :
ε23 = 0.0025 : ε32 = 0.0025 : ε31 = 0.00255 : ε13 = 0.00245.

Rotation components: ωij = 1
2

[
∂ui

∂xj
− ∂uj

∂xi

]

ω11 = ω22 = ω33 = 0

ω12 = 0.003 : ω21 = −0.003 : ω13 = 0.00245 : ω31 = −0.00245 : ω23 =
−0.0025 : ω32 = 0.0025.

Now, (δφ)1 = ω32 = 0.0025 radian: (δφ)2 = ω13 = 0.00245 radians: (δφ)3 =
ω21 = −0.003 radians.

The deformation here is affine deformation [ui = λijxj; λij = matrix of
components].

The strain and rotation matrices are composed of constants. This means that
each small element – of the body has same rotation and pure deformation as
every other element – this is called homogeneous deformation.

Example 2.2.3

Show that (∂ui/∂xj) can be uniquely decomposed into εij and ωij [Equation
(2.2.18)].

Solution:

Let
∂ui

∂xj
= nij + pij (a)

and also
∂ui

∂xj
= εij + ωij (b)

Subtract (b) from (a)

(εij − nij)+ (ωij − pij) = 0 (c)

As nij = nji, symmetric and pij = −pji, skew-symmetric.
Transposing Equation (c) (εji − nji)+ (ωji − pji) = 0 (d)
Adding (c) and (d)
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nij + εji − nji + ωij − pij + ωji − pji = 0 ➔ 2(εij − nij) = 0 ➔ εij = nij.

Similarly subtracting (c) from (d), it can be shown that ωij = pij.

Example 2.2.4

A body has deformed so as to have the following deformation field:

u1 = (3x2
1 x2 + 6)10-2; u2 = (x2

2 + 6x1 x3)10-2;

u3 = (6x2
3 + 2x2 x3 + 15)10-2

What is the rotation of an element at position (1, 0, 2)?

Solution:

∂ui

∂xj
=
⎡
⎣6x1x2 3x2

1 0
6x3 2x2 6x1
0 2x3 12x3 + 2x2

⎤
⎦× 10−2 :

(
∂ui

∂xj

)
(1,0,2)

=
⎡
⎣ 0 3 0

12 0 6
0 4 24

⎤
⎦× 10−2

Hence, ω23 = 0.01 = −δφ1 :ω13 = 0.0 = δφ2 :ω21 = 0.045 = δφ3;
∴ δφ = −0.01i + 0.045k.

2.2.6 Physical interpretation of strain tensor

2.2.6.1 Normal strains

Consider a line segment �x along x-axis, connecting P and Q. In the deformed state
P goes to P′ and Q to Q′. This is presented in Figure 2.2.11

Let the projection of P′Q′ in x-direction be (P′ Q′)x and it is computed in terms of
�x and displacement in x-direction of points P and Q.

(P′Q′)x = �x + (ux)Q − (ux)P (2.2.38)

Now, express (ux)Q in Taylor’s series around point P:

(
P′Q′)

x = �x +
[
(ux)P +

(
∂ux

∂x

)
P
�x + · · ·

]
− (ux)P (2.2.39)
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(P′Q′)x

Figure 2.2.11 Normal strains.

or

(
P′Q′)

x −�x

�x
=
(
∂ux

∂x

)
P

+ · · · higher order terms containing �x.

Now, lim
�x→0

(
P′Q′)

x −�x

�x
=
(
∂ux

∂x

)
P

(2.2.40)

➔ This is the strain εxx or ε11 at point P.

We can use (P′Q′)x = P′Q′ for small deformations. Similar interpretations can be
made for εyy and εzz (or ε22 and ε33).

Thus εpp can be also be interpreted as merely the change in length of a segment
originally in the pth coordinate direction per unit original length.

2.2.6.2 Shear strains

Consider line segments QP, PR along x and y-axis respectively as shown in
Figure 2.2.12. In the deformed state these lines assume the form Q′P′ and P′R′.

We are interested in the projections (P′Q′) and (P′R′) on to x-plane as shown in
Figure 2.2.13.

Hence, α = angle between the projection of P′R′ and y-direction; ux = displacement
of P in x-direction.

Displacement of R in x-direction =
[
ux +

(
∂ux
∂y

)
�y + · · ·

]
(�x = �z = 0, for this

expression).

Component of projected length of P′R′ in y-direction = (P′R′)
y = �y +

[
δ(�yj)

]
y

[Refer to δAi = ∂ui
∂xj

Aj : A′
i = Ai + δAi given earlier in Equation (2.2.9)].
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Figure 2.2.12 Shear strains.
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Figure 2.2.13 Projection of strains.

∴ tanα =
∂ux
∂y �y + · · · · · · · · ·
�y + [δ (�yj)]y

As �y → 0, higher order terms vanish, hence tanα = ∂ux

∂y
.

When α is small α = ∂ux

∂y
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Similarly, β = ∂uy

∂x
(2.2.41)

Sum of the angles α + β is the decrease in rightangle of the pair of infinitesimal
line segments at P, when we project the deformed geometry onto the plane formed by
the line segments in the undeformed geometry. For small deformation requirement,
the change of right angle between the infinitesimal segment in the deformed geometry
can be used in the place of the angle found by projecting the deformed geometry back
onto the x-y plane.

Thus α + β = ∂ux

∂y
+ ∂uy

∂x
= 2εxy (2.2.42)

The strains shown in Equation (2.2.42) are called shear strains.
Similarly we can have y-z and z-x plane considerations to have

∂uy

∂z
+ ∂uz

∂y
= 2εyz (2.2.43)

and
∂ux

∂z
+ ∂uz

∂x
= 2εzx (2.2.44)

Sometimes, one uses γij to represent the total decrease of the right angles between
dxi and dxj i.e.

γij = 2 εij. (2.2.45)

2.2.7 Cubical dilatation

2.2.7.1 Under normal strains alone

Let us consider an infinitesimal three-dimensional rectangular parallelepiped shown
in Figure 2.2.14, wherein only normal strains are non-zero.

We conclude that the rectangular parallelepiped remains rectangular during and
after deformation. It should be pointed out that the element may also have rigid body
rotation; as a result, the sides of the rectangular parallelepiped may not be parallel to
the reference (undeformed state) coordinate axes after deformation.

Hence,

dx′
1 = dx1 + ε11dx1 = (1 + ε11)dx1,

similarly dx′
2 = (1 + ε22)dx2, and dx′

3 = (1 + ε33) dx3 (2.2.46)

Now dx′
1dx′

2dx′
3 − dx1dx2dx3 = dx1dx2dx3(1 + ε11)(1 + ε22)(1 + ε33)−

dx1dx2 dx3 = [1 + ε11 + ε22 + ε33 + higher order strain products −1] dx1dx2dx3
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dx′3

dx′2 dx′1dx1

dx3

dx2
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X3

Undeformed 
state

Deformed
state

Figure 2.2.14 Cubical dilatation.

Ignoring products, we have

dx′
1 + dx′

2 + dx′
3 − dx1dx2dx3

dx1dx2dx3
= ε11 + ε22 + ε33

Change in volume
Original volume

= ε11 + ε22 + ε33 = Cubical dilatation. (2.2.47)

2.2.7.2 Deformation under pure shear

Consider an infinitesimal element subjected to pure shear strains. A rectangular paral-
lelepiped in undeformed state will undergo a deformation where the sides remain the
same (i.e. of same length) for the first order consideration and the original orthogo-
nality between the sides is possibly destroyed. The sides may change from rectangles
to a parallelepiped as shown in Figure 2.2.15.

Change in volume = L1L2L3 − L′
1 · (L′

2 × L′
3) (2.2.48)

We know, L′
1 . (L′

2 × L′
3) = L′

1 L′
2 L′

3 cos[L′
1, L′

2 × L′
3] sin(L′

2, L′
3)

= scalar tripple product.

Angle between L′
2 and L′

3 = π/2 − 2 ε23.
Since, the deformation is small, angle between L′

1 and L′
2 × L′

3, will be of the same
order of magnitude as ε23 and let, 2ε23 ∼ 2ε12 ∼ 2ε.

L′
1 · (L′

2 × L′
3) = L′

1 L′
2 L′

3 cos 2ε sin(π/2 − 2ε) = L′
1 L′

2 L′
3 cos 2ε cos 2ε

= L′
1 L′

2 L′
3

(
1 − 4ε2

2! + · · ·
)(

1 − 4ε2

2! + · · ·
)

= L′
1 L′

2 L′
3, neglecting higher order terms. (2.2.49)
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Figure 2.2.15 Straining under pure shear.

Hence for small deformation, change in volume = 0.
Thus, normal strains cause dilatation without changing mutual orthogonality of

the sides while shear strains destroy orthogonality of the edges but do not affect the
volume. So in a strain tensor (second order)

1 Diagonal terms → normal strains,
2 Off-diagonal terms → shear strains,
3 Trace of the matrix → cubical dilatation.

2.2.8 Transformation of strains

We shall show that the geometrical interpretations of strain terms form a second order
tensor field.

2.2.8.1 Normal strains

Consider normal strains at a point P in Figure 2.2.16 in the direction, n.
Displacement of point P in the n direction

(un)P = (ux)Panx + (uy)Pany + (uz)Panz = (uj)Panj (2.2.50)

Displacement of point Q in the n direction by Taylor series

(un)Q = (un)P +
(
∂un

∂xi

)
P
�xi +

(
∂2un

∂xi∂xk

)
P

�xi�xk

2! + · · ·

(un)Q − (un)P =
(
∂un

∂xi

)
P
�xi +

(
∂2un

∂xi∂xk

)
P

�xi�xk

2! + · · ·

Neglecting higher order terms and setting �n → 0
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Figure 2.2.16 Transformation of normal strains.
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Figure 2.2.17 Transformation of shear strains.

lim
�n→0

(un)Q − (un)P

�n
= lim

�n→0

(
∂uj

∂xi

)
P

�xi

�n
anj; As we have,

�xi

�n
= ani

➔ εnn = ∂uj

∂xi
anianj, for any point P. (2.2.51)
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Hence, we have

εnn = ∂u1

∂x1
a2

n1 + ∂u2

∂x2
a2

n2 + ∂u3

∂x3
a2

n3 +
(
∂u1

∂x2
+ ∂u2

∂x1

)
an1an2 +

(
∂u1

∂x3
+ ∂u3

∂x1

)
an1an3

+
(
∂u2

∂x3
+ ∂u3

∂x2

)
an2an3

or εnn = εxxa2
nx + εyya2

ny + εzza2
nz + 2

(
εxyanxany + εyzanyanz + εzxanzanx

)
That is ➔ εnn = anianjεij (2.2.52)

2.2.8.2 Shear strains

Now consider shear strain terms

Shear strain: εns = 1
2

(
∂un

∂s
+ ∂us

∂n

)

We can express un and us in terms of displacements along the coordinate
directions, n and s (Figure 2.2.17) i.e.

un = uiani : us = uiasi

Again εns = 1
2

(
∂ui

∂s
ani + ∂ui

∂n
asi

)
(2.2.53)

And we may write:
∂ui

∂s
= ∂ui

∂xj

∂xj

∂s
= ∂ui

∂xj
asj :

∂ui

∂n
= ∂ui

∂xk

∂xk

∂n
= ∂ui

∂xk
ank.

➔ εns = 1
2

[
∂ui

∂xj
asjani + ∂ui

∂xk
ankasi

]
(2.2.54)

In the second expression of the right hand side of Equation (2.2.55), i and k are
dummy and can be replaced by j and i respectively

➔ εns = aniasj

(
∂ui

∂xj
+ ∂uj

∂xi

)
= aniasjεij (2.2.55)

Equation (2.2.55) indicates that the strain at a point is a second order tensor.
Physically this transformation may be interpreted as follows:

Suppose that all the six components of strain are known for the fixed coordinate
axes x, y and z, we want to define six components of strain for the new orthogonal
axes x′, y′ and z ′.
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With the help of a table of direction cosines

x y z
x′ �1 m1 n1
y′ �2 m2 n2
z ′ �3 m3 n3

From Equation (2.2.55), we may write

εx ′ = �2
1εx + m2

1εy + n2
1εz + 2�1m1εxy + 2m1n1εyz + 2n1�1εxz

εyx = �2
2εx + m2

2εy + n2
2εz + 2�2m2εxy + 2m2n2εyz + 2n2�2εxz

εz = �2
3εx + m2

3εy + n2
3εz + 2�3m3εxy + 2m3n3εyz + 2n3�3εxz

2εx ′y ′ = 2�1�2εx + 2m1m2εy + 2n1n2εz + 2(�1m2 + m1�2)εxy

+ 2(m1n2 + n1m2)εyz + (n1�2 + �1n2)εxz (2.2.56)

2εy ′z ′ = 2�2�3εx + 2m2m3εy + 2n2n3εz + 2(�2m3 + m2�3)εxy

+ 2(m2n3 + n2m3)εyz + (n2�3 + �2n3)εxz

2εz ′x ′ = 2�3�1εx + 2m3m1εy + 2n3n1εz + 2(�3m1 + m3�1)εxy

+ 2(m3n1 + n3m1)εyz + (n3�1 + �3n1)εxz

Thus it may be concluded that the strain components are the components of a
symmetric tensor of order two.

Now we may introduce a strain surface, defined as:

Specify a constant k and lay off along each direction a quantity equal to the product
of this constant and the quantity equal to the product of this constant and the inverse
square root of the elongation in this direction.

r = k√
εr

(2.2.57)

The coordinates of the end point of this segment with respect to the origin are given
by x = r�; y = rm and z = r n.

Now, we may get from Equation (2.2.56),

f (x, y, z) = εxx2 + εyy2 + εzz2 + 2εxyxy + 2εyzyz + 2εxzxz = ±k2 (2.2.58)

The end points in Equation (2.2.58) lie on a second degree surface; the sign on
the right hand side is chosen such that the surface is real. The strain surface will
be ellipsoid if all the elements are stretched or compressed. In the other case, when
the elements are compressed along some directions and stretched along some other
direction, the surface is a hyperboloid of one or two sheets. The asymptotic cone,
the boundary surface, corresponds to the directions along which the elongation is
equal to zero. From the theory of quadratic form [Equation (2.2.58)], it follows
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that it is always possible to choose such a system of coordinates that the quadratic
form can be reduced to the basic form, i.e. the stress tensor is diagonal. Thus one
can have

εxx2 + εyy2 + εzz2 = ±k2 (2.2.59)

The axes for which the basic form is attained called the principal axes of the strain
tensor, and the shear strain along these axes vanish. Such surface is a second degree
curve and the principal stresses have extremal values.

The directions of the principal axes may be obtained by using Lagrangian multiplier
and extremal value of the quadratic form (Parton and Perlin 1984).

S(�, m, n) = �2εx + m2εy + n2εz + 2�mεxy + 2mnεyz + 2m�εzx − λ(�2 + m2 + n2)

(2.2.60)

Now,

∂S
∂�

= (εx − λ)�+ εxym + εxzn = 0;
∂S
∂m

= (εy − λ)m + εxy�+ εyzn = 0;

∂S
∂n

= (εz − λ)n + εyzm + εxz� = 0 (2.2.61)

System of the above homogeneous equations have solution only if

∣∣∣∣∣∣
(εx − λ) εxy εxz
εxy (εy − λ) εyz
εxz εyz (εz − λ)

∣∣∣∣∣∣ = 0, and this leads to λ3 − J1λ
2 + J2λ− J3 = 0

(2.2.62)

J1, J2 and J3 are the strain invariants given by

J1 = εx + εy + εz

J2 =
∣∣∣∣ εx εxz
εxz εz

∣∣∣∣+
∣∣∣∣ εx εxy
εxy εy

∣∣∣∣+
∣∣∣∣ εy εyz
εyz εz

∣∣∣∣
= εxεy + εyεz + εzεx − ε2

xy − ε2
yz − ε2

zx (2.2.63)

J3 =
∣∣∣∣∣∣
εx εxy εxz
εxy εy εyz
εxz εuyz εz

∣∣∣∣∣∣ = εxεyεz − εxε
2
yz − εyε

2
zx − εzε

2
xy + 2εxyεyzεzx.

Roots of Equation (2.1.61) are the principal strains and substituting these strains
(λi, i = 1, 2, 3) in Equation (2.2.62) along with the condition, �2

i + m2
i + n2

i = 1, one
can obtain the direction cosines �i, mi and ni for particular value of λi.
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It can be shown that the extremal shearing strain act on the surface elements passing
through one of the principal axes and bisecting the angle between the remaining two.
The magnitude of these shearing strains are equal to the difference between the values
of the corresponding principal strains. In the direction normal to these planes the
elongation is equal to half the sum of the principal strains.

2.2.9 Equations of compatibility

Consider the strain-displacement relationship:

εij = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
(2.2.64)

If a displacement field is specified, εij’s can be found out. The reverse problem, i.e. if
strain is specified, it is not so simple to find out the corresponding displacement field.
This is more so since, we have here three functions of displacement field and ui have
to be obtained from six partial differential equations, Equation (2.2.64).

In order to ensure a single-valued, continuous solution for ui, we must impose
certain restrictions on the strain functions εij. We know that the displacement field is
single-valued and continuous, thus the restriction on εij stem from these considerations
lead to the compatibility equations.

2.2.9.1 Necessary condition of compatibility

We have the following differential equations:

εxx = ∂ux

∂x
; εyy = ∂uy

∂y
; εzz = ∂uz

∂z
; γxy =

(
∂uy

∂x
+ ∂ux

∂y

)

γyz =
(
∂uz

∂y
+ ∂uy

∂z

)
; γzx =

(
∂ux

∂z
+ ∂uz

∂x

)

Differentiate εxx w.r.t. y twice and εyy w.r.t. x twice and add them

∂2εxx

∂y2 + ∂2εyy

∂x2 = ∂2

∂x∂y

(
∂ux

∂y
+ ∂uy

∂x

)
= ∂2γxy

∂x∂y
(2.2.65)

Since all derivatives are continuous, one can interchange the order of partial
differentiation.

Similarly one can have

∂2εyy

∂z2 + ∂2εzz

∂y2 = ∂2γyz

∂y∂z
(2.2.66)

∂2εzz

∂x2 + ∂2εxx

∂x2 = ∂2γzx

∂x∂z
(2.2.67)
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Now differentiate εxx w.r.t. z and y:
∂2εxx

∂y∂z
= ∂3ux

∂y∂z∂x
(2.2.67a)

Differentiate γxy w.r.t. x and z :
∂2γxy

∂x∂z
= ∂3uy

∂x2∂z
+ ∂3ux

∂x∂y∂z
(2.2.67b)

Differentiate γyz w.r.t. x twice:
∂2γyz

∂x2 = ∂3uz

∂x2∂y
+ ∂3uy

∂x2∂z
(2.2.67c)

Differentiate γzx w.r.t. y and x :
∂2γzx

∂x∂y
= ∂3ux

∂x∂y∂z
+ ∂3uz

∂x2∂y
(2.2.67d)

Now (2.2.67b) + (2.2.67d) − (2.2.67c) can be expressed as

−∂
2γyz

∂x2 + ∂2γxy

∂x∂z
+ ∂2γzx

∂x∂y
= − ∂3uz

∂x2∂y
− ∂3uy

∂x2∂z
+ ∂3uy

∂x2∂z
+ ∂3ux

∂x∂y∂z

+ ∂3ux

∂x∂y∂z
+ ∂3uz

∂x2∂y
= 2

∂2εxx

∂y∂z
[from (2.2.67a)]

That is 2
∂2εxx

∂y∂z
= ∂

∂x

[
−∂γyz

∂x
+ ∂γzx

∂y
+ ∂γxy

∂z

]
(2.2.68)

Similarly, 2
∂2εyy

∂x∂z
= ∂

∂y

[
−∂γzx

∂y
+ ∂γxy

∂z
+ ∂γyz

∂x

]
(2.2.69)

and 2
∂2εzz

∂y∂x
= ∂

∂z

[
−∂γxy

∂z
+ ∂γyz

∂x
+ ∂γzx

∂y

]
(2.2.70)

Equations (2.2.66) through (2.2.71) can be expressed as

∂2εij

∂xk∂x�
+ ∂2εk�

∂xi∂xj
= ∂2εik

∂xj∂x�
+ ∂2εj�

∂xi∂xk
(2.2.71)

This is the compatibility equation proposed by St. Venant. Six Equations (2.2.65)–
(2.2.70) are a part of 34 = 81 total equations given above. Note that one can have
only six independent equations as obtained above out of total 81 equations.

Strain tensor must satisfy the preceding equations if the strain field is to correspond
to a single-valued, continuous deformation.
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2.2.9.2 Sufficient conditions for compatibility

2.2.9.2.1 Simply connected body

The one in which each and every closed path in a body can be continuously shrunk
to a point without cutting a boundary. The path may be in anyway in the process of
shrinking it to a point.

The path ‘a’ can be shrunk to a point without cutting the outside boundary surface S1
or the closed internal boundary surface S2 which encloses a cavity inside the material.
The path ‘b’ cannot be shrunk to a point without cutting the boundary S2 (Figure
2.2.18).

2.2.9.2.2 Multiply connected body

The one, where can exist one or more paths which cannot be shrunk to a point in the
manner described earlier. Example is a ring, torus etc. shown in Figure 2.2.19.

The sufficient condition for the uniqueness of the strain-displacement relation is
that the body should be simply connected. If the body is multiply connected, the six
equations described earlier give only the necessary condition for compatibility.

a

b

cavity S2 S1

Figure 2.2.18 Simply connected domain.

S2

S1

a

Ring

Circle

Torus

Figure 2.2.19 Multiply connected domain.
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Example 2.2.5

1 Given:

εij =
⎡
⎣ .01 −.02 0

−.02 .03 −.01
0 −.01 0

⎤
⎦

in the direction n = 0.0 i + 0.00 j + 0.8 k; What is εnn?
2 In problem 1, a set of axes x′, y′, z′ is chosen as follows

What is the strain tensor at the point of interest for this new reference in
Figure 2.2.20?

x′

x

z, z′

x′

y

Figure 2.2.20

3 Given the following plane strain distribution:

εxx = 128 x2 y; εyy = 4 y2 x3 + 10−5 : γ xy = 4 xy + 10 x4.

Are the compatibility equations satisfied?

2.3 STRESSES

2.3.1 Concept of stress

The concept is well documented in textbooks and materials to be covered herein are just
sufficient to formulate theorems presented in the subsequent sections. As in classical
mechanics, we consider the force systems acting on a soil body in equilibrium are of
two kinds: body forces which are spatially distributed on all elements of the body,
and surface forces which are applied on the boundary of the body. Unit weights,
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seepage force are body forces, they develop without the agency of physical contact.
Surface forces on the other hand develop by virtue of the pressure between bodies.
Dimensionally body force is force per unit volume whereas surface force is defined as
a force per unit area of the surface.

If a normal force �Fn is transmitted across an area �A, shown in Figure 2.3.1 and
consisting of mineral skeleton and water surface, reaction to �Fn may be thought of
consisting of

(�Fn)soil mineral + (�Fn)pore water = �Fn (2.3.1)

Now stress at a point can be obtained by setting�A → 0, i.e. surface tractions may
be written as

σn = lim
�A→0

(�Fn)soil

�A
+ lim
�A→0

(�Fn)water

�A

τnx = lim
�A→0

�Fnx

�A
; τny = lim

�A→0

�Fny

�A

Thus σn = σ̄n + u (2.3.2)

where σ̄n = effective stress; u = pore water pressure; σ = total normal pressure.
This is the von Karman notation for normal and shear stresses, other one is simply

τij and indices change with the coordinate axes.
If pores are completely saturated, we have total head, h = pw

γw
+ z, in which pw =

water pressure; z = elevation head.

x

z

y

n

Fny

Fnz

Fnx

Figure 2.3.1 Concept of stress.
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Thus, Equation (2.3.2) may be reduced to

σn = σ̄n + γw(h − z) (2.3.3)

The defined positive normal and shear acting on the surfaces of an elemental cube at
a point P within a soil mass are shown in Figure 2.3.2. This can be achieved through
using the concept that when�x�y�z → 0, the situation converges to the stresses at P.

The stress tensor at a point is written as

[σ ] =
⎡
⎣σx τxy τxz
τyx σy τyz
τzx τzy σz

⎤
⎦ = σij = τij (2.3.4)

Considering, the moment equilibrium at a point, stress tensor may be proved to be
symmetric, i.e. σij = σji.

Stress at point is a second order tensor and as such all transformations related to
tensor is applicable here as well.

2.3.1.1 Equilibrium equation in cartesian coordinates

Variation of effective stresses acting on the sides of a cubical element that contribute
to its equilibrium in the y-direction is shown in Figure 2.2.3. The unit weight of soil
is γ and acts in the negative z-direction and γw is the unit weight of water.

Summing up forces in y-direction, we get

∂τxy

∂x
+ ∂σ̄y

∂y
+ ∂τyz

∂z
+ γw

∂h
∂y

= 0

P

Z

X

Y
y

x

z

y

x

z

z

x

y

xy

xz
yx

zy

zx

yz

yx

yz

xy

zy

zx

xz

Figure 2.3.2 Positive stresses acting at a point P.
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X

dx

dy
dz

dz

Z

Y

∂z

dz
∂y

dx∂x

Figure 2.3.3 Equilibrating forces in the Y -direction.

Using similar arguments in the y and z directions, we can get the general equations
of equilibrium at a point and they can be written as

∂σ̄x

∂x
+ ∂τxy

∂y
+ ∂τxz

∂z
+ γw

∂h
∂x

= 0

∂τxy

∂x
+ ∂σ̄y

∂y
+ ∂τyz

∂z
+ γw

∂h
∂y

= 0 (2.3.5)

∂τxz

∂x
+ ∂τxy

∂y
+ ∂σ̄z

∂z
+ γw

∂h
∂z

+ γ − γw = 0

where the body forces consists of seepage force (γw grad h) and buoyant unit weight
γ − γw in the z-direction.

2.3.1.2 Equilibrium equation in cylindrical coordinates (r, θ, z)

In foundation engineering cylindrical coordinates are often used for circular footings
and problems related to axisymmetric situations. Diagram sketch of the situation is
given in Figure 2.3.4.

Here τrθ = τθr, τrz = τzr and τθz = τzθ , the equation of equilibrium can be written as

∂σr

∂r
+ 1

r
∂τrθ

∂θ
+ ∂τzr

∂z
+ σr − σθ

r
= 0

∂τrθ

∂r
+ 1

r
∂σθ

∂θ
+ ∂τθ z

∂z
+ 2τrθ

r
= 0 (2.3.6)

∂τzr

∂r
+ 1

r
∂τθ z

∂θ
+ ∂σz

∂z
+ τzr

r
+ γ = 0
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Figure 2.3.4 Axisymmetric configuration.

2.3.1.3 Traction

Figure 2.3.5 presents a tetrahedron formed by drawing three planes normal to the
coordinate planes and a fourth plane with a direction normal n at a distance h from
the point P, located at the origin.

In the limit as h → 0 the tetrahedron will become of infinitesimal order with sides
dx, dy and dz and all four planes will pass through the point P. The resultant stress pn

acting along n with components pnx, pny and pnz. In the limit as h → 0, the equilibrium
of all forces in the y-direction requires

1
2
σydxdz + 1

2
τxydydz + 1

2
τzydxdy = pnydA:

dA = area of the inclined surface.

It may be noticed that 1
2dydz = dA cos(n, x), 1

2dxdz = dA cos(n, y), and 1
2dxdy =

dA cos(n, z); cos(n, x), cos(n, y) and cos(n, z) are the direction cosines of n with x, y
and z-directions.

Thus, we can write: Pny = τxy cos(n, x)+ σy cos(n, y)+ τzy cos(n, z).
Hence, the surface traction on a surface having normal n can be written as

⎧⎨
⎩
σnx
σny
σnz

⎫⎬
⎭ =

⎡
⎣σx τxy τxz
τxy σy τyz
τxz τyz σz

⎤
⎦
⎧⎨
⎩

cos(n, x)
cos(n, y)
cos(n, z)

⎫⎬
⎭ (2.3.7)

where cos(n, x) etc. are direction cosines of n with x-direction and so on.
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n

pnx

xy

xz

yz pnypnxP

A

B

C

Z

X

Y
zx

yx

zy

x

y

z

Figure 2.3.5 Stresses on an inclined plane.

Transformation of stresses from XYZ coordinate system to X′Y ′Z′ coordinate
system is given by:

⎡
⎣σx ′ τx ′y ′ τx ′z ′

τx ′y ′ σy ′ τy ′z ′

τx ′z ′ τy ′z ′ σz ′

⎤
⎦ =

⎡
⎣a11 a12 a13

a21 a22 a23
a31 a32 a33

⎤
⎦
⎡
⎣σx τxy τxz
τxy σy τyz
τxz τyz σz

⎤
⎦
⎡
⎣a11 a21 a31

a12 a22 a32
a13 a23 a33

⎤
⎦
(2.3.8)

In tensor notation [similar to Equation (2.2.53)]:

σmn = amkan�σk� (2.3.9)

indices m, n, . . . etc. have range, 1, 2, 3 implying X, Y and Z coordinate system
respectively.

Direction cosine table:

X Y Z X Y Z
X ′ a11 a12 a13 cos(x′, x) cos(x′, y) cos(x′, z)
Y ′ a21 a22 a23 cos(y′, x) cos(y′, y) cos(y′, z)
Z ′ a31 a32 a33 cos(z ′, x) cos(z ′, y) cos(z ′, z)

2.3.2 Principal stresses and strains, invariants

Stress and strain at a point, both are tensors of second order and, thus, both will
follow similar law of transformation from one coordinate system to another.
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A principal stress is defined as the normal stress on a plane on which there is no
shear. The corresponding plane is the principal planer. If p is the directed normal on a
principal plane and the normal stress (principal stress) is σp and Equation (2.3.6) can
be written as

(σx − σp) cos(p, x)+ τyx cos(p, y)+ τxz cos(p, z) = 0

τyx cos(p, x)+ (σy − σp) cos(p, y)+ τyz cos(p, z) = 0 (2.3.10)

τxz cos(p, x)+ τyz cos(p, y)+ (σz − σp) cos(p, z) = 0

in which σp and p are unknowns.

Also, we have cos2(p, x)+ cos2(p, y)+ cos2(p, z) = 1 (2.3.11)

From Equation (2.3.11) it is obvious that all direction cosines cannot be zero, hence
for a nontrivial solution, one should have

∣∣∣∣∣∣
σx − p τxy τxz
τxy σy − p τyz
τxz τyz σz − p

∣∣∣∣∣∣ = 0. (2.3.12)

Expanding the determinant, we get the characteristic equation [This is an eigen
value problem, wherein σp are the eigen values and corresponding direction cosines
are eigen vectors] as follows:

f (σp) = σ 3
p − I1 σ 2

p + I2 σp − I3 = 0 (2.3.13)

in which I1, I2 and I3 given below are the stress invariants ( i.e. invariant to coordinate
transformation).

The invariants are:

I1 = σx + σy + σz

I2 =
∣∣∣∣σx τxz
τxz σz

∣∣∣∣+
∣∣∣∣σx τxy
τxy σy

∣∣∣∣+
∣∣∣∣σy τyz
τyz σz

∣∣∣∣
= σxσy + σyσz + σzσx − τ2

xy − τ2
yz − τ2

zx (2.3.14)

I3 =
∣∣∣∣∣∣
σx τxy τxz
τxy σy τyz
τxz τyz σz

∣∣∣∣∣∣ = σxσyσz − σxτ
2
yz − σyτ

2
zx − σzτ

2
xy + 2τxyτyzτzx

If I’s are nonzero and positive, Equation (2.3.13), according to Descarte’s rule,
should have three distinct roots. Once roots are known planes may be obtained from
Equation (2.3.10). These principal planes can be shown to be mutually orthogonal.
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First strain invariant say J1 has an important physical meaning.

J1 = εxx + εyy + εzz = ε1 + ε2 + ε3 (2.3.15)

= sum of principal strains = cubical dilatation/volume dilatation.

If products of strains are not neglected as in Equation (2.2.47), e, can be written as

elarge = √1 + 2J1 − 4J2 + 8J3 − 1 (2.3.16)

J1, J2 and J3 are strain invariants, given Equation (2.2.63).

2.3.3 Cauchy’s stress quadric and Mohr diagram

Consider Equation (2.3.9), the stress given by

σnn = ankan�σk�

indicates normal stress at a point on a surface having normal direction n.
Nature of variation of σnn as the orientation of n (as an axis) changes can be

written as

τnn = σn = σx�
2 + σym2 + σzn2 + 2τxy�m + 2τyzmn + 2τzxn� (2.3.17)

It follows from Equation (2.3.17) that the stress components are the components of
a symmetric tensor of rank two. Let us now introduce the concept of a certain surface,
called the stress surface define in the following manner.

Set in the direction of n a vector whose length is r and say

r = k√|σn| , where k is a constant. (2.3.18)

Coordinates of the end of this vector, x = �r, y = mr and z = nr.

➔ σn = k2

r2 ; (2.3.19)

Implying that as the plane rotates about the point say ‘0’, the end of the vector ‘r’
always lie on the surface of the second degree curve, that is

➔ ± k2 = σxx2 + σyy2 + σzz2 + 2τxyxy + 2τyzyz + 2τzxzx (2.3.20)

+ve indicates tension and −ve, a compression.
When all three principal (we shall discuss them later) stresses have same sign, only

one of the alternative sign is needed and the surface is an ellipsoid. When the principal
stresses are not all of the same sign, both signs are needed and the surface consists of a
hyperboloid of two surfaces, with a common asymptotic cone, which is the boundary
surface, corresponding to the directions along which the stress is zero.
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2.3.3.1 Mohr diagram

Take x, y, z as the directions 1, 2 and 3 as shown in Figure 2.3.6.
From Equation (2.3.6)

We have, pn1 = σ1 cos(n, 1); pn2 = σ2 cos(n, 2); pn3 = σ3 cos(n, 3) (2.3.21)

The resultant is

➔ p2
n = p2

n1 + p2
n2 + p2

n3 = σ 2
1 cos2(n, 1)+ σ 2

2 cos2(n, 2)+ σ 2
3 cos2(n, 3)

also p2
n = σ 2

n + τ2
n (2.3.22)

Also we have,

⎧⎨
⎩

pn1
pn2
pn3

⎫⎬
⎭ =

⎡
⎣σ1 0 0

0 σ2 0
0 0 σ3

⎤
⎦
⎧⎨
⎩

cos(n, 1)
cos(n, 2)
cos(n, 3)

⎫⎬
⎭

Hence we may write

σ 2
1 cos2(n, 1)+ σ 2

2 cos2(n, 2)+ σ 2
3 cos2(n, 3) = σ 2

n + τ2
n

σ1 cos2(n, 1)+ σ2 cos2(n, 2)+ σ3 cos2(n, 3) = σn (2.3.23)

cos2(n, 1)+ cos2(n, 2)+ cos2(n, 3) = 1

pn3

pn2

pn1

n
pn

P

3

1

2

Figure 2.3.6 Development of Mohr diagram.
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Assuming σ1 > σ2 > σ3, solution of Equation (2.3.23) may be written as

cos2(n, 1) = τ2
n + (σn − σ2)(σn − σ3)

(σ1 − σ2)(σ1 − σ3)
;

cos2(n, 2) = τ2
n + (σn − σ3)(σn − σ1)

(σ2 − σ3)(σ2 − σ1)
; (2.3.24)

cos2(n, 3) = τ2
n + (σn − σ1)(σn − σ2)

(σ3 − σ1)(σ3 − σ2)
.

Now, the cosines squared terms are never negative and as σ1 > σ2 > σ3,

τ2
n + (σn − σ2)(σn − σ3) ≥ 0; τ2

n + (σn − σ3)(σn − σ1) ≤ 0;

τ2
n + (σn − σ1)(σn − σ3) ≥ 0. (2.3.25)

The first equation may be written as

τ2
n + [σ 2

n − σn(σ2 + σ3)+ σ2σ3] ≥ 0

or, τ2
n + σ 2

n − 2σn
(σ2 + σ3)

2
+
(
σ2 + σ3

2

)2

≥ 1
4

[(σ2

2

)2 − 4σ2σ3

]
=
(
σ2 − σ3

2

)2

.

τ2
n +

[
σn − (σ2 + σ3)

2

]2

≥
(
σ2 − σ3

2

)2

(2.3.26)

τ2
n +

[
σn − (σ1 + σ3)

2

]2

≤
(
σ1 − σ3

2

)2

(2.3.27)

τ2
n +

[
σn − (σ1 + σ2)

2

]2

≥
(
σ1 − σ2

2

)2

(2.3.28)

Choosing a (σn, τn) coordinate, we see that for the condition of equality of each of
the above equations defines the locus of a circle. Equation (2.3.26) defines a circle with
centre at σ = (σ2 + σ3)/2 with (σ2 − σ3)/2 as radius centred at ‘a’ in Figure 2.3.7.

Similarly Equation (2.3.27) defines a circle with centre at σ = (σ1 + σ3)/2 with
(σ1 − σ3)/2 as radius, centred at ‘b’ and Equation (2.3.28) is a circle with centre at
σ = (σ1 + σ2)/2 with (σ1 − σ2)/2 as radius, centred at ‘c’ in Figure 2.3.7.

It is apparent from the Figure 2.3.7 that all stress conditions are confined within
the interior of the outer circle and out side of the two circles drawned. Hence the
maximum shear stress is given by
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c

b

a

1

2

3

Figure 2.3.7 Mohr diagram.

τmax = σ1 − σ3

2

corresponding normal stress is σ = σ1 + σ3

2
. (2.3.29)

The direction cosines of the directed normal to the plane on which τmax acts are
given by

cos2(n, 1) =

(
σ1 − σ3

2

)2

+
(
σ1 + σ3

2
− σ2

)(
σ1 + σ3

2
− σ3

)
(σ1 − σ3) (σ1 − σ2)

= 1
2

cos2(n, 2) =

(
σ1 − σ3

2

)2

+
(
σ1 + σ3

2
− σ1

)(
σ1 + σ3

2
− σ3

)
(σ2 − σ3) (σ2 − σ1)

= 0 (2.3.30)

cos2(n, 3) =

(
σ1 − σ3

2

)2

+
(
σ1 + σ3

2
− σ3

)(
σ1 + σ3

2
− σ3

)
(σ3 − σ1) (σ3 − σ2)

= 1
2

.

➔ Hence d.c.s are
1

±√
2

= 0;
1

±√
2

.

2.3.3.2 Spherical stress matrix

Here we have σ1 = σ2 = σ3 → Mohr circle reduces to a point at a distance = σh =
σ1 + σ2 + σ3 on σ-axis.
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2.3.3.3 Deviatoric stress matrix

It plots Mohr diagram the same way as the general stress matrix but with the τ-axis
shifted by an amount, σh = (σ1 + σ2 + σ3)/3. This is shown in Figure 2.3.8.

2.3.4 Plane stress conditions

Let us assume that stresses are confined to x-z plane. For this case, we have σy = τxy =
τuz = 0. The stress tensor can be written as

σij =
⎡
⎣σx 0 τxz

0 0 0
τxz 0 σz

⎤
⎦ (2.3.31)

Characteristic equation can be written as

(σx − σn)(σz − σn)− τ2
xz = 0 (2.3.32)

Two principal stresses are:

σ1,2 = 1
2
(σx + σz)±

√(
σx − σz

2

)2

+ τ2
xz (2.3.33)

This is the equation of a circle with its centre on σ -axis at σ = (σx +σz)/2 and with
a radius of [(σx − σx)

2/4 + τ2
xz]1/2.

c

ab

1

2

3

( 1+ 2+ 3)/3
(2 2 1 3)/2

Figure 2.3.8 Mohr diagram – special cases.
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A

A

z

x

xz xz

x
xz

xz

x

A

A
x

x

Pole

P( x, xz)

( x+ z)/2

xz

xz

1

1

2

2

2

x

1

Figure 2.3.9 Construction of Mohr diagram.

Thus for plane stress, the stresses in any direction at a point in the plane under
consideration lie on the circumference of a unique circle. This circle can also be drawn
in parametric form, introducing the parameter 2θ , by equation

σθ = (σx + σz)

2
+ (σx − σz)

2
cos 2θ + τxz sin 2θ ;

τϑ = (σx − σz)

2
sin 2θ − τxz cos 2θ (2.3.34)

This equation can be plotted with respect to a plane stress (positive stress system)
element shown in Figure 2.3.9.

Consider the stresses on the right side of the element and take it to be positive.
Construction procedure is as follows: Draw σ (normal) and τ (shear) axes along x
and z directions. Take the centre of Mohr circle at (σx + σz)/2 on the σ -axis. Draw
pole with coordinates (σx, τxz). Join the pole with the centre and with the line joining
centre to the pole is the radius of the Mohr circle. Draw the Mohr circle. Stresses on
any plane A-A can be obtained from drawing a line parallel to A-A from the pole and
dropping a vertical line from the point, the line a-a intersects the mohr circle. This is
(σθ , τθ ). Principal stresses are drawn by joining line from the pole to the points where
the circle intersects the σ -axis. This is shown in Figure 2.3.9.

2.3.5 Plane strain conditions

For plane strain condition, again we consider xz-plane as the reference plane, τxy =
τyz = 0 and the stress tensor can be written as

⎡
⎣σx 0 τxz

0 σy 0
τxz 0 σz

⎤
⎦ (2.3.35)
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The characteristic equation may be written as

(σy − σn)[(σx − σn)(σz − σn)− τ2
xz] = 0 (2.3.36)

This is the same equation we had for a plane stress situation. So all considerations
we had for a plane stress situation is applicable to the plane strain condition as well.
The third principal stress is σy, normal to xz-plane and this may be obtained from
σy = ν(σx + σz).

2.3.6 Octahedral stresses and strains

Octahedral planes and octahedral stress and strains are of considerable importance in
studying in elastic behaviour of materials like soils. In a material body we have here
eight planes with direction cosines. Without any loss of generality we can consider
Haig-Westergaard space as in Figure 2.3.10 (σ1, σ2, σ3 – three principal stresses)
instead of conventional Euclidean space (x, y, z). Thus, direction cosines relative to
the principal axes are: cos(n, 1) = cos(n, 2) = cos(n, 3) = ± 1√

3
.

Normal stress on the octahedral plane:

σoct =< 1√
3

1√
3

1√
3
>

⎡
⎣σ1 0 0

0 σ2 0
0 0 σ3

⎤
⎦ < 1√

3

1√
3

1√
3
>T (2.3.37)

➔ σoct = 1
3
(σ1 + σ2 + σ3)

n

Figure 2.3.10 Haig-Westergaard space.
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Shear stress:

τ2
oct = σ 2

n − σ 2
oct = [σ1 cos(n, 1)]2 + [σ2 cos(n, 2)]2 + [σ3 cos(n, 3)]2

− 1
9

[σ1 + σ2 + σ3]2

∴ τoct = 1
3

√
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2 (2.3.38)

In invariant form:

σoct = 1
3

I1 : τ2
oct = 2

9
[I2

1 − 3I2] (2.3.39)

Similarly in terms of strains:

εoct = J1

3
; γoct = 2

3

√
(ε1 − ε2)

2 + (ε2 − ε3)
2 + (ε3 − ε1)

2

γ 2
oct = 8

9

[
J2
1 − 3J2

]
(2.3.40)

2.3.7 Spherical and deviatoric stress components

Spherical-stress matrix is defined as

σ s =
⎡
⎣σh 0 0

0 σh 0
0 0 σh

⎤
⎦where, σh = hydrostatic compression = σx + σy + σz

3

(2.3.41)

Invariants are: Is
1 = I1 : Is

2 = I2
1

3
: Is

3 = I3
1

27
(2.3.42)

Deviatoric stress matrix is defined as

σ d = [σ ] − [σ s] =
⎡
⎣σx − σh τxy τxz

τxy σy − σh τyz
τxz τyz σz − σh

⎤
⎦ (2.3.43)

Invariants are:

Id
1 = 0 : Id

2 = I2 − I3
1

3
= −

(
I2
1

3
− I2

)
= −1

3
(I3

1 − 3I2) = −1
3

× 9
2
τ2

oct :

Id
3 = I3 − I1I2

3
+ 2

27
I3
1; and τoct = −2

3
Id
2

Similar expressions can be obtained for strains as well.
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2.4 CONSTITUTIVE RELATIONS

In experiment with a cylindrical (a rod to be precise) specimen subjected to axial load,
a linear stress-strain behaviour is exhibited for stresses sufficiently below the yield
stress of the material.

Thus σz = Eεz (2.4.1)

➔ This is Hooke’s law.
We shall postulate that, in a more general state of stress, materials behave according

to Equation (2.4.1), hence,

σx = c11 εx + c12 εy + c13 εz + c14 γxy + c15 γyz + c16 γzx

σy = c21 εx + c22 εy + c23 εz + c24 γxy + c25 γyz + c26 γzx

σz = c31 εx + c32 εy + c33 εz + c34 γxy + c35 γyz + c36 γzx (2.4.2)

γxy = c41 εx + c42 εy + c43 εz + c44 γxy + c45 γyz + c46 γzx

γyz = c51 εx + c52 εy + c53 εz + c54 γxy + c55 γyz + c56 γzx

γzx = c61 εx + c62 εy + c63 εz + c64 γxy + c65 γyz + c66 γzx

where c’s are constants of proportionality.
So, we may write Equation (2.4.2) as (Harr 1969)

{σ } = [C] {ε} (2.4.3)

6 × 1 6 × 6 6 × 1

This is generalized Hooke’s law.
We are saying that each stress component at a point is linearly proportional to all

the strain components at that point.
Though not essential, let us assume that the material is homogeneous. We shall

presently derive our equations for an isotropic material. It means that material property
is direction independent. Now consider a few transformations using the isotropy of
the material property. Basic transformation equation is

σmn = amk an� σk� (2.4.4)

a) Consider a 180◦ rotation about z-axis (Figure 2.4.1a):

Direction cosines
x y z

x′ −1 0 0
y′ 0 −1 0
z ′ 0 0 1

In Equation (2.4.8): m = x′, n = y′, k = x and � = y.
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Y

X

Y

X

Z, Z

Figure 2.4.1a Rotation of axes.

Thus:

τx ′y ′ = ax ′x(ay′xσx + ay ′yτxy + ay ′zτxz)+ ax ′y(ay ′xτyx + ay ′yσy + ay ′zτyz)

+ ax ′z(ay ′xτxz + ay ′yτyz + ay ′zσz)

= (−1)[0 + (−1)τxy + 0] = τxy.

Hence, with transformation, we have

σx ′ = σx; τx ′y ′ = τxy; σy ′ = σy; τy ′z ′ = −τyz; σz ′ = σz; τx ′z ′ = −τxz.

Similarly

εx ′ = εx; γx ′y ′ = γxy; εy ′ = εy; γy ′z ′ = −γyz; εz ′ = εz; γx ′z ′ = −γxz.

Now, if cij is valid for some reference axis X ′Y ′Z ′

σx ′ = c11εx ′ + c12εy ′ + c13εz ′ + c14γx ′y ′ + c15γy ′z ′ + c16γz ′x ′ (Imposing isotropy)

This equation can also be written as

σx = c11 εx + c12 εy + c13 εz + c14 γxy − c15γyz − c16 γzx (2.4.5)

From Equations (2.4.2) and (2.4.5): c15 and c16 are both positive and negative. This
implies that c15 = c16 = 0.
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Similarly considering other stresses, we may conclude that

c15 = c16 = c25 = c26 = c36 = c35 = c45 = c46 = c51 = c52 = c53 = c54 = c61

= c62 = c63 = c64 = 0.

➔ eliminates 16 constants.

This implies that the mechanical behaviour in X and X ′ and Y and Y ′ are symmetric.
➔ Elastic symmetry about YZ and XZ planes.

b) Consider a rotation of 180◦ about X -axis (Figure 2.4.1b).

Direction cosines
x y z

x′ 1 0 0

y′ 0 −1 0

z ′ 0 0 −1

From Equation (2.3.8), we get

σx ′ = σx; σy ′ = σy; σz ′ = σz; τx ′y ′ = −τxy; τy ′z ′ = τyz; τz ′x ′ = −τzx;

εx ′ = εx; εy ′ = εy; εz ′ = εz; γx ′y ′ = −γxy; γy ′z ′ = γyz; γz ′x ′ = −γzx.

Once again, σx ′ = c11εx ′ + c12εy ′ + c13εz ′ + c14γx ′y ′

Comparing with Equation (2.4.2), we get c14 = 0, and examining other stress
components, we have

c24 = c34 = c41 = c42 = c43 = c56 = c65 = 0.

So, we got rid of 8 more constants and a total of 16 + 8 = 24 constants.

Z

Z

X, X

Y
Y

Figure 2.4.1b Rotation of axes.
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This implies symmetry in mechanical behaviour in Z and Z ′ directions.
➔ Elastic symmetry about XY plane.
A material behaving, satisfying the conditions like symmetry about XY, YZ and ZX

planes are known as orthotropic material. Corresponding constitutive matrix [C] in
such case can be written as

[C] =

⎡
⎢⎢⎢⎢⎢⎢⎣

c11 c12 c13 0 0 0
c21 c22 c23 0 0 0
c31 c32 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66

⎤
⎥⎥⎥⎥⎥⎥⎦

→ with 12 constants.

c) Rotate the axis ‘X’ by 90◦ (Figure 2.4.1c):

Direction cosines
x y z

x′ 1 0 0

y′ 0 0 1

z ′ 0 −1 0

Using Equation (2.3.8), we get

σx ′ = σx; σy ′ = σz; σz ′ = σy; τx ′y ′ = τxz; τy ′z ′ = −τyz; τz ′x ′ = −τyx;

εx ′ = εx; εy ′ = εz; εz ′ = εy; γx ′y ′ = γzx; γy ′z ′ = −γyz; γz ′x ′ = −γyx.

Once again, σx ′ = c11εx ′ + c12εy ′ + c13εz ′

Comparing with Equation (2.4.2), one has c12 = c13, while examining other stress
components, we may write

c31 = c21; c22 = c33; c23 = c22 and c44 = c66.

Z, Y

X, X

Z
Y

Figure 2.4.1c Rotation of axes.
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Z, Z

X, Y

X Y

Figure 2.4.1d Rotation of axes.

d) Rotation of axis Z by 90◦ (Figure 2.4.1d):

Direction cosines
x y z

x′ 0 −1 0

y′ 1 0 0

z ′ 0 0 1

This implies: c12 = c23; c31 = c32; c11 = c22 and c44 = c55.
Thus constitutive relation reduces to 3-constants.
Hence one can write

σx = c11 εx + c12(εy + εz) τxy = c44 γxy

σy = c11 εy + c12(εz + εx) τyz = c44 γyz (2.4.6)

σz = c11 εz + c12(εx + εy) τzx = c44 γzx

We assume
c12 = λ; Lame’s constant
c44 = μ = G = shear modulus of elasticity.
λ and G are called Lame’s constants.

e) Rotating the XYZ reference by 45◦ about Z-axis (Figure 2.4.1e):

Direction cosines
x y z

x′ 1/
√

2 1/
√

2 0

y′ −1/
√

2 1/
√

2 0

z ′ 0 0 1
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Y′

Z, Z′

X′

X

Y

Figure 2.4.1e Rotation of axes.

Employing Equation (2.3.8)

σx ′ = 1
2
(σx + σy + 2τxy); σy ′ = 1

2
(σx + σy − 2τxy); σz ′ = σz;

τx ′y ′ = 1
2
(σy − σx); τy ′z ′ = (τyz − τzx

)
/
√

2

Similar expressions can be made for εx ′x ′ , εy ′y ′ , . . . .
From Equation (2.4.6), σx ′ = c11εx ′ + λ(εx ′ + εz ′)

Thus

1
2
(σx + σy + 2τxy) = c11(εx + εy + γxy)/2 + λ

[
1
2
(εx + εy − γxy)+ εz

]

Substituting the first, second and fourth expression of Equation (2.4.6) in the above
expression, we have

1
2

[c11εx + λ (εy + εz)+ c11εy + λ (εx + εz)+ 2Gγxy]

= c11

2
(εx + εy + γxy)+ λ

[
1
2
(εx + εy − γxy)+ εz

]

Solving → c11 = 2G + λ (2.4.7)

Hence, σx = (2G + λ)εx + λ (εy + εz) : σy = (2G + λ)εy + λ (εz + εx) :

σz = (2G + λ)εz + λ (εx + εy)

τxy = Gγxy : τyz = Gγyz : τzx = Gγzx (2.4.8)
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Any further rotation of axes (i.e. transformation) will not result in reduction of the
number of independent moduli (constants).

Solving Equation (2.4.8) we may also obtain

εx = λ+ G
G(3λ + 2G)

σx − λ

2G(3λ + 2G)
(σy + σz)

εy = λ+ G
G(3λ + 2G)

σy − λ

2G(3λ + 2G)
(σz + σx) (2.4.9)

εz = λ+ G
G(3λ + 2G)

σz − λ

2G(3λ + 2G)
(σx + σy)

γxy = τxy

G
; γyz = τyz

G
; γzx = τzx

G

Proportionality of shearing stress and shearing strain indicates that the principal
axes of stress tensor and strain tensor coincide. This is because the transformation
matrix is the same for a transformation of coordinate axes in the case of stress tensor
as well as strain tensor.

The Hooke’s law in arbitrary curvilinear orthogonal coordinates α, β, γ is given as

σα = 2G
(
εα + νe

1 − 2ν

)
; σαβ = Gγαβ ; εα = 1

2G

(
σα − νp

1 + ν

)
(2.4.10)

in which, p = σα + σβ + σγ ; e = εα + εβ + εγ .
From a simple tensile test on a rod, we have σx = 0 = σy
This gives

εz = λ+ G
G(3λ + 2G)

σz ➔ E = Young’s modulus of elasticity = G(3λ+ 2G)
λ+ G

.

Also εx = −ν εz = εy = due to Poisson effect.

εx = − λ

2G(3λ+ 2G)
σz = − λ

2G(3λ+ 2G)
εzE ➔

ν

E
= λ

2G(3λ+ 2G)

(2.4.11)

Generalised Hooke’s law, in terms of E and ν [Young’s modulus and Poisson ratio]
may be written as

εx = σx

E
− ν

E
(σy + σz); εy = σy

E
− ν

E
(σz + σx); εz = σz

E
− ν

E

(
σx + σy

)
γxy = τxy

G
; γyz = τyz

G
; γzx = τzx

G
(2.4.12)
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The Lame’s parameter may be written as

λ = 2G2 − EG
E − 3G

= 2G2ν

E − 2Gν
; G = E

2(1 + ν)
(2.4.13)

Also K = the bulk modulus of elasticity = λ+ (2/3)G = E/(1 − 2ν).
During deformation, a certain amount of energy is stored in a body. The energy

must be a positive quantity. From Equation (2.6.7), given later, we may conclude,
λ > 0 and G > 0, and

νE
(1 + ν)(1 − 2ν)

> 0;
E

2(1 + ν)
> 0 → (1 + ν) ≥ 0 and 1 − 2ν ≥ 0.

Hence, −1 < ν ≤ 0.5.
Using tensor notation, we may write

εij = 1 + ν

E
τij − ν

E
τkkδij (2.4.14)

in which δij = 1, for i = j

= 0, for i 
= j

= Kronecker delta.

2.5 EQUATIONS OF EQUILIBRIUM

2.5.1 Some useful expressions

Stress-strain relations

σx = λe + 2G
∂ux

∂x
: σy = λe + 2G

∂uy

∂y
: σz = λe + 2G

∂uz

∂z

τxy = G
[
∂ux

∂y
+ ∂uy

∂x

]
: τyz = G

[
∂uy

∂z
+ ∂uz

∂y

]
: τzx = G

[
∂uz

∂x
+ ∂ux

∂z

]
(2.5.1)

Strain-stress relations

εx = 1
E

[
σx − ν(σy + σz)

]
: εy = 1

E

[
σy − ν(σz + σx)

]
: εz = 1

E

[
σz − ν(σx + σy)

]
γxy = τxy

G
= 2εxy : γyz = τyz

G
= 2εyz : γzx = τzx

G
= 2εzx

(2.5.2)

in which e = εx + εy + εz and E = Young’s modulus of elasticity.
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2.5.2 Differential equations at a point (general)

Differential equations of equilibrium at point is given by

∂σx

∂x
+ ∂τxy

∂y
+ ∂τxz

∂z
+ X = 0

∂τxy

∂x
+ ∂σy

∂y
+ ∂τyz

∂z
+ Y = 0 (2.5.3)

∂τxz

∂x
+ ∂τyz

∂y
+ ∂σz

∂z
+ Z = 0

in which X, Y and Z are the body forces respectively in the x, y and z directions.
Equation (2.5.3) contains six unknowns with three equations, hence it is statically

indeterminate [cannot be solved with the three equations of equilibrium of statics at
a point, i.e. �Fxi = 0; �Fyi = 0; �Fzi = 0]. We have to make use of compatible dis-
placement relations with constitutive equations to obtain other relations which make
it solvable.

2.5.3 Differential equations at a point (in terms
of stresses)

Differential equations of equilibrium at a point in terms of stresses [obtained using
compatibility equations, Equations (2.2.65)–(2.2.71) and equations of equilibrium,
Equation (2.3.5) and constitutive equation, Equation (2.4.8)] can be written as

∇2σx + 1
1 + ν

∂2θ

∂x2 = − ν

1 + ν

[
∂X
∂x

+ ∂Y
∂y

+ ∂Z
∂z

]
− 2

∂X
∂x

∇2σy + 1
1 + ν

∂2θ

∂y2 = − ν

1 + ν

[
∂X
∂x

+ ∂Y
∂y

+ ∂Z
∂z

]
− 2

∂Y
∂y

∇2σz + 1
1 + ν

∂2θ

∂z2 = − ν

1 + ν

[
∂X
∂x

+ ∂Y
∂y

+ ∂Z
∂z

]
− 2

∂Z
∂z

∇2τxy + 1
1 + ν

∂2θ

∂x∂y
= −

(
∂X
∂y

+ ∂Y
∂x

)
; ∇2τyz + 1

1 + ν

∂2θ

∂y∂z
= −

(
∂Z
∂y

+ ∂Y
∂z

)

∇2τzx + 1
1 + ν

∂2θ

∂z∂x
= −

(
∂Z
∂x

+ ∂X
∂z

)
(2.5.4)

in which, ν = Poisson ratio; θ = σx + σy + σz and λ = Eν
(1 + ν)(1 − 2ν)

, Lame’s

parameter.
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2.5.4 Differential equations at a point (in terms
of displacements)

Using Equations (2.5.1) and (2.5.3), we can write

(λ + G)
∂e
∂x

+ G∇2ux + X = 0; (λ + G)
∂e
∂y

+ G∇2uy + Y = 0;

(λ + G)
∂e
∂z

+ G∇2uz + Z = 0 (2.5.5)

without body forces/or constant body forces.
Differentiating first with respect to x; second with respect to y, third with respect

to z of Equation (2.5.5) and adding them, we have

(λ + 2G)∇2e = 0, and e = volumetric strain. (2.5.6)

Thus, volumetric expansion satisfies the Laplace’s equation

∂2e
∂x2 + ∂2e

∂y2 + ∂2e
∂z2 = 0 (2.5.7)

Equation (2.5.6) or Equation (2.5.7) is to be solved with appropriate boundary
conditions.

2.5.4.1 Boundary conditions

a) In terms of stresses:

p̄x = σx�+ τxym + τxzn; p̄y = τxy�+ σym + τyzn; p̄z = τxz�+ τyzm + σzn

(2.5.8)

in which, p̄x, p̄y, p̄z are the surface tractions prescribed on some surface say, ds having
direction cosines �, m and n in x, y and z directions respectively.

b) In terms of displacements:

p̄x = λe�+ G
[
∂ux

∂x
�+ ∂ux

∂y
m + ∂ux

∂z
n
]

+ G
[
∂ux

∂x
�+ ∂uy

∂x
m + ∂uz

∂x
n
]

p̄y = λe�+ G
[
∂uy

∂x
�+ ∂uy

∂y
m + ∂uy

∂z
n
]

+ G
[
∂ux

∂y
�+ ∂uy

∂y
m + ∂uz

∂y
n
]

(2.5.9)

p̄z = λe�+ G
[
∂uz

∂x
�+ ∂uz

∂y
m + ∂uz

∂z
n
]

+ G
[
∂ux

∂z
�+ ∂uy

∂z
m + ∂uz

∂z
n
]
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2.5.5 General solution

Equilibrium equations Equation (2.5.5) are satisfied by solutions proposed by
Papkovitch (1932) and Neubar (1934):

ux = α1 − ᾱ
∂

∂x
[α0 + xα1 + yα2 + zα3]

uy = α2 − ᾱ
∂

∂y
[α0 + xα1 + yα2 + zα3] (2.5.10)

uz = α3 − ᾱ
∂

∂z
[α0 + xα1 + yα2 + zα3]

in which, 4ᾱ = 1/(1 − ν), and α0, α1, α2, α3 are harmonic solutions of

∇2α0 = 0 : ∇2α1 = 0 : ∇2α2 = 0 : ∇2α3 = 0 (2.5.11)

and this is also true for α0 = 0.
This is the general solution of Equation (2.5.5).

2.5.6 Two-dimensional cases

Let the problem be confined to the xy-plane (Figure 2.5.1).

a) Differential equations of equilibrium [a particular case of Equation (2.5.3)]:

∂σx

∂x
+ ∂τxy

∂y
+ X = 0 (2.5.12)

∂τxy

∂x
+ ∂σy

∂y
+ Y = 0 (2.5.13)

If the body force is due to gravity and it acts in the negative y-direction, we have

∂σx

∂x
+ ∂τxy

∂y
= 0 (2.5.14)

Figure 2.5.1
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∂τxy

∂x
+ ∂σy

∂y
− ρg = 0 (2.5.15)

b) Boundary conditions (Figure 2.5.1):
If � and m are the d.c’s of the normal n of the surface ds, we may write

X̄ = �σx + mτxy (2.5.16)

Ȳ = mσy + �τxy (2.5.17)

If the boundary is parallel to x-axis (n is in y-direction)

� = 0; m = ±1 (2.5.18)

If the boundary is parallel to y-axis (n is in x-direction)

� = ±1; m = 0 (2.5.19)

c) Compatibility equations
In terms of strains in two dimension

∂2εx

∂y2 = ∂3u
∂x∂y2 ::

∂2εy

∂x2 = ∂3v
∂y∂x2 ::

∂2γxy

∂x∂y
= ∂3u
∂x∂y2 + ∂3v

∂y∂x2

➔
∂2εx

∂y2 + ∂2εy

∂x2 = ∂2γxy

∂x∂y
(2.5.20)

Equation (2.5.20) in terms of stresses:

∂2

∂x2

(
σy − ν σx

)+ ∂2

∂y2

(
σx − ν σy

) = 2(1 + ν)
∂2τxy

∂x∂y
(2.5.21)

Differentiating Equation (2.5.14) with respect to x and (2.5.15) with respect
to y and adding them

2
∂2τxy

∂x∂y
= −

(
∂2σx

∂x2 + ∂2σy

∂y2

)
(2.5.22)

From Equations (2.5.21) and (2.5.22)

(
∂2

∂x2 + ∂2

∂y2

)
(σx + σy) = 0 (2.5.23)

➔ This is for plane stress condition.
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For plane strain condition:

εz = 0 = σz

E
− ν

E
(σ x + σy) ➔ σz = ν (σx + σy) (2.5.24)

Hence,

εx = 1 − ν2

E
σx − ν (1 + ν)

E
σy : εy = 1 − ν2

E
σy − ν (1 + ν)

E
σx;

γxy = 2(1 + ν)

E
τxy (2.5.25)

Substituting Equation (2.5.25) in Equation (2.5.20), we get

(1 − ν)

(
∂2σx

∂y2 + ∂2σy

∂x2

)
− ν

(
∂2σy

∂y2 + ∂2σx

∂x2

)
= 2

∂2τxy

∂x∂y
= −

(
∂2σx

∂x2 + ∂2σy

∂y2

)

➔ (1 − ν)

{(
∂2σx

∂y2 + ∂2σy

∂x2

)
+
(
∂2σy

∂y2 + ∂2σx

∂x2

)}
= 0 (2.5.26)

Since ν 
= 1,
(
∂2

∂y2 + ∂2

∂x2

)
(σx + σy) = 0; same as Equation (2.4.23).

All these calculations are valid for no-body forces or having a constant body force.
Equation (2.5.26) is independent of material properties. This is the basis for using
transparent materials in photoelastic experiments for studying stress distribution in
real structural bodies. When we have body forces, it can be shown that, if X̄ and Ȳ
are body forces, governing equations may be written as

Plane stress:

(
∂2

∂x2 + ∂2

∂y2

)
(σx + σy) = −(1 + ν )

(
∂X̄
∂x

+ ∂Ȳ
∂y

)
(2.5.27)

Plane strain:

(
∂2

∂x2 + ∂2

∂y2

)
(σx + σy) = − 1

(1 − ν )

(
∂X̄
∂x

+ ∂Ȳ
∂y

)
(2.5.28)

Thus for gravity type of body forces, we have the governing equations of
motion as

∂σx

∂x
+ ∂τxy

∂y
= 0;

∂τxy

∂x
+ ∂σy

∂y
− ρg = 0

(
∂2

∂x2 + ∂2

∂y2

)
(σx + σy) = 0 (2.5.29)
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2.6 THEOREMS OF ELASTICITY

2.6.1 Principles of superposition

If we want to solve an elasticity problem in terms of stress components [Equation
(2.5.3)], we have to satisfy

1 Equations of equilibrium: 3-equations;
2 Compatibility conditions: 6-equations;
3 Boundary conditions.

Let σx, σy, . . . , τzx are the stresses so determined for X, Y, Z body forces and p̄x, p̄y, p̄z
surface tractions.

Also let σx ′ , σy ′ , . . . , τz ′x ′ are the stresses determined for X ′, Y ′, Z ′ body forces and
p̄x, p̄y, p̄z surface traction.

➔ Both for the same solid.
Then the stress components:
σx ′ + σx, σx ′ + σx, . . . , τz ′x ′ + τzx will represent stress due to X ′ + X, Y ′ + Y, and

Z ′ + Z body forces and p̄x ′ + p̄x, p̄y ′ + p̄y and p̄z ′ + p̄z surface tractions.
This holds good, as the governing differential equation, Equation (2.5.3) and

boundary conditions are linear. As for example:

∂σx ′

∂x
+ ∂τx ′y ′

∂y
+ ∂τx ′z ′

∂z
+ X ′ = 0

∂τx ′y ′

∂x
+ ∂σy ′

∂y
+ ∂τy ′z ′

∂z
+ Y ′ = 0 (2.6.1)

∂τx ′z ′

∂x
+ ∂τy ′z ′

∂y
+ ∂σz ′

∂z
+ Z ′ = 0

Adding Eqns. (2.5.3) and (2.6.1), we have

∂(σx ′ + σx)

∂x
+ ∂(τx ′y ′ + τxy)

∂y
+ ∂(τx ′z ′ + τxz)

∂z
+ (X ′ + X) = 0

∂(τx ′y ′ + τxy)

∂x
+ ∂(σy ′ + σy)

∂y
+ ∂(τy ′z ′ + τyz)

∂z
+ (Y ′ + Y) = 0 (2.6.2)

∂(τx ′z ′ + τxz)

∂x
+ ∂(τy ′z ′ + τyz)

∂y
+ ∂(σz ′ + σz)

∂z
+ (Z ′ + Z) = 0

Similarly boundary conditions are

p̄x ′ + p̄x = (σx ′ + σx)�+ (τx ′y ′ + τxy)m + (τx ′z ′ + τxz)n

p̄y ′ + p̄y = (τx ′y ′ + τxy)�+ (σy ′ + σy)m + (τy ′z ′ + τyz)n (2.6.3)

p̄z ′ + p̄z = (τx ′z ′ + τxz)�+ (τy ′z ′ + τyz)m + (σz ′ + σz)n
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where we have not made any distinction between the position and form of element
before and after loading i.e. we kept �, m, n same in all the cases.

→ This is an instance of the principle of super position. Naturally this is valid for
small deformations.

2.6.2 Strain energy

2.6.2.1 With no body forces

Consider an elemental cube with no body forces as shown in Figure 2.6.1:
With reference to Figure 2.6.2;

Workdone = 1
2
(σx dydz)εx dx :: Work done on displacement dx by p = p dx

➔ dU = 1
2
σxεx dxdydz :: Work done for displacement x =

∫ x

0

pxz
x

dz = 1
2

pxx.

(2.6.4)

Now, what happens to this work?

dz
dy

dx

y

x

z

Figure 2.6.1

Load-deformation curve

xdy dx

Load-deformation behaviour (General)

p = (z/x)px

x

p

px

xz dz

Figure 2.6.2 Development of strain energy.
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An adiabatic compression causes a rise in temperature in a steel bar, but this rise
of temperature is rather insignificant. However, the original temperature in steel can
be restored if we take away heat and this change in temperature due to this will alter
the strain, but only a very small fraction of the adiabatic strain. This must be the
case, or else there would have been a very significant difference between adiabatic and
isothermal moduli of elasticity. In fact we have

EAdi − EIso

EAdi
≈ 0.26 (2.6.5)

Thus, we can ignore such differences and conclude that the work done on an element,
and stored in it, will be called strain energy. This element remains elastic and no kinetic
energy is expected to be developed. Same consideration is applicable to all the six
stress-components.

Conservation of energy requires that the work cannot depend on the order in
which the forces are applied but only on the final configuration or else one can load
in one sequence and unload in another leading to large amount of work. Hence
a net amount of work would have been gained from the element in a complete
cycle.

Hence,

dV = 1
2

[σxεx + σyεy + σzεz + τxyγxy + τyzγyz + τzxγzx]dx dy dz. (2.6.6)

2.6.2.2 Strain energy for materials with body forces

Consider an elemental cube having body forces as shown in Fig. 2.6.3. In comparison
to its no-body force counterpart stress will vary through the body.

Force-flux on face 2: 1
2 (σxu)2dydz : Force-flux on face 1: −1

2 (σxu)1dydz
Work done by the total force for the two faces = 1

2 [(σxu)2 − (σxu)1]dydz.
This can be written at a point as

lim
�x→0

[
(σxux)2 − (σxu)1

�x

]
�xdydz = 1

2
∂(σxu)
∂x

dxdydz

½( xu)1 dy dz ½( xu)2 dy dz

Face-1
Face-2

dy

dz
dx

Figure 2.6.3 Elemental cube with body forces.
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Similarly work done by shear forces can be written as

1
2
∂

∂x
(τxyv + τxzw)dxdydz.

Considering all such forces and adding all resulting works done, we have

1
2

[
∂

∂x
(σxu + τxyv + τxzw)+ ∂

∂y
(σyv + τyzw + τxyu)+ ∂

∂z
(σzw + τyzv + τxzu)

]
dxdydz

Work done by the body forces = 1
2 [Xu + Yv + Zw] dxdydz.

∴ Total work done on the element

= 1
2

[
σx
∂u
∂x

+ σy
∂v
∂y

+ σz
∂w
∂z

+ τxy

(
∂v
∂x

+ ∂u
∂y

)
+ τyz

(
∂v
∂z

+ ∂w
∂y

)

+τzx

(
∂w
∂x

+ ∂u
∂z

)]
dxdydz + 1

2

[
u
(
∂σx

∂x
+ ∂τxy

∂y
+ ∂τxz

∂z
+ X

)

+v
(
∂τxy

∂x
+ ∂σy

∂y
+ ∂τyz

∂z
+ Y

)
+ w

(
∂τxz

∂x
+ ∂τyz

∂y
+ ∂σz

∂z
+ Z

)]
dxdydz.

Imposing equilibrium equation, Equation (2.5.3), we get

dV = 1
2

[σxεx + σyεy + σzεz + τxyγxy + τyzγyz + τzxγzx]dxdydz

➔ Same for both with or without body forces.
Strain energy density is defined as

V0 = 1
2

[σxεx + σyεy + σzεz + τxyγxy + τyzγyz + τzxγzx] (2.6.7)

→ This is also simply defined as strain energy.

2.6.2.3 Strain energy in terms of strains

Strain energy density can be expressed in terms of strains by using Equation (2.5.1) as

V0 = 1
2
λe2 + G(ε2

x + ε2
y + ε2

z )+ G
2
(γ 2

xy + γ 2
yz + γ 2

zx) (2.6.8)
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straining
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o o

A
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A

o

B

o

B

Figure 2.6.4 Strain energy concept.

Some interesting f indings

∂V0

∂εx
= λe + 2Gεx = σx and it is true for other strain components. (2.6.9)

∂V
∂σx

= σx

E
− ν

E
(σy + σx) = εx and it is true for other stress components as well.

(2.6.10)

Total strain energy of a body is given by, V = ∫V V0 dxdydz.
The effect or influence of strain energy can be studied as follows:
Consider two mass points in the body, A and B and follow the sequence of free

body diagrams shown in Figure 2.6.4.
Thus work done by the particle (mass point) is = −V = negative of strain energy.

2.6.2.4 Yielding of material in terms of energy

An isotropic material can sustain very large hydrostatic pressure without yielding.
We may, now, split the energy into two parts, one due to change in volume and
the other as a result of distortion and consider the second part in determining the
strength of the material. In this regard, consider the deviatoric part of the stress tensor
given in Equation (2.3.22). Change in volume is entirely due to σh i.e. Strain energy
due to change in volume

= 1
2

eσh = 3(1 − 2ν)
2E

σ 2
h = 1 − 2ν

6E
(σx + σy + σz)

2 (2.6.11)
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Subtracting Equation (2.6.11) from the total strain energy density and using the
identity:

xy + yz + zx = −1
2

[(x − y)2 + (y − z)2 + (z − x)2], we have

V0 − 1 − 2ν
6E

(σx + σy + σz)
2 = 1 + ν

6E
[(σx − σy)

2 + (σy − σy)
2 + (σz − σx)

2]

+ 1
2G

[τ2
xy + τ2

yz + τ2
zx] = Vdistortion

0 (2.6.12)

In a particular case, when only, σx 
= 0 and all other stress components are absent,
we have,

Vdistortion
0 = 1 + ν

6E
(2σx)

2 = 1 + ν

3E
σ 2

x (2.6.13)

Similarly when only, τxy 
= 0, we have Vdistortion
0 = 1

2G
τ2

xy (2.6.14)

If we assume that a material fails when a level of distortional energy reaches a
definite level, the ratio of stresses are given by

τxy = 1√
3
σx (2.6.15)

Experiments with steel verify this statement.

2.6.3 Virtual work

2.6.3.1 For particles/mass points

Definition: If a particle is in equilibrium, the total work of all the forces on the particle
in any virtual displacement vanishes.

If δu, δv and δw are the components of virtual displacements and �Fx, �Fy and
�Fz are the sums of projections of forces in x, y and z directions, respectively on the
particle, the principle stated above results in

δu
∑

Fx = 0; δv
∑

Fy = 0; δw
∑

Fz = 0. (2.6.16)

These conditions are satisfied for any virtual displacement, if

∑
Fx = 0;

∑
Fy = 0;

∑
Fz = 0. (2.6.17)
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2.6.3.2 Virtual strains

Virtual strains may be defined as

δεx = ∂δu
∂x

; δεy = ∂δv
∂y

; δεz = ∂δw
∂z

;

δγxy =
(
∂δv
∂x

+ ∂δu
∂y

)
; δγyz =

(
∂δv
∂z

+ ∂δw
∂y

)
; δγzx =

(
∂δw
∂x

+ ∂δu
∂z

)
(2.6.18)

and associated virtual work is given by

(σxδεx + σxδεy + σxδεz + τxyδγxy + τyzδγyz + τzxδγzx)dxdydz (2.6.19)

The work done by mutual forces on particles, as mentioned earlier

= −
∫
V

δV0dxdydz (2.6.20)

Thus, the total virtual work:

∫
S

[p̄xδu + p̄yδv + p̄zδw]dS +
∫
V

[Xδu + Yδv + Zδw]dV −
∫
V

δV0dV = 0

(2.6.21)

Since during deformation, in the equation above, the forces and actual stresses were
held constant, we may write

δ

⎡
⎣∫

V

V0dV −
∫
S

(p̄xu + p̄yv + p̄xw)dS −
∫
V

(Xu + Yv + Zw) dV

⎤
⎦ = 0 (2.6.22)

in which,
the first term indicates → Potential energy of deformation (strain energy);
the second term indicates → Potential energy of surface forces;
the third term indicates → Potential energy of body forces.
That is,

δ [Total potential energy of the system] = 0 (2.6.23)

The virtual displacement and corresponding virtual work imply the use of arbitrary
multiplier represented by δu, δv and δw with the equation of equilibrium [Equation
(2.5.3)]. We may regard them as variations of the actual displacement u, v and w.
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Thus, Equation (2.6.21) infers that the actual displacement u, v and w under the
given external forces and given mode of support are such that the first order variation
of the total potential energy is zero [Equation (2.6.22)] for any virtual displacement
or the potential energy is stationary.

2.6.3.3 Stability of equilibrium

a) Physical argument:
Consider a conservative system. The system is subjected to an impulsive disturbance
followed by actual variations of the equilibrium displacement.

Now, we have, Potential energy + Kinetic energy = constant.
On departing from the equilibrium configuration, two possibilities may occur

1 P.E. increases : increases from a value which is minimum
K.E. decreases → as PE + KE = constant.

2 P.E. decreases : decreases from a value which is maximum
K.E. increases → as PE + KE = constant.

This is depicted in Figure 2.6.5.
Thus, the stability implies that the potential energy is the minimum in the equilibrium

position. The maximum potential energy implies an unstable configuration.
In the usage above, we have assumed that in the motion following the disturbance:

1 The body and surface forces go with the material elements on which they act in
the equilibrium configuration,

2 The body and surface forces remain unchanged in magnitude and direction.

b) Mathematical arguments
Consider the strain energy per unit volume under plane stress condition. The following
an impulsive disturbance, after a while, the equilibrium strain components increase by
δεx, δεy and δγxy. Under equilibrium configuration

Stable with respect to small displacement

Unstable with respect to small displacement

Case 1:

Case 2:

Figure 2.6.5
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V0 = E
2(1 − ν2)

[ε2
x + ε2

y + 2νεxεy] + G
2
γ 2

xy (2.6.24)

Changed new value, following the disturbance is

V ′
0 = E

2(1 − ν2)
[(εx + δεx)

2 + (εy + δεy)
2 + 2ν(εx + δεx)(εy + δεy)]

+ G
2
(γxy + δγxy)

2 (2.6.25)

Subtracting the equilibrium value from V ′
0

..........................................................................................................................
E

2(1 − ν2)
[2εxδεx + 2ν(εxδεy + εyδεx)+ 2εyδεy] + G

2
2γxyδγxy

I

+ E
2(1 − ν2)

[(δεx)
2 + (δεy)

2 + 2ν(δεx)(δεy)] + G
2
(δγxy)

2

II

(2.6.26)

..........................................................................................................................

I—first order increment corresponding to (δV0dxdydz)
II—second order increment may be written as : [δεx + νδεx]2 + (1 − ν2)(δεx)

2

➔ This is always positive.

In Equation (2.6.25), the first order increment vanishes since actual displacement δu,
δv and δw can be taken as actual displacements. The second order increment is always
positive. Hence, we have the stability in the sense defined earlier. The conclusion we
made is, however, depend on Hooke’s law. For nonlinear materials increments higher
than second order would be necessary.

2.6.3.4 Castigliano’s Theorem

Consider stresses in a body under equilibrium. We know that the developed stresses
should satisfy the following:

a 3-partial differential equations [Equation (1.4.3)]
b boundary conditions.

These are however, not sufficient for determining stress components having six
independent quantities. We may, thus, find many stress distributions satisfying
a) and b).

Castigliano’s theorem distinguishes the true distribution from all other statically
possible stress distributions satisfying Equation (2.5.3).

The variation of strain energy, corresponding to variation of stress components
which preserve equilibrium is given by

δV =
∫
S

(uδ p̄x + vδ p̄y + wδ p̄z)dS (2.6.27)
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The true stresses are those which satisfy Equation (2.6.27). These variations are
certainly mathematical and not physical. The physical stress variations by varying
the boundary loading are subjected to more restrictions than those of equations of
equilibrium.

Mathematically,

V = 1 − 2ν
6E

(σx + σy + σz)
2 + 1 + ν

6E
[(σx − σy)

2 + (σy − σz)
2 + (σz − σx)

2]

+ 1
2G

[τ2
xy + τ2

yz + τ2
zx] (2.6.28)

is a function of six independent variables and strain energy has a variation whenever
any of these six variable, individually or in any combination change, no matter how.

Example 2.6.1

a A prismatic bar, as shown in Figure 2.6.6, is subjected to an axial force, F.
Stress = σx = F/A, uniform over the cross-section along the length.

V =
∫
V

1
2E

(σx)
2 dV = 1

2E

�∫
0

(
F
A

)2

Adx = F2�

2AE

Cross-sectional Area = A; length =

F

Z F

F

Y

X

Figure 2.6.6

b An elongation �x is imposed on the bar.

We have εx = �x

�
; εy = −ν�x

�
; εz = −ν�x

�
; γxy = γyz = γzx = 0.

∴ V =
∫
V

[
1
2
λe2 + G(ε2

x + ε2
y + ε2

z )+ G
2
(γ 2

xy + γ 2
yz + γ 2

zx)

]
dV

=
∫
V

[
1
2
λe2 + G

{
�2

x

�2 (1 + 2ν2)

}
+ 0

]
dV = EA

2�
�2

x.
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Example 2.6.2

A beam loaded as shown in Figure 2.6.7:

Normal stress: σx = −Mzy
Iz

: Shear stress : τxy = VyQy

bIz
Strain energy :

Vσ =
∫
V

M2
z y2

2EI2
z

dV =
�∫

0

⎡
⎣ M2

z

2EI2
z

∫
A

y2dA

⎤
⎦dx =

�∫
0

M2
z

2EIz
dx

Vτ =
∫
V

1
2G

[
VyQy

bIz

]2

dxdydz = 1
2GI2

z

⎡
⎣∫

A

Q2
y

b2 dA

⎤
⎦
⎡
⎣ �∫

0

V2
y dx

⎤
⎦

Vσ and Vτ will be evaluated using the variations of Mz, Vy, and Qy.

F/2

Z

Y

a

bZ

Y

X

Figure 2.6.7

Solution:

For a particular case, if we assume: � = 4 m; F = 100 kN, E = 200 GPa,
G = 100 GPa, a = b = 100 mm.

Vσ =
�/2∫
0

(
F
2 x
)2

2EIz
dx +

�∫
�/2

[
Fx
2 − F(x − �/2)

]2

2EIz
dx = F2�3

96EIz
= 4 kN − m.

Vτ = 1
2GI2

z

⎛
⎜⎝b3

4

a/2∫
−a/2

[
a2

4
− y2

]2

dy

⎞
⎟⎠
⎛
⎝ �∫

0

F2

4
dx

⎞
⎠

= 3F2�

20 Gab
= 0.006 kN − m
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Hence, Vσ � Vτ .
So we ignore Vτ . In our normal calculation with beam for its flexural

dominance.

Example 2.6.3

a) A rod subjected to torsion Mx.

V = 1
2G

∫
V

τ2
xydV = 1

2G

∫
V

(
Mxr
IP

)2

dV = M2
x�

2GIP
,

where IP = polar moment of area.

b) The bar(shaft) is subjected to a angle of twist �φ over a length �.

γ = Mxr
GIP

= �φGIP

�

r
GIP

= �φr
�

➔ V =
∫
V

G
2

(
�φr
�

)2

dV = �2
φ

GIP

2�
.

2.6.3.5 Uniqueness of elasticity solutions

From the given surface and body forces, let us suppose that we have found two sets
of solutions given by

I σx′, σy′, σz′, . . . . , τzx′; with p̄x, p̄y, p̄z, X, Y, Z

II σ ′′
x , σ ′′

y , σ ′′
z , . . . . , τ ′′

zx; with p̄x, p̄y, p̄z, X, Y, Z
(2.6.29)

Stresses must satisfy Equation (2.5.3) and hence

∂σ ′
x

∂x
+ ∂τ ′

xy

∂y
+ ∂τ ′

xz

∂z
+ X = 0;

∂τ ′
xy

∂x
+ ∂σ ′

y

∂y
+ ∂τ ′

yz

∂z
+ Y = 0;

∂τ ′
xz

∂x
+ ∂τ ′

yz

∂y
+ ∂σ ′

z

∂z
+ Z = 0

with,

p̄x = σ ′
x �+ τ ′

xym + τ ′
xzn; p̄y = τ ′

xy�+ σ ′
ym + τ ′

yzn; p̄z = τ ′
xz�+ τ ′

yzm + σ ′
zn

(2.6.30)
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∂σ ′′
x

∂x
+ ∂τ ′′

xy

∂y
+ ∂τ ′′

xz

∂z
+ X = 0;

∂τ ′′
xy

∂x
+ ∂σ ′′

y

∂y
+ ∂τ ′′

yz

∂z
+ Y = 0;

∂τ ′′
xz

∂x
+ ∂τ ′′

yz

∂y
+ ∂σ ′′

z

∂z
+ Z = 0

with

p̄x = σ ′′
x �+ τ ′′

xym + τ ′′
xzn; p̄y = τ ′′

xy�+ σ ′′
ym + τ ′′

yzn; p̄z = τ ′′
xz�+ τ ′′

yzm + σ ′′
z n

(2.6.31)

Subtracting (2.6.31) from (2.6.30), we have

∂(σ ′
x − σ ′′

x)

∂x
+ ∂(τ ′

xy − τ ′′
xy)

∂y
+ ∂(τ ′

xz − τ ′′
xz)

∂z
+ X = 0;

∂(τ ′
xy − τ ′′

xy)

∂x
+ ∂(σ ′

y − σ ′′
y )

∂y
+ ∂(τ ′

yz − τ ′′
yz)

∂z
+ Y = 0 (2.6.32)

∂(τ ′
xz − τ ′′

xz)

∂x
+ ∂(τ ′

yz − τ ′′
yz)

∂y
+ ∂(σ ′

z − σ ′′
z )

∂z
+ Z = 0

Surface tractions

(σ ′
x − σ ′′

x )�+ (τ ′
xy − τ ′′

xy)m + (τ ′
xz − τ ′′

xz)n = 0

(τ ′
xy − τ ′′

xy)�+ (σ ′
y − σ ′′

y )m + (τ ′
yz − τ ′′

yz)n = 0 (2.6.33)

(τ ′
xz − τ ′′

xz)�+ (τ ′
yz − τ ′′

yz)m + (σ ′
z − σ ′′

z )n = 0

➔ all external stresses vanish.
So, we obtain a solution in Equation (2.6.32) without any surface traction and body

forces.
Conditions of equilibrium is also satisfied by the corresponding strain components

i.e. (ε′x − ε′′x), (ε′y − ε′′y), . . ., (γ ′
xz − γ ′′

xz). Work done by zero surface and body forces are
also zero and it follows from Equation (2.6.23) that

∫
V V0dV should vanish. Thus,

it implies that
∫

V V0dV = 0. Now, V0 is positive for all states of strain and the
integral can vanish only if V0 vanishes at all points of the body. This requires that
each component (ε′x − ε′′x), (ε′y − ε′′y), . . ., and (γ ′

xz − γ ′′
xz) should be zero.

So these two states of stresses are not possible and the solution is unique.

2.6.3.6 Reciprocal theorem (Maxwell-Betti’s Theorem)

Assume an elastic body subjected to two systems of forces:

1 Surface forces: p̄′
x, p̄′

y, p̄′
z

Body forces: X′, Y ′, Z′



78 Dynamics of Structure and Foundation: 1. Fundamentals

Resulting in: u′, v′, w′, ε′x, ε′y, . . ., σ ′
x, σ ′

y, . . ., τ ′
xz.

2 Surface forces: p̄′′
x, p̄′′

y, p̄′′
z

Body forces : X′′, Y ′′, Z′′
Results in :: u′′, v′′, w′′, ε′′x, ε′′y , . . ., σ ′′

x , σ ′′
y , . . ., τ ′′

xz.

If we define

∫
S

[p̄′
xu′′ + p̄′

yv′′ + p̄′
zw′′]dS +

∫
V

[X′u′′ + Y ′v′′ + Z′w′′]dw = E1
2 (2.6.34)

′ → designates system I: ′′ → designate system II.

and
∫
S

[p̄′′
xu′ + p̄′′

yv′ + p̄′′
z w′]dS +

∫
V

[x′′u′ + y′′v′ + z′′w′]dw = E2
1 (2.6.35)

The reciprocal theorem states that E1
2 = E2

1 (2.6.36)

Physically the theorem may be stated as the “work of the first state of forces on
displacement of the second state (E1

2) is same as the work of the second state of forces

on displacement of the first state (E2
1)”.

Example 2.6.4

Consider a prismatic bar of cross-section (hxh) and length � is laterally loaded as
shown in Figure 2.6.8. Find the elongation of the bar [A = cross-sectional area].

P

h

P

Case-1

Q Qh

Case-2

P

P

Figure 2.6.8
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Case 1: Lateral contraction, δ1 = νQh
AE

;

Case 2: Lateral elongation = δ2, say.

From Reciprocal theorem, we have, Pδ1 = Qδ2. ➔ δ2 = νPh
AE

.

This is independent of the shape of cross-section.

2.7 MECHANICS OF HOMOGENEOUS ISOTROPIC
ELASTIC BODIES

Soil medium is idealized as an elastic half space and an analytical solution is obtained
for the problem of dynamic load acting on the surface of a homogeneous and isotropic
continuum.

An elastic body returns to its unique natural state when all external loads are
removed. All stresses, strains and particle displacements are measured from this nat-
ural state and have zero values at its natural state. A deformed body is described in
two different ways, namely, the material description and the spatial description. The
instantaneous geometric location of a particle is taken as a material point or simply
point. A body is composed of particles. The particles in a body can be labeled through
a Cartesian frame of reference and identify the coordinates (ξ1, ξ2, ξ3) of the particles
at a time t = 0. At a later time the particle moves to another point whose coordinates
are (x1, x2, x3), referred to the same coordinate system. The relation:

xi = x̄i(ξ1, ξ2, ξ3, t), i = 1, 2, 3: (2.7.1)

connects the configuration of the body at different instants of time.

A *

* A1

( 1, 2, 3, t) 
( 1, 2, 3, t) 

( 1, 2, 3, t) 

Figure 2.7.1 Particle Labels at different times.
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V1

V0

V1

Figure 2.7.2 Continuous change of the boundary of a region.

The function, mentioned in Equation (2.7.1), x̄i are single-valued continuous
function whose Jacobean does not vanish.

Bodies have a basic property that they have mass. In classical mechanics, mass is
assumed to be conserved, that is the mass of a material body is the same at all times.
In continuum mechanics, the mass is an absolutely continuous function of volume. It
is assumed that a positive quantity, ρ, called density, can be obtained at every point
in the body as

ρ(X̄) = lim
k→∞

mass of Vk

volume of Vk
(2.7.2)

where Vk is a suitably chosen infinite sequence of particle sets shrinking down upon
the point X̄, (x1, x2, x3). At time t = 0, the density at the point ξ̄ ≡ (ξ1, ξ2, ξ3) is
defined by ρ0(ξ̄ ).

Conservation of mass is expressed by

∫
ρ(X̄)dx1dx2dx3 =

∫
ρ(ξ̄ )dξ1dξ2dξ3, (2.7.3)

where integrals extend over the same particles.

Now, as
∫
ρ(X̄)dx1dx2dx3 =

∫
ρ(X̄)

∣∣∣∣∂xi

∂ξj

∣∣∣∣ dξ1dξ2dξ3 (2.7.4)
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and this relation must hold for all bodies, one can write

ρ0(ξ̄ ) = ρ(X̄)

∣∣∣∣∂xi

∂ξj

∣∣∣∣ ; ρ(X̄) = ρ0(ξ̄ )

∣∣∣∣ ∂ξi∂xj

∣∣∣∣ ,
where

∣∣∣∣ ∂ξi∂xj

∣∣∣∣ denotes the determinant of
[
∂ξi

∂xj

]
.

These equations relate the density in different configurations of the body to the
transformation that leads from one configuration to another.

For a particle (ξ1, ξ2, ξ3), with trajectory xi = x̄i(ξ1, ξ2, ξ3, t), the velocity is vi(ξ̄ , t) =
∂x̄i
∂t and acceleration is given by v̇i(ξ̄ , t) = ∂2x̄i(ξ̄ ,t)

∂t2 = ∂vi(ξ̄ ,t)
∂t , ξ̄ is (ξ1, ξ2, ξ3) and is held

constant.
A description of mechanical evolution which uses (ξ1, ξ2, ξ3), and t as independent

variable is called a material description. If the location (x1, x2, x3) and t are taken as
independent variables the description is called spatial description. This is convenient
because measurements in many kinds of materials are more directly interpreted in
terms of what happened at a certain place, rather than following the particles. These
two methods of description, though both are due to Euler, are commonly known as
the Lagrangian and the Eulerian description, respectively. The variables a1, a2, a3
and t are usually called the Lagrangian variables, whereas x1, x2, x3 and t are called
Eulerian variables. For a given particle, it is convenient to speak of (ξ1, ξ2, ξ3) as the
Lagrangian coordinates of the particle at (x1, x2, x3).

The instantaneous motion of a body can be described by its velocity vector field
vi (x1, x2, x3, t) in spatial description and associated with the instantaneous location
of each particle. The acceleration of the particle is obtained from Taylor’s series expan-
sion. A particle located at (x1, x2, x3) at time t is moved to a point with coordinates
xi + vi dt at the time t + dt i.e.

v̇i(X̄, t)dt = vi(xj + vjdt, t + dt)− vi(X̄, t)

= vi + ∂vi

∂t
dt + ∂vi(X̄, t)

∂xj
vjdt − vi = ∂vi(X̄, t)

∂t
+ vj

∂vi(X̄, t)
∂xj

(2.7.5)

where X̄ stands for the variables x1, x2, x3 and every quantity in this expression is
evaluated at (X̄, t).

The first term can be interpreted as the time dependence of the velocity field whereas
the second term is the contribution of the motion of the particle in the instantaneous
velocity field. Accordingly these terms are called the local and the convective parts of
the acceleration, respectively.

Equation (2.7.5) is applicable to any function f (x1, x2, x3, t) that is attributed to
the moving particles, e.g. the temperature. An important term, the material derivative
is denoted by a dot or the symbol D/Dt. That is

f ≡ Df
Dt

≡
[
∂f
∂t

]
x=const.

+ v1
∂f
∂x1

+ v2
∂f
∂x2

+ v3
∂f
∂x3

≡
[
∂f
∂t

]
ξ=const.

(2.7.6)
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in which ξ̄ = (ξ1, ξ2, ξ3) is the Lagrangian coordinate of the particle, which is located
at X̄ at any time t and connected by: xi = x̄i(ξ1, ξ2, ξ3, t).

2.7.1 Material derivative of volume integral

If A(X̄, t) denotes a property of the continuum and the integral I = ∫Volume A(X̄, t)dV
is evaluated at an instant of time t, one would like to know how fast the body itself
sees the value I changing. That is the value of DI/Dt.

Particles at xi at time t will have the coordinates xi = xi + vidt at the time t + dt.
The boundary � of the body at t will have moved at time t + dt to a neighbourhood
surface �′ bounding the volume V ′.

The material derivative of I is given by

DI
Dt

= lim
dt→0

1
dt

⎡
⎣∫

V

A(X′, t + dt)dV ′ −
∫
V

A(X, t)dV

⎤
⎦ (2.7.7)

The r.h.s. of Equation (2.7.7) contains two contributions, one over the region V0,
which is common to V and V ′ and the other over the region V1 where V differs from
V ′. The first one can be written as

∫
V0

∂A
∂t dtdV .

The second one comes from the value of A on the boundary multiplied by the volume
swept by the particles on the boundary in the time interval dt. If ni is the unit vector
along the exterior normal of S, and since the displacement of a particle on the boundary
is nidt, the volume swept by particles occupying an element of area dS on the boundary
S is dV = vinidSdt. The contribution of this element to DI/Dt is (AvinidS). n is the
unit outer normal vector to S with components n1, n2, and n3. The total contribution
is given by integration over S, i.e.

D
Dt

∫
V

AdV =
∫
V

∂A
∂t

dV +
∫
S

AvinidS (2.7.8)

Using Gauss’ theorem and Equation (2.6.6)

D
Dt

∫
V

AdV =
∫
V

∂A
∂t

dV +
∫
V

∂

∂xj
(Avj)dV

=
∫
V

[
∂A
∂t

+ vj
∂A
∂xj

+ A
∂vj

∂xj

]
dV =

∫
V

[
DA
Dt

+ A
∂vj

∂xj

]
dV (2.7.9)

The above spatial integration is, in general, non-commutative.
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2.7.2 The equations of continuity

The mass contained in a region V at a time t is given by

m =
∫
V

ρdV (2.7.10)

in which ρ = ρ(X, t) is the density field of the continuum. Conservation of mass
demands that Dm/Dt = 0. If A is replaced by ρ and as the result must hold for
any arbitrary V , the integrand in Equations (2.7.8) and (2.7.9) must vanish. Thus an
alternative form of the conservation of mass can be written as

∫
V

∂ρ

∂t
dV +

∫
S

ρvjnjdS = 0, or,
∂ρ

∂t
+ ∂ρvj

∂xj
= 0, or,

Dρ
Dt

+ ρ
∂vi

∂xj
= 0

(2.7.11)

These equations are called the equations of continuity. The first expression in
Equation (2.6.11) is useful when the differentiability of ρvj cannot be assumed. In
statics, all the equations in Equation (2.7.11) are identically satisfied.

2.7.3 The equations of motion

Euler extended Newton’s ‘laws of motion’ for particles to all kinds of bodies. If the
inertial frame is referred by a coordinate system, x1, x2, x3, the space occupied by a
material body at any time, t, is denoted by V(t), the position vector of a particle with
respect to the origin of the coordinate system is r and v is the velocity vector of the
particle at point (x1, x2, x3) the linear momentum of the body in the configuration V
is given by

M̄ =
∫
V

ρvdV or Mi =
∫
V

ρvidV (2.7.12)

and the moment of momentum is denoted by

M̄m =
∫

V(t)

r × vρdV or Mmi =
∫

V(t)

eijkxjρvkdV (2.7.13)

Newton’s laws for a continuum, as stated by Euler, is that the rate of change of
linear momentum is equal to the applied force F̄ acting on the body, i.e. DM̄

Dt = F̄ and
the rate of change of moment of momentum is equal to the total applied torque T̄,
i.e. DM̄m

Dt = T̄. The torque is taken with respect to the same point as the origin of the
position vector r .
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If the body is subjected to surface traction pnj and body force per unit volume Bi,
the resultant force is

Fi =
∫
S

pnjdS +
∫
V

BidV (2.7.14)

Using Cauchy’s definition of surface traction, pnj = σjinj in which σji is the stress
field and nj is the unit vector along the exterior normal to the boundary surface S of the
volume V . Using this definition and transforming the surface to volume integral, using

Gauss’ theorem, Fi = ∫V [ ∂σij

∂xj
+ Bi

]
dV . Again, Newton’s law states that DMi

Dt = Fi.

From Equation (2.7.9) replacing A by (ρvi),

∫
V

[
∂ρvi

∂t
+ ∂(ρvivj)

∂xj

]
dV =

∫
V

[
∂σij

∂xj
+ Bi

]
dV (2.7.15)

As the above equation holds for any arbitrary region V , the integrand on the two
sides must be equal, i.e.

∂ρvi

∂t
+ ∂(ρvivj)

∂xj
= ∂σij

∂xj
+ Bi (2.7.16)

Equation (2.7.16) can be written as

vi

[
∂ρ

∂t
+ ∂(ρvj)

∂xj

]
+ ρ

[
∂vi

∂t
+ vj

∂(ρvi)

∂xj

]
= ∂σij

∂xj
+ Bi (2.7.17)

The first expression vanishes by the equation of continuity while the other is the
acceleration Dvi/Dt. Thus

ρ
Dvi

Dt
= ∂σij

∂xj
+ Bi (2.7.18)

➔ This is Euler’s equation of motion of a continuum.
Static equations of equilibrium can be obtained by assuming all velocity components

equal to zero. Euler’s equation of motion in the integral form can be also written as

∫
V

∂ρvi

∂t
dV =

∫
S

[σij − ρvivj] vjdS +
∫
V

BidV (2.7.19)
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The corresponding static equal can be obtained by setting velocity components to
be zero.

2.7.4 Moment of momentum

It is known that the law of balance of angular momentum to a particular case of static
equilibrium leads to the conclusion that the stress tensor is symmetric. No additional
restriction to the motion of a continuum is introduced in dynamics by the angular
momentum postulate. At an instant of time t, a body occupying a regular region V
of space with boundary S has the moment of momentum with respect to the origin is
(Equation (2.7.13))

Mmi =
∫
V

eijkxjρ vkdV (2.7.20)

If the body is having the body force Bi per unit volume and a surface traction pni,
the resultant moment about the origin is

Mmi =
∫
V

eijkxjBkdV +
∫
S

eijkxjpnkdS (2.7.21)

Using Cauchy’s formula pni = σkink in the last integral and transforming the result
into a volume integral by Gauss’ theorem

Mmi =
∫
V

eijkxjBkdV +
∫
V

(eijkxjσ�k)�dV (2.7.22)

Now, the Euler’s law states that for any region V

DMmi

Dt
= Mi (2.7.23)

Using Equation (2.7.21) in Equation (2.7.9)

eijkxj
∂(ρvk)

∂t
+ ∂(eijkxjρvkv�)

∂x�
= eijkxjBk + eijk(xjσ�k),� (2.7.24)

The second term in Equation (2.7.24) can be written as

eijkρvkvj + eijkxj
∂(ρv�vk)

∂x�
= eijkxj

∂(ρv�vk)

∂x�
(2.7.25)
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The last term in Equation (2.7.24) can be written as

eijkσjk + eijkxjσik,� (2.7.26)

Thus Equation (2.7.24) can be rewritten as

eijkxj

[
∂(ρvk)

∂t
+ ∂(ρvkv�)

∂x�
− Bk − σ�k,�

]
− eijkσjk = 0 (2.7.27)

Using Equation (2.7.15), the bracketed part of Equation (2.7.27) vanishes and hence
it reduces to

eijk σjk = 0, i.e. σjk = σkj. (2.7.28)

⇒ If the stress tensor is symmetric, the law of balance of moment of momentum is
identically satisfied.

The laws of conservation of energy further govern the motion of a continuum. In a
problem, if the mechanical energy is of concern, the energy equation is the first integral
of the equation of motion. If the interaction of thermal process and mechanical process
is significant, then the equation of energy contains a thermal energy term and is an
independent equation to be satisfied.

The equations of continuity and motion constitute four equations for ten unknown
functions of time and position. These are the density, three velocities or displace-
ments and the six independent stress components. Thus, further restrictions have to
be introduced before the motions of a continuum can be determined. One such restric-
tion comes from the mechanical property of the medium, in the form of stress-strain
relationship, known as constitutive equations. A different approach is to determine
the physical relations experimentally, characterizing a material through experimen-
tal results. In the theory of linear elasticity, the stress-strain relationship provides six
additional equations relating the variables named above, making the motion of the
continuum deterministic.

2.7.5 Basic equation of motion of an elastic body

As was mentioned in §2.5.1, for an isotropic linearly elastic material the stress and
strain tensors may be related through

σij = λ εαβδαβ + 2G εij or εij = 1 + ν

E
σij − ν

E
σαβ δαβ (2.7.29)

(repetitive symbols indicate sum and δ denotes kroneker delta with δij = 1, for i = j or
δij = 0 for i 
= j). λ and G are Lame’s parameter: E, ν, G and K are Young’s modulus
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of elasticity, Poisson ratio, shear modulus and Bulk modulus of elasticity, respectively.
These constants are related through:

λ = 2Gν
1 − 2ν

= K − 2
3

G = Eν
(1 + ν)(1 − 2ν)

;

G = λ(1 − 2ν)
2ν

= 3
2
(K − λ) = E

2(1 + ν)
= 3KE

9K − E

E = λ(1 + ν)(1 − 2ν)
ν

= 2G(1 + ν) = G(3λ+ 2G)
λ+ G

; ν = λ

2(λ+ G)
= 3K − E

6K
;

K = λ+ 2
3

G = E
3(1 − 2ν)

. (2.7.30)

For a Poisson ratio, ν = 1/4, λ = G; ν = 1/2: G = E/3; 1/K = 0, i.e. εαα = 0
(incompressible material).

2.7.6 Various strain measures

In spatial description the motion of a continuum is described by the instantaneous
velocity field vi(x1, x2, x3, t). For describing strains in the body, a displacement field
ui(x1, x2, x3, t) is specified which describes the displacement of particle at (x1, x2, x3)

at time t from its position in the natural state.
Strain measures for the displacement field are defined as follows:
The Almansi strain tensor:

εij = 1
2

[
∂uj

∂xi
+ ∂ui

∂xj
− ∂uk

∂xi

∂uk

∂xj

]
(2.7.31)

The particle velocity can be obtained from the material derivative of the displacement

vi = ∂ui

∂t
+ vj

∂ui

∂xj
(2.7.32)

The particle acceleration is obtained from the material derivative of the velocity

ai = ∂vi

∂t
+ vj

∂vi

∂xj
(2.7.33)

We have nonlinear terms in above equations. We have to linearize these equations
by confining ourselves to small displacements and small velocities and thus, neglecting
nonlinear terms. In the linear theory we have

εij = 1
2

[
∂uj

∂xi
+ ∂ui

∂xj

]
, vi = ∂ui

∂t
and ai = ∂vi

∂t
. (2.7.34)
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The motion of the body must obey the equation of continuity [Equation (2.7.11)]
and the equation of motion [Equation (2.7.18)]. Also, the theory of linear elasticity is
based on Hooke’s law. For a homogeneous isotropic material we have

σij = λεkkδij + 2G εij (2.7.35)

and combining it with Equation (2.7.31) or Equation (2.7.11) with the linear form
of Equation (2.7.33), we have 22 equations for 22 unknowns ρ, ui, vi, εij, σij. For
infinitesimal displacement, one can substitute σij of Equation (2.7.35) into Equation
(2.7.18) and using Equation (2.7.34), Navier’s equation is obtained as follows

μ∇2ui + (λ+ G )εi + Bi = ρ
∂2ui

∂t2 or Gui,jj + (λ+ G )uj,ji + Bi = ρ
∂2ui

∂t2

(2.7.36)

in which ε = uj,j and ∇2ui = ui,jj.
If one writes x, y, z instead of x1, x2, x3; u1, u2, u3 is replaced by u, v, w; and B1,

B2, B3 is replaced by Bx, By, Bz, Love’s equation similar to Equation (2.7.36) results
and they are given as follows:

G∇2u + (λ+ G)
∂e
∂x

+ Bx = ρ
∂2u
∂t2 ; G∇2v + (λ+ G)

∂e
∂y

+ By = ρ
∂2v
∂t2 ;

G∇2w + (λ+ G)
∂e
∂z

+ Bz = ρ
∂2w
∂t2 (2.7.37)

in which ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 = Laplace operator; e = ∂u
∂x + ∂v

∂y + ∂w
∂z =

εx + εy + εz = dilatation = divergence of displacement vector.

2.7.7 Solution of the three-dimensional equation

Equation (2.7.37) is the governing equation of three-dimensional motion for an
isotropic, linear elastic solid. In an unbounded solid, only two types wave travel
through the body.

The solution for the first type of wave can be obtained by differentiating each of the
equation [Equation (2.7.37)] with respect to x, y, z and adding them to form

G∇2
[
∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

]
+ (λ+ G)

[
∂2e
∂x2 + ∂2e

∂y2 + ∂2e
∂z2

]
+
[
∂Bx

∂x
+ ∂By

∂y
+ ∂Bz

∂z

]

= ρ
∂2

∂t2

[
∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

]
(2.7.38)
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or (λ+ 2G)∇2e +
[
∂Bx

∂x
+ ∂By

∂y
+ ∂Bz

∂z

]
= ρ

∂2e
∂t2 (2.7.39)

With no body forces the equation of motion reduces to

(λ+ 2G)
ρ

∇2e = ∂2e
∂t2 or V2

P∇2e = ∂2e
∂t2 (2.7.40)

e is the volumetric strain i.e. deformation without any shear strain or rotation. This
wave equation represents an irrotational or dilatational wave and will propagate
through the body at a velocity

VP =
√
λ+ 2G
ρ

=
√

2G(1 − ν)

ρ(1 − 2ν)
(2.7.41)

This type of wave is commonly called p-wave or primary wave. Equation (2.7.41)
indicates that as ν approaches 0.5, the body is incompressible and VP approaches
infinity.

The second type of wave solution can be obtained by differentiating the first equation
of Equation (2.7.37) with respect to y and the second with respect to x and then
subtracting one from the other, i.e.

G∇2
[
∂u
∂y

− ∂v
∂x

]
+ ∂Bx

∂y
− ∂By

∂x
= ρ

∂2

∂t2

[
∂u
∂y

− ∂v
∂x

]
;

or G∇2�z + ∂Bx

∂y
− ∂By

∂x
= ρ

∂2

∂t2�z (2.7.42)

Similarly other two equations can be obtained by differentiating the second and
third equation of Equation (2.7.37) by z and y, and the third and first equation of
Equation (2.7.37) by x and z and the subtracting one from the other

G∇2
[
∂v
∂z

− ∂w
∂y

]
+ ∂By

∂z
− ∂Bz

∂y
= ρ

∂2

∂t2

[
∂v
∂z

− ∂w
∂y

]
;

or G∇2�x + ∂By

∂z
− ∂Bz

∂y
= ρ

∂2

∂t2�x (2.7.43)
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G∇2
[
∂w
∂x

− ∂u
∂z

]
+ ∂Bz

∂x
− ∂Bx

∂z
= ρ

∂2

∂t2

[
∂w
∂x

− ∂u
∂z

]
;

or G∇2�y + ∂Bz

∂x
− ∂Bx

∂z
= ρ

∂2

∂t2�y (2.7.44)

in which

�x = 1
2

(
∂w
∂y

− ∂v
∂z

)
; �y = 1

2

(
∂u
∂z

− ∂w
∂x

)
;

�z = 1
2

(
∂v
∂x

− ∂u
∂y

)
are the rotation vectors. (2.7.45)

Equations with no body forces can be written as

G
ρ

∇2�x = ∂2�x

∂t2 ;
G
ρ

∇2�y = ∂2�y

∂t2 ;
G
ρ

∇2�z = ∂2�z

∂t2 (2.7.46)

Equation (2.7.45) describes equivoluminal or distortional waves of rotations about
x, y and z axes respectively. These waves will propagate through the solid at a velocity,
Vs = √

(G/ρ) and is commonly known as s-wave or shear wave.
S-waves can be divided into two perpendicular components, SH-wave and SV-

waves. While in SH-waves particle motion occurs in a horizontal plane, in SV-waves
particle motion lies in a vertical plane. Thus, a given s-wave with arbitrary particle
motion can be represented as the vector sum of its SH and SV components.

The above two types of waves, known as body waves, can exist in an unbounded
elastic body. The ratio of the body wave velocities namely, VP/VS is a function of the
Poisson ratio given as below

VP

VS
=
√

2 − 2ν
1 − 2ν

(2.7.47)

For a typical Poisson ratio of 0.25, this ratio is
√

3.

2.7.8 Static solutions with no body forces

For such cases Equation (2.7.40) reduces to

∇2e = 0 (2.7.48)

A function satisfying Equation (2.7.48) is known as harmonic function. Thus dila-
tion e is a harmonic function when body force vanishes. Also we have a relation that
(3λ+ 2μ)e = (σx + σy + σz)/3 = σ = mean stress and this implies
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∇2σ = 0 (2.7.49)

Hence, the mean stress is also a harmonic function.
Again from Equation (2.7.37), with no body forces and using Laplacian, ∇2

G∇2∇2u + (λ+ G)
∂

∂x
∇2e = 0; G∇2∇2v + (λ+ G)

∂

∂y
∇2e = 0;

G∇2∇2w + (λ+ G)
∂

∂z
∇2e = 0

and making use of Equation (2.7.48)

∇4u = 0; ∇4v = 0; ∇4w = 0 (2.7.50)

in which the biharmonic operator in rectangular Cartesian coordinates is given by

∇4 = ∂4

∂x4 + ∂4

∂y4 + ∂4

∂z4 + 2

[
∂4

∂x2∂y2 + ∂4

∂y2∂z2 + ∂4

∂z2∂x2

]
(2.7.51)

Equation (2.7.51) is called biharmonic equation and its solution is called a
biharmonic function. Thus the displacement components are biharmonic.

Hence, an elastic body with no body forces each of the strain components and each of
the stress components, being linear combination of the first derivative of displacement
components, are all biharmonic.

Equation (2.7.37) is to be solved for appropriate boundary and initial conditions.
The boundary conditions normally used are

1 Specified displacements: The displacement components u, v, and w are prescribed
on the boundary.

2 Specified surface tractions: The surface traction components pi is assigned on the
boundary.

The boundary conditions such as the displacement are prescribed on a part of the
boundary while the surface tractions are prescribed over another part of the boundary.
Normally, the region occupied by the body is denoted by V , while the boundary
surface of V is denoted by S. The surface is further divided into Su and Sσ . Thus on
Sσ the surface traction pi = σij nj, is prescribed where nj is the unit vector normal to
the surface Sσ . By using constitutive equations this can be further reduced to satisfying
the function [λuk,kδij + G(ui,j + uj,I)]nj = the prescribed stress condition. Hence,
over the entire surface, the boundary conditions are that either ui or a combination of
the first derivatives of ui is prescribed.

In dynamic problems, however, a set of initial conditions on ui or σij must be given
in the region V and on the surface S. We have already specified the condition under
which unique solution exists in a boundary value problem mentioned in the preceding.
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2.8 SOME BASICS

Elastic constants: E = Young’s modulus; ν = Poisson ratio.

Lame’s constants: λ = ν E
(1 + ν)(1 − 2ν)

; G = shear modulus = E
2(1 + ν)

For a homogeneous, isotropic and elastic material elastic constants reduce to just
two, E and ν. The relationship among the constants may be written as

E = G (3λ+ 2G)
λ+ G

; ν = λ

2(λ+ G)
.

In general, we have:
Unknowns:

State No. of equations Stresses = 6: {σxx, σyy, σzz,
Equilibrium 3 τxy, τyz, τzx}
Compatibility 6 Displacements: 3{u, v, w}
Stress-strain 6
(constitutive relations)

Total = 15 equations. Total = 9.

2.8.1 Summary of governing equations/relations

1 Equations of equilibrium: τji, j + Xi = 0
2

∂σxx

∂x
+ ∂τxy

∂y
+ ∂τxz

∂z
+ X = 0;

∂τxy

∂x
+ ∂σyy

∂y
+ ∂τyz

∂z
+ Y = 0;

∂τxz

∂x
+ ∂τzy

∂y
+ ∂σzz

∂z
+ Z = 0

➔ 6-unknowns and 3 equations: taking stress tensor as a symmetric one.

3 Equations of stress and strain: εij = 1 + ν

E
τij − ν

E
τkkδij : σij = λ εkkδij + 2G εij

εxx = σxx

E
− ν

E
(σyy + σzz) : εyy = σyy

E
− ν

E
(σzz + σxx) :

εzz = σzz

E
− ν

E
(σxx + σyy)

εxy = γxy

2
= 1 + ν

E
τxy = τxy

2G
; εyz = γyz

2
= 1 + ν

E
τyz = τyz

2G
;

εzx = γzx

2
= 1 + ν

E
τzx = τzx

2G
.

➔ 6-unknowns and six equations.
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4 Strain-displacement relations: εij = 1
2

(
ui, j + uj, i

)

εxx = ∂u
∂x

; εyy = ∂v
∂y

; εzz = ∂w
∂z

; εxy = 1
2

(
∂u
∂y

+ ∂v
∂x

)
;

εyz = 1
2

(
∂v
∂z

+ ∂w
∂y

)
; εzx = 1

2

(
∂w
∂x

+ ∂u
∂z

)
.

5 Equations of compatibility: εij,kl + εkl,ij − εik,jl − εjl,ik = 0

∂2εxx

∂y∂z
= ∂

∂x

(
−∂εyz

∂x
+ ∂εzx

∂y
+ ∂εxy

∂z

)
;

∂2εyy

∂z∂x
= ∂

∂y

(
−∂εzx

∂y
+ ∂εxy

∂z
+ ∂εyz

∂x

)
;

∂2εzz

∂x∂y
= ∂

∂z

(
−∂εxy

∂z
+ ∂εzy

∂x
+ ∂εzx

∂y

)
; 2

∂2εxy

∂x∂y
= ∂2εxx

∂y2 + ∂2εyy

∂x2 ;

2
∂2εyz

∂y∂z
= ∂2εyy

∂z2 + ∂2εzz

∂y2 ; 2
∂2εzx

∂z∂x
= ∂2εzz

∂x2 + ∂2εxx

∂z2 .

➔ 6-equations and 6-unknowns.

2.8.2 Lame’s equations [combining all equations,
governing differential equation
in terms of u, v, w]

Before going in for the equations, let us spend some time in the derivation of them.

We have
∂τij

∂xj
+ Xi = 0 (2.8.1)

and τij = λ εkk δij + 2μ εij (2.8.2)

Using linearised theory, i.e. εij = 1
2
(ui,j + uj,i) (2.8.3)

and substituting (2.8.2) in (2.8.1), we

λεkk,jδij + λ εkkδij,j + 2G εij,j + Xi = 0

= 0

i.e. 2λ εkk,i = λ (uk,ki + uk,ki) = 2λ uk,ki

We have, 2G εij,j = G (ui,jj + uj,ij)

i.e. λ uk,ki + G ui,jj + G ui,ij + Xi = G ui,jj + (λ+ G )uj,ji + Xi = 0

G∇2ui + (λ+ G)
�

∂xi
+ Xi = 0 (2.8.4)
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Hence,

(λ+ G)
∂�

∂x
+ G ∇2u + Fx = 0; (λ+ G)

∂�

∂y
+ G ∇2v + Fy = 0;

(λ+ G)
∂�

∂z
+ G ∇2w + Fz = 0 (2.8.5)

where, � = dilatation = ∂u
∂x + ∂v

∂y + ∂w
∂z ; u, v, w → displacement components; Fx, Fy,,

Fz body forces per unit volume in x, y, and z-directions.

2.9 SOME CLASSICAL SOLUTIONS OF ELASTOSTATICS

2.9.1 Kelvin (1848) problem – A single force acting
in the interior of an inf inite solid. (Malvern 1969,
Fung 1965)

Let a force P is applied at the origin in the interior of an infinite solid and acting in
the z-direction as shown in Figure 2.9.1. The boundary conditions are:

a) At infinity, all stresses vanish; b) At the origin, the stress singularity is equivalent
to a concentrated force of magnitude 2P in the z-direction.

Using

R =
√

x2 + y2 + z2 =
√

r2 + z2; Z = BR; B = P
8π(1 − ν)

; ν = Poisson ratio,

(2.9.1)

P

x

y

z

Figure 2.9.1 Kelvin problem.
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Stresses in (r, z, θ ) system, with radial symmetry, may be written as

σr = B

[
(1 − 2ν)z

R3 − 3r2z
R5

]
; σz = −B

[
(1 − 2ν)z

R3 + 3z3

R5

]

σθ = (1 − 2ν)Bz
R3 ; τrz = −B

[
(1 − 2ν)r

R3 + 3rz2

R5

]
; τzθ = τrθ = 0. (2.9.2)

ur =
[

P
16πG(1 − ν)

]
rz
R3 ; uz =

[
P

16πG(1 − ν)

][
(3 − 4ν)

R
+ z2

R3

]
; uθ = 0.

(2.9.3)

When the Poisson ratio is 0.5, the stresses become

σr = −3Pr2z
4πR5 ; σz = −3Pz3

4πR5 ; τrz = −3Prz2

4πR5 ; σθ = τrθ = τzθ = 0. (2.9.4)

and ur =
[

P
8πG

] [
rz
R3

]
; uz =

[
P

8πG

] [
1
R

− z2

R3

]
; uθ = 0. (2.9.5)

2.9.2 Boussinesq (1878) problem – A normal force
acting on the surface of a semi-infinite solid

Let us consider a normal force P acting at the origin, O, of the elastic half space as
shown below:

X

y

R

z

r r

rz

Z

rO
P

Figure 2.9.2 Concentrated force acting at and normal to the half space.
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Using R2 = r2 + z2 = x2 + y2 + z2, we can have (2.9.6)

Stresses: σz = 3P
2π

z3

R5 ; σr = P
2π

[
3zr2

R5 − (1 − 2ν)
R(R + z)

]
;

σθ = P(1 − 2ν)
2π

[
1

R(R + z)
− z

R3

]
; τrz = 3P

2π
z2r
R5 . (2.9.7)

Displacements

u = P(1 + ν)

2πE

[
xz
R3 − (1 − 2ν)x

R(R + z)

]
; v = P(1 + ν)

2πE

[
yz
R3 − (1 − 2ν)y

R(R + z)

]
;

w = P(1 + ν)

2πE

[
z2

R3 − (1 − ν)

R

]
. (2.9.8)

E is the Young’s modulus of elasticity and ν is the Poisson ratio of the half space.
It is interesting to note that the vertical normal and shear stresses are independent

of the elastic constants, however the assumption of linear elasticity is assumed.
In civil engineering practice, the following expressions are usually used for

Boussinesq solution

σz = K
P
z2 , where K = 3

2π

[
1 +

(
r
z

)2
]−5/2

(2.9.9)

2.9.3 Cerruti (1882) problem – A tangential force acting
on the surface of a semi-infinite solid (Mindlin 1936,
Love 1944), [same as Boussinesq’s problem, only the
load acting on the surface is horizontal]

For a concentrated force acting parallel to the boundary surface solution is given by

σz = 3P
2π

xz2

R5 ; σx = Px
2π

[
(1 − 2ν)

R3 − 3x2

R5 − (1 − 2ν)
R(R + z)2

{
3 − x2(3R + z)

R2(R + z)

}]

σy = Px
2π

[
(1 − 2ν)

R3 − 3y2

R5 − (1 − 2ν)
R(R + z)2

{
1 − y2(3R + z)

R2(R + z)

}]
; (2.9.10)

τyz = −3Pxyz
2πR5 ; τzx = −3Px2z

2πR5 ;

τxy = − Py
2π

[
3x2

R5 + (1 − 2ν)
R(R + z)2

{
1 − x3(3R + z)

R2(R + z)

}]
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u = P
4πGR

[
1 + x2

R2 + R(1 − 2ν)
z + R

− (1 − 2ν)x2

(z + R)2

]

v = Pxy
4πGR3

[
1 − (1 − 2ν)R2

(z + R)2

]
; w = Pxz

4πGR3

[
1 + (1 − 2ν)R2

z(z + r)

]
. (2.9.11)

2.9.4 Mindlin’s (1936) solution

A force at any inclination is acting at a point in the interior of a semi-infinite body.
Solution is given in two parts:

2.9.4.1 Force normal to the boundary

Geometrical description is given in Figure 2.9.3, with R1 = [r2 + (z − c)2]1/2,
R2 = [r2 + (z + c)2]1/2 and r = [x2 + y2]1/2, solution in (r, θ, z) coordinate system is
given by

σz = P
8π(1 − ν)

[
− (1 − 2ν)(z − c)

R3
1

+ (1 − 2ν)(z − c)

R3
2

− 3(z − c)3

R5
1

]

− P
8π(1 − ν)

[
3(3 − 4ν)z(z + c)2 − 3c(z + c)(5z − c)

R5
2

+ 30cz(z + c)3

R7
2

]

(2.9.12)

R1

r

Z

Y

X

(x, y, z)

c

P

c

z

R2

Figure 2.9.3 Concentrated force within mass normal to boundary.
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w = P(1 + ν)

16πE(1 − ν)

[
3 − 4ν

R1
+ 8(1 − ν)2 − (3 − 4ν)

R2

]

+ P(1 + ν)

16πE(1 − ν)

[
(z − c)2

R3
1

+ (3 − 4ν)(z + c)2 − 2cz

R3
2

+ 6cz(z + c)2

R5
2

]

(2.9.13)

u = Pr
16πG(1 − ν)

[
z − c

R3
1

+ (3 − 4ν)(z − c)

R3
2

− 4(1 − ν)(1 − 2ν)
R2(R2 + z + c)

+ 6cz(z + c)

R5
2

]

(2.9.14)

σr = P
8π(1 − ν)

[
(1 − 2ν)(z − c)

R3
1

− (1 − 2ν)(z + 7c)

R3
2

+ 4(1 − ν)(1 − 2ν)
R2(R2 + z + c)

− 3r2(z − c)

R5
1

]

+ P
8π(1 − ν)

[
6c(1 − 2ν)(z + c)2 − 6c2(z + c)− 3(3 − 4ν)r2(z − c)

R5
2

−30cr2z(z + c)

R7
2

]
(2.9.15)

σθ = P(1 − 2ν)
8π(1 − ν)

[
(z − c)

R3
1

+ (3 − 4ν)(z + c)− 6c

R3
2

− 4(1 − ν)

R2(R2 + z + c)

+ 6c(z + c)2

R5
2

− 6c2(z + c)

(1 − 2ν)R5
2

]
(2.9.16)

τrz = Pr
8π(1 − ν)

[
−1 − 2ν

R3
1

+ 1 − 2ν

R3
2

− 3(z − c)2

R5
1

− 3(3 − 4ν)(z + c)z − 3c(3z + c)

R5
2

− 30cz(z + c)2

R7
2

]
(2.9.17)

When c → ∞ all terms containing R2 vanish and the solution becomes that for
Kelvin Problem where he force is applied at (0, 0, c) in the positive z-direction.

When c → 0 the stresses and displacements correspond to Boussinesq Problem.
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Stresses and displacements in rectangular coordinates (x, y, z) are:

σx = P
8π(1 − ν)

[
(1 − 2ν)(z − c)

R3
1

− 3x2(z − c)

R5
1

+ (1 − 2ν)[3(z − c)− 4ν(z + c)]
R3

2

]

− P
8π(1 − ν)

[
3(3 − 4ν)x2(z − c)− 6c(z + c)[(1 − 2ν)z − 2νc]

R5
2

+ 30cx2z(z + c)

R7
2

]

− P
8π(1 − ν)

[
4(1 − ν)(1 − 2ν)
R2(R2 + z + c)

{
1 − x2

R2(R2 + z + c)
− x2

R2
2

}]
(2.9.18)

σy = P
8π(1 − ν)

[
(1 − 2ν)(z − c)

R3
1

− 3y2(z − c)

R5
1

+ (1 − 2ν)[3(z − c)− 4ν(z + c)]
R3

2

]

− P
8π(1 − ν)

[
3(3 − 4ν)y2(z − c)− 6c(z + c)[(1 − 2ν)z − 2νc]

R5
2

+ 30cy2z(z + c)

R7
2

]

− P
8π(1 − ν)

[
4(1 − ν)(1 − 2ν)
R2(R2 + z + c)

{
1 − y2

R2(R2 + z + c)
− y2

R2
2

}]
(2.9.19)

σz = P
8π(1 − ν)

[
− (1 − 2ν)(z − c)

R3
1

− 3(z − c)3

R5
1

+ (1 − 2ν)(z − c)]
R3

2

]

− P
8π(1 − ν)

[
3(3 − 4ν)z(z + c)2 − 3c(z + c)(5z − c)]

R5
2

+ 30cz(z + c)3

R7
2

]

(2.9.20)

τyz = Py
8π(1 − ν)

[
− (1 − 2ν)

R3
1

+ (1 − 2ν)

R3
2

− 3(z − c)2

R5
1

−3(3 − 4ν)z(z + c)− 3c(3z + c)

R5
2

− 30cz(z + c)2

R7
2

]
(2.9.21)

τzx = Px
8π(1 − ν)

[
− (1 − 2ν)

R3
1

+ (1 − 2ν)

R3
2

− 3(z − c)2

R5
1

−3(3 − 4ν)z(z + c)− 3c(3z + c)

R5
2

− 30cz(z + c)2

R7
2

]
(2.9.22)

τxy = Pxy
8π(1 − ν)

[
−3(z − c)

R5
1

− 3(3 − 4ν)(z − c)

R5
2

+4(1 − ν)(1 − 2ν)

R2
2(R2 + z + c)

{
1

R2 + z + c
+ 1

R2

}
− 30cz(z + c)

R7
2

]
(2.9.23)

Mindlin obtained a plane strain solution given by Melan, by using a uniform distri-
bution of forces of magnitude p per unit length along a line through (0, 0, c) parallel
to the y-axis. If db is a small element of this line at a distance b from the z-axis, the
stresses due to this uniform pressure p acting on db can be computed by substituting
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pdb for P and (y − b) for y in the above equations. If now we integrate these formulae
with respect to b between the limits −∞ to +∞.

2.9.4.2 Force parallel to the boundary

Geometrical description is given in Figure 2.9.4

σx = Qx
8π(1 − ν)

[
− (1 − 2ν)

R3
1

+ (1 − 2ν)(5 − 4ν)

R3
2

− 3x2

R5
1

− 3(3 − 4ν)x2

R5
2

]

− Qx
8π(1 − ν)

[
4(1 − ν)(1 − 2ν)
R2(R2 + z + c)2

{
3 − x2(3R2 + z + c)

R2
2(R2 + z + c)

}

− 6c

R5
2

{
3c + (3 − 2ν)(z + c)+ 5zx2

R2
2

}]

σy = Qx
8π(1 − ν)

[
1 − 2ν

R3
1

+ (1 − 2ν)(3 − 4ν)

R3
2

− 3y2

R5
1

− 3(3 − 4ν)y2

R5
2

]

− Qx
8π(1 − ν)

[
4(1 − ν)(1 − 2ν)
R2(R2 + z + c)2

{
1 − y2(3R2 + z + c)

R2
2(R2 + z + c)

}

− 6c

R5
2

{
c − (1 − 2ν)(z + c)+ 5zy2

R2
2

}]

R1

r

Z

Y

X

(x, y, z)

c

Q

c

z

R2

Figure 2.9.4 Concentrated force within mass parallel to boundary.
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σz = Qx
8π(1 − ν)

[
1 − 2ν

R3
1

− 1 − 2ν

R3
2

− 3(z − c)2

R5
1

− 3(3 − 4ν)(z + c)2

R5
2

]

+ Qx
8π(1 − ν)

[
6c

R5
2

{
c + (1 − 2ν)(z + c)+ 5z(z + c)2

R2
2

}]

τyz = Pxy
8π(1 − ν)

[
−3(z − c)

R5
1

− 3(3 − 4ν)(z + c)

R5
2

+ 6c

R5
2

(
1 − 2ν + 5z(z + c)

R2
2

)]

τzx = P
8π(1 − ν)

[
− (1 − 2ν)(z − c)

R3
1

+ (1 − 2ν)(z − c)

R3
2

− 3x2(z − c)

R5
1

−3(3 − 4ν)x2(z + c)

R5
2

]

− P
8π(1 − ν)

(
6c

R5
2

){
z(z + c)− (1 − 2ν)x2 − 5x2z(z + c)

R2
2

}

τxy = Py
8π(1 − ν)

[
− (1 − 2ν)

R3
1

+ (1 − 2ν)

R3
2

− 3x2

R5
1

− 3(3 − 4ν)x2

R5
2

]

− Py
8π(1 − ν)

[(
4(1−ν)(1 − 2ν)
R2(R2 + z + c)2

)(
1 − x2(3R2 + z + c)

R2
2

)
− 6cz

R5
2

(
1− 5x2

R2
2

)]

(2.9.24)

u = Q
16πG(1 − ν)

[
3 − 4ν

R1
+ 1

R2
+ x2

R3
1

+ (3 − 4ν)x2

R3
2

+ 2cz

R3
2

(
1 − 3x2

R2
2

)]

+ Q
16πG(1 − ν)

[
4(1 − ν)(1 − 2ν)

R2 + z + c

(
1 − x2

R2(R2 + z + c)

)]

v = Qxy
16πG(1 − ν)

[
1

R3
1

+ 3 − 4ν

R3
2

− 6cz

R5
2

− 4(1 − ν)(1 − 2ν)
R2(R2 + z + c)2

]

w = Qx
16πG(1 − ν)

[
z − c

R3
1

+ (3 − 4ν)(z − c)

R3
2

− 6cz(z + c)

R5
2

+ 4(1 − ν)(1 − 2ν)
R2(R2 + z + c)

]

(2.9.25)

When c → ∞ all terms in the above equations vanish and the solution becomes that
for the Kelvin Problem with the force applied in the x-direction.

When c → 0 the equations above give stresses and displacements for the Cerruti
Problem.
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2.9.5 Theories of Elastodynamics

Elastodynamics is the branch of science that deals with study of waves and time
dependent force propagating through a continuum or an elastic media. This is a very
important study related to the branch of engineering related to soil dynamics, seismo-
logy and geotechnical earthquake engineering. We will not furnish further details here
for the topic has been dealt in detail in Chapter 5 (Vol. 1) under the heading of Basic
concepts of soil and elastodynamics.

2.10 NUMERICAL METHODS IN ENGINEERING:
BASICS AND APPLICATIONS

2.10.1 Introduction

In this section, we will discuss some of the important numerical methods applied to
civil engineering problems for the solution of a variety of boundary value problems.

Though the basic focus in this book is towards dynamic response of structures and
foundations, however we shall discuss a little on the static problems herein, without
which we feel that you may find some of the concepts in subsequent chapters difficult.

A pre-requisite to this section is some background on

• Theory of elasticity, calculus, and strength of materials.
• Basic matrix algebra.
• Little of programming background helps (not mandatory though).
• A lot of imagination, which we believe is the major constituent of being a creative

engineer.

On completion of this chapter, we expect you to

• Understand the difference between various methods illustrated herein.
• Realize the limitations of each of the methods and appreciate the concept that

“Garbage input would always give garbage output”1.
• The stumbling blocks and cracks through which errors unknowingly creep in the

analysis.
• How to attack various practical engineering problems, without overdoing it.
• Six digits after decimal in the output file and aesthetically pleasing colored stress

contour does not necessarily give the requisite results.

What is numerical method – what is so special about it?
First thing we would like to clarify about the numerical method is that it is an

approximate analysis and the answers may have some errors in it.
There are problems where results obtained based on numerical methods would have

zero error (i.e. it converges to the exact value) and there would be cases where there
would be some finite errors in the solution but this error should be of acceptable level.

1 Software does not have the divine power to correct an ill-defined problem and come up with a correct
answer.
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Figure 2.10.1 Circle approximated by four triangles.

We emphasize that, if there exists a closed form analytical solution to an engineering
problem, then that would be invariably the most accurate answer and no further
numerical analysis would be required.

But in real world this is hardly the case for in many day to day practical problems we
come across situations where due to complicated boundary condition, heterogeneous
material/ geometric property, complex loading etc. it becomes impossible to find an
analytical solution to the problem. It is under these situations, numerical analysis
comes to our aid in arriving at a solution, which is approximate (having some error
in the result), however, the result should be acceptable for practical design purpose.

To further elucidate this, consider an elementary school problem by asking what is
the area of a circle having radius r? Answer would be πr2. This is clearly a closed form
analytical solution to the problem that is exact.

Now suppose we put you in a time machine and take you back to sixth or seventh
grade when you had no knowledge of calculus or area of a circle. Only thing you know
is the area of a triangle (1/2 base X height) and you are asked to solve this problem –
how would you do it?

If you are smart you would possibly attack the problem as shown in Figure 2.10.1.
You can argue that the area of the circle is approximately equal to the area of

the four triangles AOB, AOC, BOD, DOC. This gives the total area of four trian-
gle as A = 4(1/2 · r · r) = 2r2 – which is approximately equal to the area of the
circle.

Well, as a sixth grader, we feel you have not done too badly, for you have arrived at
an answer, which is correct up to the order of 67%. The error in your result is because
you could not take into account the curved portions outside the triangle.

We again put you back in the time machine and bring you to Class IX where you
still do not know calculus but you know geometry and some trigonometry and pose
you the same problem to solve2.

2 We presume that as a IXth grader you would like to improve upon your VIth grade answer.
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We increase the number of triangles from four to eight and follow the same logic
as posed earlier, and state that the circle is approximately sum of the area of eight
triangles as shown in Figure 2.10.2.

For one triangle (Figure 2.10.3) we have

∠AOB = 45◦ and ∠OBC = ∠OAC = 67.5◦ and OA = OB = r.

Based on basic trigonometry we can say that OC = OB sin 67.5◦ = r sin 67.5◦ and
BC = r sin 22.5◦ which implies AB = 2r sin 22.5◦.

Thus area of the triangle AOB = (1/2)2r sin 22.5◦ · r sin 67.5◦ = r2 sin 22.5◦
sin 67.5◦

Thus, sum of eight triangles gives the total area as � = 8r2 sin 22.5◦ sin 67.5◦ =
2.83r2; which is an approximate area of the circle. The error in the answer now is =
[(π − 2.83)/π ] × 100 = 9.9% a sure improvement to what you found in sixth grade.

Can we improve this result a bit more? Let us see how . . . . . .

We know that error in our result is the curved area out side the octagon is shown
in Figure 2.10.4.

At the center of the curve the maximum ordinate value is

y = r − h = r(1 − sin 67.5◦)

7

8 6

1 5

2 4

3

Figure 2.10.2 Circle approximated by an octagon.

O

A C B

Figure 2.10.3 Area of one triangle.

y

A B

Figure 2.10.4 Curved area outside the octagon.
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While at the end the value of the ordinate is zero, thus average value of ordinate is

yav = r(1 − sin 67.5◦)/2

Thus approximating the curved area by a rectangle the area of the rectangle is

Area = r
2
(1 − sin 67.5◦)× 2r sin 22.5◦ = 0.02913r2

Thus for the eight equivalent rectangle that we ignored initially the total area
is = 0.23304r2.

Adding this to previously obtained result of eight triangles, we have total area of the
circle approximated as

Area ∼= 2.83r2 + 0.23304r2 = 3.063r2

Thus error to the exact result is = [(π − 3.06)/π ] × 100 = 2.6% only.
We will not pursue the matter further but would like to draw some important

conclusions from the above exercise.

• The actual area of the circle is πr2. This is an analytical solution and is exact.
• We solved the subsequent problem based on discretising the area into simpler

shapes whose area is known to us and summing it up we approximately arrived
at an answer that had some error in it.

• Based on the solution we could also notice that cruder were the elements more
was the error as we increased the number of elements the errors progressively
decreased (4 triangles versus 8 triangles).

It is possibly in this way by summing the area of known geometrical shapes inscribing
a circle the Chinese3 found out the value of pi(π) correct to 3.1415927 and gave the
famous postulation that “Area of a circle when divided by the square of its radius r is
always a constant”.

We will see later that a very similar philosophy is followed in mathematical modeling
of systems when we analyze the same based on finite difference method (FDM) or finite
element method (FEM).

In our real world of engineering, we often face differential equations (could be
ordinary or partial) whose direct analytical solutions are not always possible due to
various complexities in its boundary conditions. This is when we resort to approxi-
mate numerical solution, which is acceptable for practical use and has eased our life
significantly. The impetus has grown strongly with the advent of digital computers,
when solving large number of algebraic equations through a computer has become a
routine affair.

3 Mathematician Teu Tzeng Tze (A.D. 429–500) determined 3.1415926 < π < 3.1514927.
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2.10.2 Approximate methods applied to boundary
value problems

By posing the above title, we do neither mean to be mathematically elegant nor intend
to be abstract in our presentation. Thus the first thing we explain is what is a boundary
value problem?

Say that a d2y
dx2 + b = 0 is a boundary value problem; we have surely done our duty

to define it, but may not have perhaps cleared the concept to all. Since we presume
that this book is being read by a civil engineer, we borrow an equation from strength
of materials and pose

EI
d2y
dx2 + Mx = 0 (2.10.1)

Is a boundary value problem, we believe that things have improved significantly in
terms of our understanding.

The equation is solved for obtaining displacement expressions for beams whose
solution will depend upon the end or boundary conditions like y = 0 at x = 0,
dy/dx = 0 at x = 0 etc.

Since the solution is a function of the end or end–boundary conditions these are
termed as the boundary value problems.

Other equations are also broadly classified as boundary value problems but are
strictly not so. Let us consider the equation,

m
d2x
dt2 + c

dx
dt

+ kx = P(t). (2.10.2)

This is the equation of motion of lumped mass suspended from a spring and
dashpot4. Those of you who are conversant with the theory of vibration would
know that key to its solution lies in its initial conditions like at t = 0 u = 0 and
at t = 0 du/dt = v etc.

Since the solution is a function of the initial condition of the displacement and
velocity vector at t = 0, they are called initial value problem. Let us now consider
another partial differential equation,

G
∂2u
∂z2 = ρ

∂2u
∂t2 . (2.10.3)

This is the equation of motion of wave propagation through an elastic media5 in
one dimension. Solution to such equation is a function of both the end condition like
whether the boundary is free, constrained etc and also dependent on time like at t = 0
u = u0 etc.

4 We will see in later chapter that this equation has an immense application in solution of problems related
to structural dynamics.

5 This equation we will see later has a lot of application in soil dynamics and also to problems related to
Earthquake engineering.
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These types of equations are called initial-boundary value problem for they are
dependent on both initial and end-boundary conditions.

In the following sections, we present some of the approximate solution methods
that are used to solve boundary value problems.

2.10.2.1 Rayleigh-Ritz method

The method was originally proposed by Rayleigh. The method can be explained as
follows:

If we have a differential equation whose boundary condition are known, then rather
than solving the equation itself, the solution is started off with an assumed func-
tion. The function is so chosen that it satisfies the boundary conditions for the given
differential equation. Thus instead of solving the differential equation applying the
assumed function to a functional�p a substitute approximate solution to the problem
is obtained.

The accuracy of the solution increases as more and more number of higher order
terms is considered in the assumed function.

To explain the above problem let us borrow a classroom-problem shown in Figure
2.10.5 and whose exact solution is known.

We consider a simply supported beam subjected to a uniformly distributed load w
spanning over a length L.

To determine the deflection we write

EI
d2y
dx2 = −Mx or EI

d2y
dx2 = −wL

2
x + wx2

2
(2.10.4)

which on integration gives,

EIy = −wL
12

x3 + wx4

24
+ C1x + C2 (2.10.5)

where C1 and C2 are integration constants and imposing the boundary conditions at
x = 0 y = 0, gives, C2 = 0 and with x = L, y = 0 we have,

EIy = −wL
12

x3 + wx4

24
+ wL3

24
x (2.10.6)

At x = L/2 we have,

yL/2 = ymax = 5wL4

384EI
= 0.013021

wL4

EI
. (2.10.7)

w kN/m

L

Figure 2.10.5 A simply supported beam under udl.
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Thus based on above the general equation of displacement can be written as

y = ymax

[
16
5

( x
L

)4 − 32
5

( x
L

)3 + 16
5

( x
L

)]
(2.10.8)

In the above expression, the value within the bracket describes the displacement
function at various points in the beam with respect to the maximum displacement.
The shape function is exact as it was obtained based on the solution of the differential
equation.

Now suppose we do not want to solve the differential equation and yet arrive at a
solution to the above problem. We assume a parabolic function say,

y = A
x
L

(
1 − x

L

)
. (2.10.9)

It will be observed that the function satisfies the boundary condition that at x = 0,
y = 0 and at x = L, y = 0.

The potential energy of the system is then given by

�p = EI
2

L∫
0

(
d2y
dx2

)2

dx − w

L∫
0

ydx (2.10.10)

Substituting y = A
(

x
L − x2

L2

)
and on integration we have �p = 2EIA2

L3 − wAL
6 .

For stationary value of the functional �p ∂�p

∂A = 0 and we may obtain

A = wL4

24EI
. (2.10.11)

The approximate solution of the problem is given by

y = wL4

24EI

(
x
L

− x2

L2

)
➔ ymax = 0.010417

wL4

EI
. (2.10.12)

It shows that there is some error in the answer; however, this will be minimized if
we take more terms. For instance if we consider the function as

y = A1
x
L

(
1 − x

L

)
+ A2

x2

L2

(
1 − x

L

)
(2.10.13)

The results would improve and we would get a better answer.
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We now solve the same problem with a different function. Let,

y = A sin
πx
L

. (2.10.14)

Note that this function satisfies the boundary condition of y = 0 at x = 0 and
x = L.

The potential energy is given by

�p = EI
2

L∫
0

(
d2y
dx2

)2

dx − w

L∫
0

ydx i.e. �p = EIA2π4

4L3 − 2wAL
π

. (2.10.15)

Taking ∂�p

∂A = 0, we have A = 4wL4

EIπ5

The displacement expression can now be stated as,

y = 4
π5

wL4

EI
sin

πx
L

(2.10.16)

which gives ymax = 0.01307 wL4

EI which is almost the exact answer.
The values are plotted in Figure 2.10.6 for your comparison. Reviewing the plot,

you will see that while the parabolic one term approximation has some error in the
solution, by assuming the shape function as a sinusoidal function we have arrived at
almost an exact solution.

So, what was the magic in the sine function?
Pondering over it, we will see that there is nothing magical about it and the result is

very logical. First, the sine function satisfies the boundary condition representing the
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Figure 2.10.6 Displacement plot of a simply supported beam, Rayleigh-Ritz method.
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differential equation, which makes it a compatible function. Moreover, the same sine
function can be represented by an infinite series

sin
πx
L

= πx
L

− π3x3

L33! + π5x5

L55! − π7x7

L77! + · · · · · · · ∞ (2.10.17)

Thus, when the sine function is integrated, we are in effect integrating an algebraic
series of infinite order with no truncation error. Since sufficient number of terms is
being considered in the algebraic series, the value almost converges to the exact value.

Instead of the sine function if we would have approximated the value of sine
function as

sin
πx
L

∼= πx
L

− π3x3

L33! + π5x5

L55! − π7x7

L77! (2.10.18)

Considering only the first four terms, we would have nonetheless arrived at a
solution albeit with some errors.

Having stated the Rayleigh-Ritz method we proceed on to explain another method
termed as Weighted Residual Methods (WRM) which is yet an important stepping
stone for derivation of the shape functions of various elements which when combined
with Rayliegh’s method ultimately generate the stiffness of individual elements.

2.10.2.2 Weighted residual methods

While explaining the Rayleigh-Ritz Method earlier, we have stated to have a simplified
solution of the differential equation by assuming a shape function, which satisfies
the end boundary conditions, and solve for an alternative problem and arrive at an
approximate solution. The accuracy of the result would depend on the choice of shape
function and the number of terms considered in it. We can argue now that since
the shape function assumed is not exact6, the results would surely have some error
prevalent in it. Applying the weighted residual method, we try to minimize this error
in some way by averaging it out over the whole domain and arrive at a solution that
is closer to the exact solution.

The method can be explained as follows:
Consider the beam element we had dealt earlier. The displacement equation is

given by

EI
d2y
dx2 = −Mx; EI

d3y
dx3 = −Vx and EI

d4y
dx4 = −w. (2.10.19)

Now if we choose an approximate function

y = A1φ1 + A2φ2 + A3φ3 + · · · · · · + Anφn (2.10.20)

6 Since we did not arrive at it by solving the differential equation.
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implying, y = ∑n
1 Ajφj which satisfies the boundary condition of the fourth order

differential equation, then

EI
d4y
dx4 =

n∑
1

Ajφ
iv
j (2.10.21)

Since the function is approximate, we expect a residual error to remain in the answer
and this is given by

Re =
n∑
1

Ajφ
iv
j + w (2.10.22)

We now examine various methods available to minimize this residual error.

2.10.2.2.1 Collocation method

In this method, the residual error is forced to zero at a number of selected points
that should be equal to the number of unknowns in the shape function equation (A1,
A2, . . . An).

Thus if the shape function has one unknown (A1), the collocation point is the one in
which error is forced to zero. If there are two unknowns (A1, A2), collocation points
are two where errors are forced to zero and so on.

Thus considering

Re =
n∑
1

Anφ
′′′′
n + w = 0 (2.10.23)

for n collocation points, we have n algebraic equations from which the coefficients are
obtained.

To further elucidate the problem let us go back to the beam problem we solved
earlier having an assumed shape function of y = A sin πx

L .

Thus, EI
d4y
dx4 = EIAπ4

L4 sin
πx
L

(2.10.24)

and the residual error can be expressed as

Re =
n∑
1

Anφ
iv
n w = 0 or

EIAπ4

L4 sin
πx
L

+ w = 0. (2.10.25)

Since number of constant is one (i.e. A), we force the error to zero at one point
x = L/2.
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This gives EIAπ4

L4 + w = 0 or A = − wL4

π4EI , and the displacement function is now
given by

y = − wL4

π4EI
sin

πx
L

(2.10.26)

We may notice two things; the function is differentiable four times and especially for
the Collocation Method, experience is required as to where to choose the collocation
points. If x = L/3 were taken, we would have got a different coefficient value.

2.10.2.2.2 Sub-domain method

In this method the error is averaged out over the sub-domain in which the integration
is carried out by setting it to zero. The number of sub domain chosen should be equal
to the number of unknown coefficients (A1, A2, . . . , An) in the shape function. For
the given beam problem we have seen the residual error is given by

Re = EIAπ4

L4 sin
πx
L

+ w (2.10.27)

Since the unknown coefficient is only one (A) we integrate the residue over the whole
domain 0–L that gives

EIAπ4

L4

L∫
0

sin
πx
L

+
L∫

0

wdx = 0 (2.10.28)

This gives EIAπ3

L3 [1 − cosπ ]+wL = 0 or A = − wL4

2EIπ3 , which gives the displacement
function as

y = − wL4

2EIπ3 sin
πx
L

. (2.10.29)

2.10.2.2.3 Galerkin’s method

In this Method, the residual error is minimized by multiplying the residual error by
the assumed shape function itself and integrating it over the domain. Thus as per this
method

L∫
0

Reydx = 0, (2.10.30)

where y is the assumed shape function considered as the solution to the problem.
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For the above beam problem

L∫
0

[
EIAπ4

L4 sin
πx
L

+ w

]
sin

πx
L

dx = 0

or
EIAπ4

L4

L∫
0

sin2 πx
L

dx + w

L∫
0

sin
πx
L

dx = 0 (2.10.31)

Equation (2.10.31), on integration and imposition of the limits, gives A = −4wL4

π5EI
and

y = −4wL4

EIπ5 sin
πx
L

. (2.10.32)

2.10.2.2.4 Least square method

In this case, square of the error is integrated over the domain and to minimize this
functional the same is differentiated with respect to the unknown coefficients. This
minimizes the error.

Based on the beam problem we have

Re = EIAπ4

L4 sin
πx
L

+ w (2.10.33)

Squaring the above, we get

R2
e =

[
k2A2 sin2 πx

L
+ w2 + 2kAw sin

πx
L

]
, where k = EIπ4

L4 . (2.10.34)

Integrating it over the domain 0–L we have

R2
e =

L∫
0

[
k2A2 sin2 πx

L
+ w2 + 2kAw sin

πx
L

]
dx. (2.10.35)

This gives, ER = R2
e = k2A2L

2
+ w2L + 2kAwL

π
, (2.10.36)

for minimizing this functional we set ∂ER
∂A = 0 which gives A = −4wL4

π5EI .
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Figure 2.10.7 Displacement plot of simply supported beam based on various weighted residual
methods.

Thus, the displacement equation is now given by

y = −4wL4

EIπ5 sin
πx
L

. (2.10.37)

We show in Figure 2.10.7, the comparative values of displacements based on the
various methods for this particular case.

Based on the above, one should not draw an immediate conclusion on the superiority
of a particular method. It depends on the type of function chosen and the boundary
condition as to which method would give the best result.

The weighted residual method though is a powerful method for solution of differ-
ential equation yet suffers from one serious drawback. The choice of shape function
there are no systematic way to arrive at an appropriate value. Especially for the case
when the boundary conditions are complicated, engineers find it convenient to resort
to finite difference method (FDM)7 where though the computational efforts are more
(than WRM) is far easier to cater to the complex boundary conditions.

The choice of appropriate boundary condition requires lot of judgment and if this
selection is not correct, the solution could give unacceptable results.

From the above discussion, it can be concluded that provided we are in a position to
develop a systematic generic approach to develop piecewise continuous function over
a domain which is complete and compatible, the WRM can become a powerful tool
in the hand of an analyst.

This is what we are going to study under the heading of Finite Element Method
(FEM) later.

7 This we are going to take up in next section.
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2.11 THE FINITE DIFFERENCE METHOD (FDM)

In the previous section, we had shown that the solution of differential equation based
on assumed shape functions simplifies the analysis considerably. We had also men-
tioned that if selections of such shape functions were not appropriate the results
achieved would be in error. Also mentioned was that there exists no generic laws
to choose the shape function and choice remains a judgment in the hand of an analyst.

To circumvent this problem for systems with complex boundary conditions the
application of finite difference method came into being. Here a differential equation
having complex boundary conditions are broken into finite number of difference
equations and ultimate solutions are obtained by solving a specific number of algebraic
equations8.

Now let us consider Figure 2.11.1. The figure shows the values of a function of x at
finite intervals h/2. The differences f (x + h)− f (x), f (x)− f (x − h) and f (x + h/2)−
f (x − h/2) and the differences between the values of the function at a finite interval h
are called the finite differences.

The finite difference f (x + h) − f (x) is called the forward difference at point j
the finite difference f (x) − f (x − h) is called the backward difference at point j and
f (x + h/2)− f (x − h/2) is called the central difference at point j.

The use of central difference generally results in smaller truncation error than
when forward and backward difference equations and becomes the subject for our
subsequent discussion.

The first central difference equation of the function at point j is defined as

δf (x) = f
(

x + h
2

)
− f

(
x − h

2

)
(2.11.1)

f(x) 
f(X) 

f(x-2h)            f(x-h)               f(x)              f(x+h)             f(x+2h) etc.
  f(x-3h/2)          f(x-h/2)         f(x+h/2)         f(x+3h/2)

j
X

x

Figure 2.11.1 Variation of function of X for steps h/2.

8 This is usually solved by matrix method of solution of linear equations.



116 Dynamics of Structure and Foundation: 1. Fundamentals

That is δf (x) represents the difference between the value of the function at
(x + h/2) and that at (x − h/2) where the symbol δ is called the central difference
operator.

Like the differential operator, D
(
≡ d

dx

)
, δ is a linear operator satisfying the formal

laws of algebra.
The second central difference of the function at point j is the difference of the first

central difference.

δ2f (x) = δ[δf (x)] ≡ [f (x + h)− f (x)] − [f (x)− f (x − h)]

= f (x + h)− 2f (x)+ f (x − h)

Similarly δ3f (x) = δ[δ2f (x)] = f
(

x + 3h
2

)
− 3f

(
x + h

2

)

+ 3f
(

x − h
2

)
− f

(
x − 3h

2

)

And δ4f (x) = δ[δ3f (x)], this on expansion gives

δ4f (x) = f (x + 2h)− 4f (x + h)+ 6f (x)− 4f (x − h)+ f (x − 2h)

In general, δnf (x) = δ[δn−1f (x)] = δr[δn−rf (x)] (2.11.2)

The above can be expanded as

δnf (x) = f
(
x + n

2
h
)

− nC1f
(
x + n

2
h − h

)
+ nC2f

(
x + nh

2
− 2h

)
− · · ·

+ nCr

(
x + n

2
h − rh

)
+ · · · + (−1)nf

(
x + n

2
h − nh

)
(2.11.3)

where nCr = n!
r!(n−r)! .

In the above first central difference formulation the term f (x) is expressed in terms
of the values of the function (x + h/2) and (x − h/2). Usually it is easier to work with
values of function at full interval h rather then half intervals h/2. Thus rather than
using first central difference, it is generally preferable to use the averaged first central
difference, μδf (x) defined by

μδf (x)= 1
2

[
δf
(

x + h
2

)
+ δf

(
x − h

2

)]
or, μδf (x)= 1

2

[
f (x+h)− f (x − h)

]
(2.11.4)
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Next, we try to establish the relation between the finite difference and differential
operator

• μδf (x) ↔ hDf (x) ≡ f ′(x)
• δf (x) ↔ hDf (x) ≡ f ′(x)
• δ2f (x) ↔ h2D2f (x) ≡ f ′′(x) (2.11.5)

Here D ≡ d/dx.
By Taylor’s series, we know that

f (x + h) = f (x)+ hḟ (x)+ h2

2! f̈ (x)+ h3

3!
...

f (x)+ · · · · · · (2.11.6)

Thus expressing the above in terms of the differential operator D, we have

f (x + h) = f (x)+ hDf (x)+ h2D2

2! f (x)+ h3D3

3! f (x)+ · · · · · · + hnDn

n! f (x)

=
[

1 + hD
1! + h2D2

2! + h3D3

3! + · · · · · · + hnDn

n!

]
f (x) = ehDf (x)

(2.11.7)

i.e. Taylor’s expansion of f (x + h) is given by the exponential series ehD operating
on f (x).

Thus f (x − h) = e−hDf (x) (2.11.8)

Now μδf (x) = 1
2

[f (x + h)− f (x − h)] = 1
2

[
ehD − e−hD

]
f (x) = sinh(hD)f (x)

μδf (x) =
[

hD + h3D3

6
+ h5D5

120
+ · · · · · ·

]
f (x) (2.11.9)

Neglecting h3D3

6 , h5D5

120 as higher order terms, we have

μδf (x) = hDf (x). (2.11.10)

Df (x) = 1
h
μδf (x) ➔ f ′(x) = 1

2h

[
f (x + h)− f (x − h)

]
(2.11.11)

Again based on similar logic we have

f
(

x + h
2

)
= ehD/2f (x) and f

(
x − h

2

)
= e−hD/2 f (x)
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As δf (x) = f
(
x + h

2

)
− f

(
x − h

2

)
, we can represent it by

δf (x) = [ehD/2 − e−hD/2]f (x) = 2 sinh
hD
2

f (x)

➔ δ = 2 sinh
hD
2

=
[

hD + h3D3

24
+ h5D5

1920
+ · · · · · ·

]
(2.11.12)

Also, δ2 = δ · δ =
[

hD + h3D3

24
+ h5D5

1920
+ · · · · · ·

]

×
[

hD + h3D3

24
+ h5D5

1920
+ · · · · · · ·

]

= [h2D2 + Higher orders of h and D]

Ignoring the higher orders, we have δ2 = h2D2 + Errors
Thus we have, D2 = 1

h2 δ
2 and f ′′(x) = 1

h2 [f (x + h)− 2f (x)+ f (x − h)] and d2y
dx2 at

point i

can be expressed as
d2yi

dx2 = 1
h2 [yi+1 − 2yi + yi−1] (2.11.13)

Similarly,

D4f (x) = 1
h4 δ

2(δ2f (x)) = 1
h4 [f (x + 2h)− 4f (x + h)+ 6f (x)

− 4f (x − h)+ f (x − 2h)]

and d4y
dx4 at point i can be expressed as

d4yi

dx4 = 1
h4 [yi+2 − 4yi+1 + 6yi − 4yi−1 + yi−2] (2.11.14)

The reader may check based on similar steps that

d3yi

dx3 = 1
h3 [−yi+2 + yi+1 − 2yi−1 + yi−2] (2.11.15)
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2.11.1 Application to ordinary differential equations (ode)

To apply the theory we start with the problem we had derived earlier a simple beam
subject to a uniform distributed load over span L. The equation of equilibrium is a
linear differential equation.

For the beam as shown below we try to find out the deflection and bending moment
of the beam by finite difference method. As a first step we break up the beam into
six segments, each of length h = L/6 by putting 5 internal nodes (1 to 5) as shown
in Figure 2.11.2. You will observe that we had also taken 2 additional nodes (−1,
and 7) along the beam axis. These nodes are often called phantom nodes (fictitious
nodes). These are imaginary nodes, whose application will be seen subsequently while
we perform the analysis.

From our basic knowledge of strength of material, we know that

EI
d2y
dx2 = Mx; EI

d3y
dx3 = Vx and EI

d4y
dx4 = w (2.11.16)

where w is the uniformly distributed load on the beam.
Based on finite difference derivation, vide Equation 2.11.14 we can write this as

d4y
dx4 = 1

h4 [yi+2 − 4yi+1 + 6yi − 4yi−1 + yi−2] = w
EI

(2.11.17)

Applying the above equation at node i we have

At i = 1,
1
h4 [y3 − 4y2 + 6y1 − 4y0 + y−1] = w

EI
;

At i = 2,
1
h4 [y4 − 4y3 + 6y2 − 4y1 + y0] = w

EI
;

i = 3,
1
h4 [y5 − 4y4 + 6y3 − 4y2 + y1] = w

EI
; (2.11.18)

i = 4,
1
h4 [y6 − 4y5 + 6y4 − 4y3 + y2] = w

EI
;

i = 5,
1
h4 [y7 − 4y6 + 6y5 − 4y4 + y3] = w

EI
.

Now at the node 0 and 6, the deflections must be zero. Moreover, as the beam is
simply supported the moment must be also zero at the nodes 0 and 6.

w kN/m

-1 0 1 2 3 4 5 6 7

L

Figure 2.11.2 Simply supported beam with udl.



120 Dynamics of Structure and Foundation: 1. Fundamentals

Considering EI d2y
dx2 = Mx, we can write this in finite difference form as

d2y
dx2 = 1

h2 [yi+1 − 2yi + yi−1] = M
EI

(2.11.19)

For node i = 0, 1
h2 [y−1 − 2y0 + y1] = 0, and for node i = 6, 1

h2 [y5 − 2y6 + y7] = 0.
Since the beam is simply supported at node 0 and 6, we have

y0 = y6 = 0 ⇒ y−1 = −y1 and y5 = −y7

Substituting these values, we have following five equations to be solved.

y3 − 4y2 + 5y1 = wh4

EI
; y4 − 4y3 + 6y2 − 4y1 = wh4

EI
;

y5 − 4y4 + 6y3 − 4y2 + y1 = wh4

EI
; −4y5 + 6y4 − 4y3 + y2 = wh4

EI
;

5y5 − 4y4 + y3 = wh4

EI
.

Expressing the above five equations in the matrix form, we have

⎡
⎢⎢⎢⎢⎣

5 −4 1 0 0
−4 6 −4 1 0
1 −4 6 −4 1
0 1 −4 6 −4
0 0 1 −4 5

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y1
y2
y3
y4
y5

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
1
1
1
1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

wh4

EI

➔ [A] {y} = {F} ➔
{
y
} = [A]−1 {F} . (2.11.20)

Inversion9 of matrix A and multiplying with the column matrix on the right hand
side gives

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y1
y2
y3
y4
y5

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

8.75
15

17.25
15

8.75

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

wL4

1296EI
which gives

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y1
y2
y3
y4
y5

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.006752
0.011574
0.01331
0.011574
0.006752

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

wL4

EI
(2.11.21)

9 This is quite straight forward exercise now a days and can very easily be done in Mathcad, Matlab or
even Excel.
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The bending moment may be now back calculated from the equation (2.11.13) as

d2y
dx2 = Mx

EI
= yi−1 − 2yi + yi+1

h2 (2.11.22)

Thus, at node −1, Mx1 = 36EI
L2 [y0 − 2y1 + y2] = 0.06944wL2;

at node 2, Mx2 = 36EI
L2 [y1 − 2y2 + y3] = 0.11111wL2;

at node 3, Mx3 = 36EI
L2 [y2 − 2y3 + y4] = 0.125wL2; (2.11.23)

at node −4, Mx4 = 36EI
L2 [y3 − 2y4 + y5] = 0.11111wL2; and

at node −5, Mx5 = 36EI
L2 [y4 − 2y5 + y6] = 0.06944wL2.

Having obtained the values of displacements and moments, we now compare them
with the exact solution we have derived earlier.

From the curves in Figures 2.11.3 and 4, you will see that the values match quite well
both for displacement and bending moments. However, if you look at the curves very
carefully you will see that there exists a small error at points in between the nodes com-
pared to the exact solution (though at selected points the values are almost exact10).
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Figure 2.11.3 Comparison of displacements for a simply supported beam.

10 The values converge here in collocating sense.
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Figure 2.11.4 Comparison of bending moment for a simply supported beam.

This can still be minimized if we take more number of points in lieu of seven (five
internal and two at support) like 10 or 15, this will reduce this error considerably11,
but of course at the expense of more computational effort since we have to solve for
10 or 15 unknown as the choice may be.

Having looked at the above example you might get an idea about the valid-
ity of the theory but still remain skeptical on its application and feel that this a
typical theoretician’s approach to solve a three line problem12 in a round about
way. A problem that can be solved by simple static equation, we have unneces-
sarily gone to the extent of forming five simultaneous equations13 and solved the
same to arrive at a solution which is theoretically not exact but however may be
acceptable for design of the section! Without trying to defend our stand or put up
any argument like- what do you do when you do moment distribution14 of a con-
tinuous beam or a frame, we would simply ask you to solve the problem given
below?

Shown in Figure 2.11.5 is a pile embedded in layered soil where each of the layers
has its unique sub-grade modulus. We need to analyze the pile for a lateral load V
acting at the top of pile cap of height Dp.

The differential equation of equilibrium is given by

EI
d4y
dx4 + kDy = w (2.11.24)

11 Remember our circle problem at the outset where we had seen that more is the number of area less is
the error.

12 �V = 0, �H = 0 and �M = 0.
13 Even suggesting you to take more equations. . . . . .
14 Is it exact? Ask yourself. . . . . .



Theory of elasticity and numerical methods in engineering 123

Fy

Dp

Soft Clay                                                                      

Loose to medium
dense sand H2

H (Saturated) 

Stiff Clay H3

Rock (N > 50) 

  H1

Figure 2.11.5 A pile subjected to lateral load in a layered soil medium.

where k is the sub-grade modulus (kN/m3) of soil15 and w (kN/m) is the lateral load
acting on the pile and D its diameter.

To further help you on the matter we also provide you with the exact solution of
the fourth order differential equation given by

y = e−βx [C1 cosβx + C2 sin βx] ; here β = 4
√

kD/ (4EI) (2.11.25)

where, E = Young’s modulus of soil in kN/m2; I = moment of inertia of the pile
section in m4, and C1 and C2 = are integration constants whose values depend on the
boundary condition of the piles.

15 Remember it varies for each layer of the soil.



124 Dynamics of Structure and Foundation: 1. Fundamentals

If you try out this problem, you will find it very difficult to solve16, unless you
take a weighted average of the soil modulus along the depth and assume it to be
a constant or take it as some continuous function of depth could be linear, para-
bolic etc.

If you do so then what are you doing? You are trying to find an exact solution to
a problem with only approximate idealized parameter17 and your answer may not be
realistic.

Now let us presume, as shown in Figure 2.11.5, that this pile is being installed in
an earthquake prone zone where the second layer of soil can liquefy under ground
shaking (i.e. the stiffness of the soil layer tends to zero under ground shaking) and
we would like to know how this will effect the pile behavior locally. Can you find a
solution based on the exact equation?

You cannot, for your exact solution can only take sub-grade modulus averaged out
over the entire depth-thus averaging out a reduced (or semi zero) sub grade modulus
for the soil layer 2 over the entire length of the pile you could be committing a greater
error.

Let us see now how finite difference helps us in solving this problem. This is a typical
beam on elastic foundation problem. To explain the solution based on finite difference
method we break up the pile/beam in 11 nodes (10 elements). The soil is represented
by Winkler springs of magnitude kDh (unit kN/m). Here D is diameter of the pile and
h is the length of each element segment as shown Figure 2.11.6. Since there are no
lateral uniformly distributed load acting on the pile, thus at any point i the equation
of equilibrium is given by

EI
d4yi

dx4 + kiyi = 0 (2.11.26)

where ki = ks · D · h, D = diameter of pile and h = distance between each node.
The finite difference equation can thus be expressed as

yi+2 − 4yi+1 +
[

6 + kih4

EI

]
yi − 4yi−1 + yi−2 = 0 (2.11.27)

The above expression can be applied successively from nodes 2 to 10 to yield 9
equations. The equations will have displacement functions from node 1 to 11 as well
as two phantom nodes 0 and 12.

At node 1 considering the expression EI d2y
dx2 = −Mx ➔

y0−2y1+y2

h2 = − M
EI which

gives y0 = 2y1 − y2 − Mh2

EI .

Similarly applying moment equation at node 11 we have, y10−2y11+y12

h2 = 0 and this
gives y12 = 2y11 − y10. This takes care of the phantom nodes.

16 If not impossible. . . . . .
17 Error creeps herein anway!
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Figure 2.11.6 Mathematical model of pile with Winkler springs depicting the soil stiffness.

We substitute back the values of y0 and y12 in expressions in the above nine equations
derived earlier to eliminate y0 and y12. Thus, we are left with unknowns from y1 to y11.
However, we have nine equations in total.

To get other two equations we take �H = 0 and �M = 0 which gives

k1y1 + k2y2 + k3y3 + · · · · · · + k11y11 = Fy

10k1y1h + 9k2y2h + 8k3y3h + · · · · · · + k10y10h = 10Fyh + M (2.11.28)

Thus expressing these 11 equations in matrix notation, we have the total formula-
tion as follows
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[A] =
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 5 + k2h4

EI
−4 1 0 0 0 0 0 0 0

1 −4 6 + k3h4

EI
−4 1 0 0 0 0 0 0

0 1 −4 6 + k4h4

EI
−4 1 0 0 0 0 0

0 0 1 −4 6 + k5h4
EI

−4 1 0 0 0 0

0 0 0 1 −4 6 + k6h4

EI
−4 1 0 0 0

0 0 0 0 1 −4 6 + k7h4

EI
−4 1 0 0

0 0 0 0 0 1 −4 6 + k8h4

EI
−4 1 0

0 0 0 0 0 0 1 −4 6 + k9h4

EI
−4 1

0 0 0 0 0 0 0 1 −4 5 + k10h4

EI
−2

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11

10k1 9k2 8k3 7k4 6k5 5k6 4k7 3k8 2k9 k10 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

{
y
} = 〈y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11〉T (2.11.29)

Here the term T stands for transpose of the matrix (i.e. the matrix is actually a
column matrix).

The force matrix is given by

{F} =
〈

Mh2

EI
0 0 0 0 0 0 0 0 Fy

(
10Fy + M

h

)〉T

(2.11.30)

The matrix being of a modest size you can directly input them in excel, mat-lab or
math-cad to arrive at solution to the problem.

We now show you an example of this and this we do with a real life data.

Example 2.11.1

A 20 meter long RCC pile of diameter 900 mm shown in Figure 2.11.7 is passing
through three layers of soil whose sub grade modulus is as given hereafter.

The base shear acting at pile head (at top of pile cap) is 70 kN. Determine the
deflection, shear, and moment in the pile section. Depth of pile cap is 1.2 meter.
Econc = 2.85 × 107 kN/m2.

Layer Soil type Lateral sub-grade Modulus (kN/m3)

1 Soft clay 21000
2 Saturated loose to medium dense sand 110000
3 Stiff clay 190000
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Fy=70kN 

Dp=1.2 m 

Soft Clay H1=2.0 m

 Loose to medium                 Dense sand  H2=6.0 m
(Saturated) 

H=20.0 m 

Stiff Clay H3=12 m

Rock (N > 50)

Figure 2.11.7 Pile and pile cap embedded in layered soil.

Solution:

We break up the pile in 11 numbers of nodes of each element length h = 2.0
meter and find out the contributing sub-grade Modulus as follows.

Sub grade Co-ordinate Contributing soil Spring stiffness
Soil layer (m) Modulus Node (meter) Modulus (ks) (ks × D × h) kN/m

0–2 21000 1 0 21000 18900
2–8 110000 2 2 65500 117900
8–20 190000 3 4 110000 198000

4 6 110000 198000
5 8 150000 270000
6 10 190000 342000
7 12 190000 342000
8 14 190000 342000
9 16 190000 342000

10 18 190000 342000
11 20 190000 17100
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Based on above data the [A] matrix is formed as per Equation (2.11.29)
and on inversion the displacement, moments and shear are obtained as shown
Figs. 2.11.8, 9 and 10.

Displacement Bending Soil reaction
Node meter Moment (kN · m) Shear force (kN) (kN)

1 1.82371×10−03 84.000 35.532 34.468
2 4.60964×10−04 201.279 −18.816 54.348
3 −2.46282×10−05 101.168 −13.939 −4.876
4 −6.93414×10−05 20.563 −0.210 −13.730
5 −2.44450×10−05 −5.125 6.390 −6.600
6 −1.88081×10−06 −4.411 7.034 −0.643
7 1.46008×10−06 −1.125 6.534 0.499
8 −1.00815×10−07 0.164 6.569 −0.034
9 −9.46315×10−07 1.591 6.892 −0.324
10 5.14176×10−06 4.312 5.134 1.758
11 3.00231×10−05 0.000 0.000 5.134

Total = 70 kN

The bending moments are obtained from the expression

Mi = EI
yi−1 − 2yi + yi+1

h2

applied at each successive node after calculation of y from the expression,
y = [A]−1F. The soil reaction is obtained as Ri = ki × δi [(Spring stiffness) ×
(deflection)], while shear is obtained by algebraic summation of the lateral shear
and soil reaction.
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Figure 2.11.8 Displacement plot of pile.
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Figure 2.11.9 Bending Moment diagram for the pile.
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Figure 2.11.10 Shear force diagram for the pile.

To check the correctness of the formulation it should be checked that
summation of soil reaction is equal to the applied shear (70 kN).

We hope now you realize that the method is surely not a theoretical conjecture18

and can solve some very complex boundary problems with relative ease where for the
sake of analytical solution we have to otherwise resort to oversimplification of the
parameters that could land us with unrealistic results.

Another typical example of similar category is a combined footing resting on elastic
base when the foundation slab cannot be assumed as rigid. A similar logic can be
followed as considered for the lateral pile problem described above to derive the [A]
matrix and rest of the steps will remain same (Bowles 1974). It is normally seen that
about 10 to 15 nodes with at least two nodes on each of the overhang portions of the
foundation is sufficient to provide a result good enough for practical application.

18 Mycroft Holmes syndrome. . . . .
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2.11.2 Application to partial differential equations

Since a second order pde is of particular interest in the field of wave propagation, heat
conduction (consolidation), elasticity, vibrations, boundary layer theory, potential
flow etc., we shall consider this type of equations for the development to this end.

Let u = u(x, y), and a second order pde is given by

A(x, y)
∂2u
∂x2 + B(x, y)

∂2u
∂x∂y

+ C(x, y)
∂2u
∂y2 + f

(
x, y, u,

∂u
∂x

,
∂u
∂y

)
= 0 (2.11.31)

This equation is linear in second order terms, but f may be linear or nonlinear. In
the first case the equation is said to be linear and in the second case it is termed as
quasi-linear.

Now, if

B2 − 4AC > 0, it is called hyperbolic equation;

B2 − 4AC = 0, it is termed as parabolic equation, and

B2 − 4AC < 0, it is called an elliptic equation.

A, B and C are functions of independent variables. The differential equation may have
different classification in the different regions of the domain in which the problem is
defined. As for example, in a flow problem:

(1 − M2)
∂2φ

∂x2 + ∂2φ

∂y2 = 0, where M is called Mach Number. (2.11.32)

Now, if

M < 1, the equation is elliptic (a sub-sonic flow)
M > 1, the equation is hyperbolic (a super-sonic flow).

The significance of this classification is intimately connected with the theory of
characteristics. A pde is classified in terms of its characteristics, i.e. of the loci of
possible discontinuities in the derivatives of a solution (Salvadori and Baron 1966).
We call the equation hyperbolic at a point, if there are two real characteristic directions
(wave propagation: x ± ct); parabolic, if there is only one real characteristic direction,
and elliptic if there are no real characteristic direction at that point.

a) Elliptic equations

It should satisfy B2 − 4 AC < 0, over the domain.
Functional values and derivatives should be specified on the closed region, R

(Figure 2.11.11).
Example: 1. Laplace equation: 2. Poisson equation:

∂2u
∂x2 + ∂2u

∂y2 = 0
∂2u
∂x2 + ∂2u

∂y2 = f (x, y) (2.11.33)

Here B = 0, C = 1 and A = 1 ➔ B2 − 4AC < 0.
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Geomechanics example and boundary conditions (Figure 2.11.12)

When the boundary conditions are given as derivatives

Say the condition is: a1
∂u
∂x + a2

∂u
∂y = 0; consider the boundary shown below where

3–6 is the irregular boundary (Figure 2.11.13).
In the present case 2 and 6 are fictitious points. Using difference, at point ‘10’ at

the boundary: a1
[u11−u10

h

]+ a2
[u6−u3

h

] = 0 – assuming the slope to be constant along,
say, 3–6.

As we have, u10 = u3 + αh
h
(u6 − u3)

R
Closed
region

Bdry. conds. be
specified on the
closed boundary

Figure 2.11.11

h is known

2h = 0
h
n

= 0

= 0= 0

Closed
region

h
n

h
n

Figure 2.11.12
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Figure 2.11.13

Thus,

a1

[ {u0 + α(u2 − u6)} − {u3 + α(u6 − u3)}
h

]
+ a2

(u6 − u3)

h
= 0.

Seepage problem

kx
∂2h
∂x2 + ky

∂2h
∂y2 = 0 – elliptic equation: B2 − 4AC < 0. (2.11.34)

In finite difference form:
Node ‘0’ in Figure 2.10.14

kx

(�x)2
(h1 2h0 + h3)+ kx

(�y)2
(h2 2h0 + h4) = 0

Let
kx

(�x)2
= ky

(�y)2
➔ �x =

(√
kx

ky

)
�y. (2.11.35)

The difference equation, now, reduces to

h1 + h2 + h3 + h4 − 4h0 = 0 (2.11.36)

Now, obtain such equations for all nodes.

Boundary conditions

1 Heads are given on the boundary,
2 Derivatives are given on part of the boundary, say S2. For example impermeable

boundary ∂h
∂n = 0, can be written as c1

∂h
∂x + c2

∂h
∂y = 0, c1 and c2 are the direction

cosines.
3 Combination of derivatives and the functional values.
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Figure 2.11.14

Problem 1. Dam on permeable base (Figure 2.11.15)

For steady state seepage

kx
∂2h
∂x2 + ky

∂2h
∂y2 = 0

transformed to⇒
∂2h̄
∂x2 + ky

∂2h̄
∂y2 = 0, using �x =

(√
kx

ky

)
�y (2.11.37)

The region is bounded by – AB = head is specified; BC = no flow, b.c. is specified
in terms of derivatives; CD = no flow, same as BC; DE = no flow, same as BC; EF =
head is specified;

For fictitious boundary – FH = no flow, b.c. is specified in terms of derivatives;
GH = no flow, same as FH; GA = no flow, same as FH.

➔ Finite simulation of infinite region. The region is bounded by A and G meeting
at ∞ and F and H also meeting at ∞.

For the ith node:

hi+1 + hi+2 + hi+3 + hi+4 − 4hi = 0 ➔ in the domain. (2.11.38)

Writing down all such equations as for ‘i’ and implementing proper boundary
conditions, we shall have

[A] {h} = {g} (2.11.39)

and we have to solve for {h}.

Problem 2. Sheet-pile

Consider a sheet-pile as shown in Figure 2.11.16
Boundaries AB, BC, CD, DE, EH, HG and GA of Figure (a) are same as before.

Same governing equation and hence the procedure will be the same.
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Figure 2.11.16

Problem will be with BCD as the point C is a singular point. Proceed as follows
given in Figure (b).

hC = (hc ′ − hc ′′)

2
. (2.11.40)
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Non-homogeneous soils

As such a layered soil (Figure 2.11.17) does not offer any difficulty in applying the
procedures outlined in the preceding, however, problem arises when a point like ‘o’
as shown in the figure lies in the interface.

To tackle this problem, first consider the k2-portion of the domain (Figure 2.11.18):

Case (a)

Imagine a coefficient such that if we multiply it with h2 it will give a value h′
2 which

is a transformed value of h2 for a homogeneous layer-2.

So, we have: h1 + h3 + h4 + h′
2 − 4h0 = 0. (2.11.41)

Similarly,

h1 + h2 + h3 + h′
4 − 4h0 = 0 (2.11.42)
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case (b)

Subtracting (2.11.42) from (2.11.41), we get, h2 − h′
2 + h′

4 − h4 = 0, from continuity
of flow:

k1

(
∂h
∂y

)
1

= k2

(
∂h
∂y

)
2

(2.11.43)

i.e. k1
(h2 − h′

4)

2�y
= k2

(h′
2 − h4)

2�y
➔ h′

2 = k1

k2
(h2 − h′

4)+ h4

Solving we have: h1 + 2k1

k1 + k2
h2 + h3 + 2k2

k1 + k2
h4 − 4h0 = 0. (2.11.44)

When the interface is inclined, rotate the grid-line parallel to the interface.

b) Parabolic equations

It should satisfy B2 − 4AC = 0, over the domain. Initial value of the function u(say)
at some time t0 is to be specified. The value of either the function or its derivatives, or
a linear combination of both, on the boundary is the required boundary condition.

Example: Heat conduction problem/Consolidation equation (Figure 2.11.19).
One dimensional consolidation is governed by the equation

Cv
∂2u
∂x2 = ∂u

∂t
(2.11.45)

Here, B = 0, C, A = Cv : A = Cv, C = 0; C = Cv, A = 0; B = 0, C = 0, A = Cv

➔ B2 − 4AC = 0.

Solution
propagates in an
open-ended prob.

Bdry. Conds.
prescribed

Initial condns. Prescribed at t = t0

R
(open ended region)

As there is no restriction on t here,
it is an open-ended problem

Figure 2.11.19
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The solution space is given in Figure 2.11.20. For ∂U
∂T , we cannot use central differ-

ence scheme as it involves a functional value at a negative T which does not carry any
physical meaning. Hence, we use forward difference scheme for the right-hand-side of
Equation (2.11.45), and central difference for the left-hand-side of Equation (2.11.45).

Consider a rectangular grid in the Z–T plane, shown in Figure 2.11.21, in which
the quantity Ui,j is defined as the pore pressure at the point Z = Zi at the time T = Tj.
Let the grid spacing be �Z = h in space and �T = k in time. Equation (2.11.45) can
be written as

Ui+1,j − 2Ui,j + Ui−1,j = h2

k
[Ui,j+1 − Ui,j] (2.11.46)

or, Ui,j+1 = k
h2 [Ui+1,j + Ui−1,j − 2Ui,j] + Ui,j (2.11.47)
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T
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Solution
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Figure 2.11.20
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Equation (2.11.47) allows for the evaluation of Ui,j+1 in terms of the pore pressures
at the points Zi , Zi+1 and Zi−1 at the time Tj.

Since both k and h are dimensionless, the factor k/h2 is also dimensionless
and may be described as an operator on the prior values of U through which the
new values can be computed. In any case, Equation (2.11.47) should be stable in
operation.

Explicit and implicit schemes

Before we go in for the solution of Equation (2.11.47), let us discuss a few standard
schemes, namely the explicit and implicit schemes of integration.

In the explicit scheme, we seek the approximate solution for Uij at the time level Tj+1
in terms of the known values of Ui,j at the previous time level Tj. Explicit schemes
can often be formulated in which some values of Ui,j at time Tj+1 are also known.
The scheme, generally, involves a new value at one point only and permits step-
by-step evaluation of Ui,j directly. The scheme in Equation (2.11.47) is an explicit
scheme.

If the expressions were written in terms of new values at the three points in Equation
(2.11.47), namely i, i + 1 and i + 2, a similar equation could be formed at each point
in turn, which would imply that a set of simultaneously generated set of difference
equations could be set up whose solution would describe the excess pore pressure at
the new time throughout the layer. The model equation would then be an implicit
relation.

In the left-hand-side of simultaneous equation, the Ui,j at Tj+1 occur as unknowns,
and the right-hand-side of the algebraic equations constitute the known values of Ui,j
at time level Tj. A general form of finite difference analogue of Equation (2.11.46) can
be expressed as

θ

(
∂2U
∂Z2

)
i,j+1

+ (1 − θ)

(
∂2U
∂Z2

)
i,j

= Ui,j+1 − Ui,j

k
(2.11.48)

in which,

(
∂2U
∂Z2

)
i,j

= 1
h2 [ui−1,j − 2Ui,j + Ui+1,j]. (2.11.49)

Other notations are same as in Equation (2.11.48). The magnitude of θ can have
different values. The simplest explicit scheme can be obtained by setting, θ = 0
[same as Equation (2.11.48)]. An implicit scheme results if θ is adopted as unity.
One commonly used implicit form is Crank-Nicolson scheme, which results when
θ = 1

2 .
The discretisation error in the foregoing simple explicit and implicit scheme is of

the order of O[k + h2], whereas that for the Crank-Nicolson scheme is of the order
of O[k2 + h2].
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Example 2.11.2

Refer to Equation (2.11.48)
Take k/h2 = 1

2 ; assuming, h = 1
2 → k = 1

8 with UZ(0, T) = 0, no flow
condition; U(1, T) = 0, final surface condition; U(Z, 0) = 1, ∀Z, → initial
condition.

As soon as consolidation starts U(1, T) = 0. From Equation (2.11.48), and
using Figure 2.11.22, we have

Z

T

Ui,j
Ui+1,j Ui+2,j

Ui-2,j Ui-1,j

Ui,j-1

Ui,j-2

Ui,j+2
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3/163/16 1/8 
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Figure 2.11.22
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➔ Ui,j+1 = 1
2

[Ui+1,j + Ui−1,j]. (2.11.50)

Value of U(Z, 1) = 1; U(1, T) = 0 → U(1, 0) = 1
2

Hence, U1,1 = 1; U2,1 = 1 and U3,1 = 1
2 , and U1,2 = 1

2 [U2,1 + U0,1] = 2.

Say, it is given that UZ(0, T) = C1, → C1 = [Ui+1,j − Ui−1,j]/2h

➔ Ui−1,j = −2C1h + Ui+1,j, and so on; when C1 =0 → Ui−1,j =Ui+1,j.

If bc is given as

C1U + C2
∂U
∂Z

= C3, we have, C1Ui,j + C2

2h
[Ui+1,j − Ui−1,j] = C3;

Now proceed for the solution.

Example 2.11.3

Take h = 1
4 , assume k = 1

32 , k/h2 = 1
2 .

bc: U(0, T) = 0 : U(1, T) = 0;

U(Z, 0) = Ui(z) : UZ = 0.

T

U

3/4

1/2

3/83/8

1/2

3/4

1

3/8

1/4

1/8

0 U

0

0

U

U

U

11U
1 2 3 4i =

Z 0 1/2 1

T = 0 1 1 1/2

Fictitious boundary

1/2

3/4

1

1

Figure 2.11.23
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We have, from Figure 2.11.23, Ui,j+1 = 1
2 [Ui+1,j + Ui−1,j]

bc gives

Ui+1,j = Ui−1,j; from UZ(0, T) = 0.

U2,2 = 1
2

[U3,1 + U1,1] = 3
8

; U3,2 = 1
2

[U4,1 + U2,1]

= 1
4

U4,2 = 1
2

[U5,1 + U3,1] = 3
8

, and so on.

Some of the examples are shown in Figure 2.11.24.

u3

2H

1

u1

H

H

(a) (b) (c)

u3

u1 u2

H

H

u2

Figure 2.11.24

c) Hyperbolic equations

It should satisfy B2 − 4AC > 0, over the domain (Figure 2.11.25). And,

i The initial values of the function u and of its first derivatives with respect to time
(or one of the independent variable is given).

ii Either the value of the function, or its normal derivatives, or a linear combination
of the function and its normal derivative on the boundary of the domain are the
required boundary conditions.

Example: One dimensional wave propagation equation

β2 ∂
2u
∂x2 = ∂2u

∂t2 (2.11.51)

A = β2, C = −1 ➔ B2 − 4AC > 0.
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Open-ended
region

Bdry. Conds.
prescribed

Initial condns. U and its first
derivative of u, with respect to t or
one of its independent variable.

R
(open ended
region)

Figure 2.11.25

Equations of equilibrium in terms of displacements

(λ+ μ)
∂�

∂x
+ μ∇2u = ρ

∂2u
∂t2 with v = 0, w = 0.

G∇2u = ρ
∂2u
∂t2 ; with C2 = G

ρ
➔ C2 ∂

2u
∂x2 = ∂2u

∂t2

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

This is a hyperbolic equation; B2 − 4AC > 0.
Boundary conditions (for Figure 2.11.25):

u(0, t) = 0; u(�, t) = 0; u(x, 0) = f (x)[say] and∣∣∣∣∂u
∂t

∣∣∣∣
t=0

= ut(x, 0) = 0 [say]. (2.11.52)

The hyperbolic Equation (2.11.51) together with the boundary conditions consti-
tutes a boundary value problem in one-dimensional space-time. The problem is of the
boundary value type for the space variation and initial value type for the time variable.

As in the case of parabolic and elliptic equations, finite differences may be used to
solve this hyperbolic problem. Consider a rectangular grid in the x − t plane indicated
by ui,j, the deflection at the point x = xi at a time t = tj. Let the grid spacing be�x = h
in space and �t = k in time. Using central difference operators of order O(h2) and
O(k2) in space and time, respectively. Thus

∂2u
∂x2 = ui+1,j − 2ui,j + ui−1,j

h2 :
∂2u
∂t2 = ui,j+1 − 2ui,j + ui,j−1

k2 (2.11.53)
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x

u

f(x)

u = deflection

Figure 2.11.26

Thus, Equation (2.11.52) reduces to the following finite difference equation:

ui+1,j − 2ui,j + ui−1,j = h2

C2k2 [ui,j+1 − 2ui,j + ui,j−1] (2.11.54a)

Using, α2 = C2k2/h2, we have

ui,j+1 = α2[ui+1,j + ui−1,j] + 2(1 − α2)ui,j − ui,j−1 (2.11.54b)

And, when α = 1, ➔ ui,j+1 = [ui+1,j + ui−1,j] − ui,j−1 (2.11.54c)

Considering the boundary and initial conditions as: u0,j = uN,j = 0; ui,0 =
f (xi), using, h = �/N and

ut(x, 0) = 0 = 1
2k

[ui,j+1 − ui,j−1] = 1
2k

[ui,1 − ui,−1],
➔ ui,1 = ui,−1

Example 2.11.4

Take α = 1, h = 1/4 → k = h/C = 1/4C.

Boundary conditions:

1 Left hand boundary

ui,j + 3
2h
(ui+1,j − ui−1,j) = 4 ⇒ ui−1,j = 2h

3
ui,j + ui+1,j − 8

3
h

(2.11.55)
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2 Right hand boundary

2ui,j + 1
2h
(ui+1,j − ui−1,j) = 1 ⇒ ui+1,j = 2h + ui−1,j + 4hui+1,j

(2.11.56)

3 Initial (time condition)

1
2k

[ui,j+1 − ui,j−1] = 1 ⇒ ui,j+1 = 2k + ui,j−1 (2.11.57)

Governing equation (for α = 1):

ui,j+1 = [ui+1,j + ui−1,j] − ui,j−1 (2.11.58)

Also given ui,0 = f (xi) (2.11.59)

Solution problem shown in Figure 2.11.27.

1/4C

1/2C

3/4C

U + 3

at x = 0. at x =

2U +

t

x
0 1/2 1 1/2 0, say.f(x):

ut(x,0) = 2.

= 1= 4u
x

u
x

Figure 2.11.27

In Equation (2.11.58), j = 0 → ui,1 = (ui+1,0 +ui−1, 0)− ui,−1
In Equation (2.11.57), ui,1 = 2k + ui,−1; ui,1 = ui+1,0 + ui−1,0 − ui,1 + 2k

➔ ui,1 = 1
2
(ui+1,0 + ui−1,0)+ k (2.11.60)
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Using, j = 1, ui,2 = [ui+1,1 + ui−1,1] − ui,0 (2.11.61)

j = 2, ui,3 = [ui+1,2 + ui−1,2] − ui,1 (2.11.62)

Level j = 1:
We need ui−1,0 values in Equation (2.11.58) so put j = 0 in Equation (2.11.55)

→ ui−1,0 = (2h/3)ui,0 + ui+1,0 − (8h/3)

From Equation (2.10.60): ui,1 = 1
2

(
ui+1,0 + 2h

3
ui,0 + ui+1,0 − 8h

3

)
+ 1

4C

→ ui,1 = ui+1,0 + 1
12

ui,0 − 1
3

+ 1
4C

, i = 0, 1, 2, 3, . . ..

For i = 4, use Equation (2.11.56):

ui+1,0 = 1
2

+ ui−1,0 − ui,0

ui,1 = 1
2

[
1
2

+ ui−1,0 − ui,0 + ui−1,0

]
+ 1

4
C

→ u4,1 = 1
4

+ u3,0 − 1
2

u4,0 + 1
4

C.

Boundary conditions:

Initial: ut(x, 0) = 1 : ui,1 = 2k + ui,−1, for j = 0.

Left-hand side boundary: ui,j + (3/2h)(ui+1,j − ui−1,j) = 4

Or ui−1,j = 2h
3

ui,j + ui+1,j − 8h
3

(2.11.63)

Right-hand side boundary:

2ui,j + 1
2h
(ui+1,j − ui−1,j) = 1 (2.11.64)

Or ui,1 = 1
2
(ui+1,0 + ui−1,0)+ k (2.11.65)
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Initial condition:

ui,0 = f (xi)

ui,1 = 1
2

(
ui+1,0 + ui−1,0

)+ k

ui,2 = [ui+1,1 + ui−1,1] − ui,0; [for j = 1, Equation (2.11.67)]

For side nodes in Figure 2.11.28, use Eqns. (2.11.65) and (2.11.64).

1
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1
2C

3
4C

1
C

4,1

4,2

4,3

4,4

3,1

3,2

3,3

3,42,4

2,3

2,2

2,10,1

0,2

0,3

0,4

1,1

1,2

1,3

1,4

1,0 2,0 3,0 4,00,0
1/2 1 1/2 00

x

t

Fictitious
boundary

Figure 2.11.28

Stability of solution

1 If α > 1, the solution is not stable and instability increases with increasing α.
2 When α = 1, the solution is stable and the solutions for this problem are found

to be identical with the exact solution.
3 When α < 1, solution is stable but inaccuracy creeps in with decreasing α, as

round-off error increases.
4 Optimal accuracy is obtained if the characteristic direction of the finite difference

solution coincides with the characteristic directions of the hyperbolic pde.

The fact that an exact finite difference solution is obtained for the problem in ques-
tion comes from the peculiar property of the wave equation, having two characteristics
(x + ct) and (x − ct), which are straight lines. For more complicated hyperbolic
equation, which, in general, has curved characteristics, optimal accuracy is obtained
by using a curvilinear system of coordinates, corresponding as nearly as possible to the
curvilinear characteristics of the pde rather than a fixed system of rectangular coor-
dinates of the type used in the present presentation. In many problems of practical
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interest, it has been found convenient to use the arcs of the curved characteristics as
coordinates in the finite difference network for the hyperbolic type of pde.

2.11.3 Laplace and Biharmonic equations

In problems related to plates and slabs bi-harmonic equation of the type

∇4φ ⇒ ∂4φ

∂x4 + 2
∂4φ

∂x2∂y2 + ∂4φ

∂y4 = w
D

(2.11.66)

is encountered routinely19.
Solutions often become very complex for these PDEs when boundary conditions

become varied and mixed20. With a little bit of intelligent manipulation, a number of
them can be solved quite easily and with very good accuracy by applying the theory
of finite difference.

We show hereafter the mathematical background behind application of the finite
difference equations to PDEs.

We had shown earlier that D2 = 1
h2 δ

2, thus

D2
x[f (x)] = 1

h2 δ
2
x[f (x)] or D2

x[f (x)] = 1
h2 [f (x + h)− 2f (x)+ f (x − h)]

(2.11.67)

Now let us consider a mesh grid as shown in Figure 2.11.29.
For the mesh grid shown above for a typical point i we have

D2
x[f (i)] = 1

h2 δ
2
x[f (i)] = 1

h2 [f (3)− 2f (i)+ f (1)] and

D2
y[f (i)] = 1

h2 δ
2
y [f (i)] = 1

h2 [f (4)− 2f (i)+ f (2)].

Thus, ∇2f (i) = ∂2f (i)
∂x2 + ∂2f (i)

∂y2 = 1
h2 [f (1)+ f (2)− 4f (i)+ f (3)+ f (4)]

The Laplace equation with respect to a nodal point i can be represented by format
is shown Figure 2.11.30.

We had shown above that

D2
x[f (i)] = 1

h2 δ
2
x[f (i)] = 1

h2 [f (3)− 2f (i)+ f (1)]

19 Here w is the load per meter square over plate and D = Et3/12(1−ν2)where E is Modulus of elasticity,
t is the thickness, ν is Poisson’s ratio.

20 Like fixed, free, simply supported etc.
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X

12

5 4 6

Y

i

h (typ)

10

h

3

8 2 7

11 1 9

Figure 2.11.29 Typical mesh grids with nodal points.

⎡                                 ⎤

⎢                                 ⎥
⎢                                 ⎥
⎢                                 ⎥

⎢                                 ⎥
⎢                                 ⎥

⎢                                 ⎥
⎢                                 ⎥
⎢                                 ⎥
⎣                                 ⎦

1

1∇2 =
h2

1

1 -4 1 (2.11.71)

⎢                                 ⎥

Figure 2.11.30

Thus, D4
x[f (i)] = 1

h4 δ
2
x[f (3)− 2f (i)+ f (1)]

= 1
h4 [f (11)− 2f (3)+ f (i)− 2[f (3)− 2f (i)+ f (1)]

+ f (i)− 2f (1)+ f (9)]

Similarly D4
y[f (i)] = 1

h4 δ
2
y [f (4)− 2f (i)+ f (2)]

1
h4 [f (12)− 2f (4)+ f (i)− 2[f (4)− 2f (i)+ f (2)] + f (i)− 2f (2)+ f (10)]

Again, D2
yD2

x[f (i)] = 1
h4 δ

2
y δ

2
x[f (i)] = 1

h4 δ
2
y [f (3)− 2f (i)+ f (1)]

1
h4 [f (5)− 2f (3)+ f (8)− 2[f (4)− 2f (i)+ f (2)] + f (6)− 2f (1)+ f (7)]
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Thus, for a point f (i) adding up all the above terms the bi-harmonic operator

∇4f (i) ⇒
[
∂4

∂x4 + 2 ∂4

∂x2∂y2 + ∂4

∂y4

]
f (i) = w

D , can be represented as

20f (i)− 8[f (4)+ f (2)+ f (3)+ f (1)] + 2[f (5)+ f (6)+ F(7)+ f (8)]

+ f (9)+ f (10)+ f (11)+ f (12) = wh4

D
(2.11.68)

Above can be pictorially expressed as shown in Figure 2.11.31.
Having established the above, we now present some examples of the same. Like

for ODE we started with a simple beam problem that we can compare with an exact
solution for comparison before graduating to more complex problem (pile).

For the plate problem, also we first start with a simple case before we tackle a real
life complex problem that requires more elaborate computational effort.

We first derive the deflection of a simple square plate having two sides fixed and two
sides simply supported subjected to a load of intensity q kN/m2. The results thus
obtained, we compare with exact solution as provided in Timoshenko and Krieger
(1958).

Shown in Figure 2.11.32 is a square plate/slab of span L having its two sides fixed
and two sides simply supported we break it up into a 4 by 4 mesh (h = L/4) as shown
above. The internal nodes (marked with black dots) are numbered.

1

2

120

2-8

1 -8 -8

-82

1

2

Figure 2.11.31 Nodal representation of plate equation by finite difference method.
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-4 -3 -4

Simply supported

4

2

4

44

2 1 2 2
Fixed edge

4

-4 -3 -4

4 3

4 3 4

Figure 2.11.32 A square plate with two opposite sides fixed and other two sides simply supported.

Theoretically there being nine internal nodes there should have been nine equations.
However, as the plate is square and we have uniform load, the displacements at
the nodes will be symmetric. Taking advantage of this we see (Figure 2.11.32) nine
displacement points are reduced to 4 unknowns.

At fixed edge (marked by dark lines) the rotation being zero with respect to the fixed
edge we have

wp − wi

2h
= 0 which gives wp = wi

Here wp are displacements at phantom nodes outside the slab and wi are displace-
ments at internal nodes while h is the width of meshing.

At simply supported edge as Bending moment M = 0 we have with respect to the
edge nodes

M = wp − 2we + wi

h2 = 0, Here we = the displacements at edge nodes.

Since we = 0 at all edge points we have, wi = −wp.
Now applying the plate equation at node 1 we have

20w(1)− 8 [2w(3)+ 2w(2)] + 2 [4w(4)] + 0 + 0 + 0 + 0 = qh4

D

or 20w(1)− 16w(2)− 16w(3)+ 8w(4) = qh4

D
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Applying the plate difference equation successively at each nodes we develop the other
three equations as,

− 8w(1)+ 22w(2)+ 4w(3)− 16w(4) = qh4

D

− 8w(1)+ 4w(2)+ 20w(3)− 16w(4) = qh4

D

and 2w(1)− 8w(2)− 8w(3)+ 22w(4) = qh4

D
(2.11.69)

The above can be expressed in the matrix form as

⎡
⎢⎢⎣

20 −16 −16 8
−8 22 4 −16
−8 4 20 −16
2 −8 −8 22

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

w(1)
w(2)
w(3)
w(4)

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

1
1
1
1

⎫⎪⎪⎬
⎪⎪⎭

qL4

256D

The above on inversion and multiplication with the unit matrix gives

⎧⎪⎪⎨
⎪⎪⎩

w(1)
w(2)
w(3)
w(4)

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

0.002466
0.001619
0.001821
0.001204

⎫⎪⎪⎬
⎪⎪⎭

qL4

D
(2.11.70)

As per analytical method, exact value at node 1(wmax) is given by 0.001922qL4/D.
It is obvious there is some error in the answer (about 28%) the reason being the mesh

size is far too crude. Once the mesh size is reduced (like half or one fourth of the
present value) results would surely improve and the value will be much closer to the
exact solution.

The above problem was only cited to give you a first hand feel of how plate problems
are solved based on finite difference method. It is evident that for solution of practical
plate problem much more refined meshes are required and the computational effort
involved- surely calls for the solution to be carried out in a computer.

Having established the basis of solving the bi-harmonic equation we proceed to
solve a practical problem as described hereafter.

Example 2.11.5

A control building roof slab is shown in Figure 2.11.33. There being trans-
formers one west and south sides of building, the slab is monolithically fixed
with blast proof RCC walls. The north and east sides are simply resting on
250 mm thick brick walls. The room being full of control equipment does not
allow for any column to be built inside. Cable entries being from roof, does not
allow any roof beams to be cast with roof slab. Thickness of slab is 250 mm
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having 75 mm thick roof finish; Live load on slab is 2 kN/m2. Analyze the
slab for moment and deflection. Consider E = 2.85×107 kN/m2 and ν = 0.25.
Density of RCC = 25 kN/m3. Roof finish = 24 kN/m3.

5.0m 1.0 (typ) 
N

1 1 2 3 4 -4

-1 -2 -3 -4

Fixed  Simply
Supported

5 5 6

7              7 7 8 (-8,-4 ,-14) 6.0m

1.0 (typ)

11 12 13 14 15

11 13 14 15 -1511 12

9 9 10

Figure 2.11.33 Plan view of control building.

Solution:

Observe it is a typical flat slab problem, where codal procedures cannot be
applied. The slab being irregular in shape and having mixed boundary conditions
coefficients furnished in codes cannot be applied. As such, the only alternative
way to solve the problem is by numerical method.

Thickness of slab = 250 mm
Dead Load of slab = 0.25 × 25 = 6.25 kN/m2; Wt. of 75 mm roof finish =

0.075 × 24 = 1.8 kN/m2

Live load = 2 kN/m2

Total Load intensity = 6.25 + 1.8 + 2 = 10.05 kN/m2

Like in the previously cited example of square plate at simply supported edge

M = wp − 2we + wi

h2 = 0 which gives wi = −wp

For fixed end considering the rotation is zero at edge we have wp−wi

2h = 0 ⇒
wp = wi; The above conditions are marked in the mathematical model above.

Now applying the plate equation successively at each of the internal nodes
we have
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[A] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

20 −8 1 0 −8 2 1 0 0 0 0 0 0 0 0
−8 19 −8 1 2 −8 0 1 0 0 0 0 0 0 0
1 −8 19 −8 0 2 0 0 0 0 0 0 0 0 0
0 1 −8 17 0 0 0 0 0 0 0 0 0 0 0

−8 2 0 0 21 −8 −8 2 1 0 0 0 0 0 0
2 −8 2 0 −8 20 2 −8 0 1 0 0 0 0 0
1 0 0 −8 2 21 −8 −8 2 1 0 0 0 0 0
0 1 0 0 2 −8 −8 19 2 −8 0 1 0 0 0
0 0 0 0 1 0 −8 2 19 0 −8 2 0 0 0
0 0 0 0 0 1 2 −8 −8 20 2 −8 2 0 0
0 0 0 0 0 0 1 0 −8 2 21 −8 1 0 0
0 0 0 0 0 0 0 1 2 −8 −8 21 −8 1 0
0 0 0 0 0 0 0 0 0 2 1 −8 21 −8 1
0 0 0 0 0 0 0 0 0 0 0 1 −8 20 −8
0 0 0 0 0 0 0 0 0 0 0 0 1 −8 19

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and {w} = 〈w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15〉T

Here, q = 10.05 kN/m2; h = 1.0 m and

D = Et3

12(1 − ν2)
= 2.85 × 107 × (0.25)3

12(1 − 0.252)
= 39583 kN · m.

Thus
qh4

D
= 10.05 × (1)4

39583
= 2.538968 × 10−4 m

Hence {F} = qh4

D
〈1 1 1 1 1 1 1 1 1 1 1 1 1 1 1〉T

On inversion of the [A] matrix and multiplying it by the [F] matrix the
deflections in mm are as shown in Figure 2.11.34.

Figure 2.11.34 Displacement (mm) plot of nodes for the control building roof slab.

The Bending moment at left edge of node 1 is calculated hereafter for clarity.
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The Moment in x direction is given by

Mx = D

[
∂2w
∂x2 + ν

∂2w
∂y2

]
and

My = D

[
∂2w
∂y2 + ν

∂2w
∂x2

]

= D
h2 [w1 − 2we1 + w1] + D

h2 [0 − 2 × 0 + 0] = D
h2 [2w1]

= 39583 × 2 × 0.093
1000 × 12 = 7.362 kN · m and so on. . . . . . .

The formulas may now be successively applied at each of the edge and internal
nodes to obtain Moments in x and y direction. Based on the above problem we
hope you have now some idea on how to solve problems related to plate by finite
difference method. We have also defined the boundary condition of a plate under
two common end conditions that are encountered while solving a plate problem
a) the end fixed b) simply supported. There are many cases however where the edge
is free21.

The boundary condition of this case is not difficult to derive. Since the edge is free,
the moment and shear force at edge must be equal to zero. Thus if an edge is free and
parallel to x axis or y axis, we have

My = ∂2w
∂y2 + ν

∂2w
∂x2 = 0 and Vy = ∂3w

∂y3 + (2 − ν)
∂3w
∂y∂x2 = 0

Thus with reference to Figure 2.11.29, for free edge we have

[w3 − 2wi + w1]
h2 + ν

[w4 − 2wi + w2]
h2 = 0

a similar expression can be derived for the shear equation for pivotal point i.
We will leave the topic here for the time being and shall come back on this issue on

a more generalized form later before we address some other important issues.

2.11.4 Irregular meshes or grids

Until now, we have derived expressions where for one-dimensional cases (beams) the
spacing has been equal while for two-dimensional case the mesh grids have been regular
(i.e. a square). However while solving practical engineering problems there could be

21 Raft or isolated footings are classic examples. Porticos before building would usually have one side of
the slab free.
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h

i

Figure 2.11.35 A nodal point i with uneven grid.

cases when one is forced to consider irregular grids to improve the accuracy of results
while formulations derived earlier need to be modified for the same.

We present herein the cases when such situation arrives.
Shown in Figure 2.11.35 is a node point i with uneven grid at its two ends given

by h and �h.
By Taylor’s series

f (x + αh) = f (x)+ αhDf (x)+ α2h2

2! D2f (x)+ α3h3

3! D3f (x)+ · · · · · ·

and f (x − h) = f (x)− hDf (x)+ h2

2! D2f (x)− h3

3! D3f (x)+ · · · · · ·

Eliminating h2D2f (x) from the above equations and also ignoring the higher
orders we have

Df (x) = 1
α(1 + α)h

[f (x + αh)− (1 − α2)f (x)− α2f (x − h)]

+ error of order h2 (2.11.71)

Similarly eliminating hDf (x) we have

D2f (x) = 2
α(1 + α)h2 [f (x + αh)− (1 + α)f (x)+ αf (x − h)]

+ error of order h for α11 (2.11.72)

2.11.5 Laplace operator with irregular mesh

For the above case at node point i the Laplace operator with irregular mesh shown in
Figure 2.11.36 is expressed as
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h

h

Figure 2.11.36 Irregular mesh at node point i in two dimension.
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2.11.6 Bi-harmonic equations with irregular meshes

Shown in Figure 2.11.37, is a typical grid with irregular mesh having division of h in
x direction and h in y direction. For the present case

1
h4 δx

4f (i) = 1
h4 [f (9)− 4f (1)+ 6f (i)− 4f (3)+ f (11)]

1
α4h4 δy

4f (i) = 1
α4h4 [f (10)− 4f (2)+ 6f (i)− 4f (4)+ f (12)]

and (
1
h2 δ

2
x)(

1
α2h2 δ

2
y ) = 1

h2 δ
2
x

1
α2h2 [f (2)− 2f (i)+ f (4)]

= 1
α2h4 [δ2

xf (2)− 2δ2
xf (i)+ δ2

xf (4)]

= 1
α2h4 [(f (8)− 2f (2)+ f (7))−2(f (3)−2f (i)+f (1))

+ (f (5)− 2f (4)+ f (6))]
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Figure 2.11.37 Typical rectangular mesh grids with nodal points.

Combining the above equations, we have

⎥
⎥
⎥
⎥
⎥
⎥
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⎥
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

++=

1

2442

4468644

2442

1

1

222

42424244

222

44
4

h

+ error of order (h2).        (2.11.73) 

2.11.7 Refined finite difference analysis

Until now formulations shown is for ordinary finite difference equations where error
is of the order h2, where h is the distance between the nodes.

When we apply ordinary finite difference equation to higher order derivatives and a
large number of mesh points the solutions due to truncation, errors may converge to
a wrong number or the convergence could be quite slow. One of the reasons for such
slow convergence is that finite difference equations converge in collocating sense and



158 Dynamics of Structure and Foundation: 1. Fundamentals

agree only in value with the exact function at mesh points and their derivatives do not
match.

Additional source of errors could creep in due to the approximation of the boundary
conditions and the use of coarse load averaging rules.

On the other hand using extremely fine meshes or nodes results in large number of
simultaneous equations and could create round off errors in computer solutions having
adverse effect on the accuracy and economy of the method. Consequently, when high
accuracy in finite difference solution is required improved or refined finite difference
equations should be used.

The basis of the above is presented hereafter.
Based on Taylor’s series

f (x + h) = f (x)+ hf ′(x)
1! + h2f ′′(x)

2! + h3f ′′′(x)
3! + h4f ′′′′(x)

4! + · · · · · · and

f (x − h) = f (x)− hf ′(x)
1! + h2f ′′(x)

2! − h3f ′′′(x)
3! + h4f ′′′′(x)

4! − · · · · · ·

Adding the above two equations we have

f (x + h)+ f (x − h) = 2f (x)+ 2h2f ′′(x)
2! + 2h4f iv(x)

4! + · · · · · ·

or f (x + h)− 2f (x)+ f (x − h) = h2f ′′(x)+ h4f iv(x)
12

+ · · · · · ·

or δ2
xf (x) = h2f ′′(x)+ h4f IV (x)

12
+ h6f VI(x)

360
+ · · · · · ·

or D2
xf (x) = f ′′(x)+ h2f IV (x)

12
+ h4f VI(x)

360

or D2
xf (x) = f ′′(x)+ ε1 + ε2 where ε1 and ε2 are errors of higher order.

Since we want to reduce the error, we take

D2
xf (x) = f ′′(x)− ε1 where ε1 = h2f IV (x)

12
, thus

D2
xf (x) = 1

h2 [f (x + h)− 2f (x)+ f (x − h)] − h2

12

× 1
h4 [f (x + 2h)− 4f (x + h)+ 6f (x)− 4f (x − h)− f (x − 2h)]

= 1
12h2 [−f (x + 2h)+ 16f (x + h)− 30f (x)+ 16f (x − h)− f (x − 2h)]
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Thus refined finite difference formulation for

d2yi

dx2 = 1
12h2 [−yi+2 + 16yi+1 − 30yi + 16yi−1 − yi−2]

Based on similar derivation it can be shown that

dyi

dx
= 1

12h
[−yi+2 + 8yi+1 − 8yi−1 + yi−2]

d3yi

dx3 = 1
8h3 [−yi+3 + 8yi+2 − 13yi+1 + 13yi−1 − 8yi−2 + yi−3] and

d4yi

dx4 = 1
6h4 [−yi+3 + 12yi+2 − 39yi+1 + 56yi − 39yi−1 + 12yi−2 − yi−3]

Based on identical procedures the Laplace equation based on improved finite
difference is given by

∇2 = 1
12h2

⎡
⎢⎢⎢⎢⎢⎣

−1
16

−1 16 60 16 −1

16
−1

⎤
⎥⎥⎥⎥⎥⎦

and the bi-harmonic equation for plate is given by

∇4 = 1
6h4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
−1 14 −1

−1 20 −77 20 −1

−1 14 −77 184 −77 14 −1

−1 20 −77 20 −1
−1 14 −1

−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Here the node marked with a circle indicates the pivot point.

2.11.8 Free edged plates with different boundary conditions

We present here plates with different boundary conditions as shown in Figure 2.11.37
to 42 having irregular meshes when the node i could be a general interior node or node
near or on the boundary (Ghali and Bathe 1970).

The values of symbols used are expressed in Table 2.11.1.
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Figure 2.11.38 Internal Node. Figure 2.11.39 Internal Node with one edge free.
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Figure 2.11.40 Internal node with both edge free.
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Figure 2.11.41 Node on one free edge.
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Free Edge (typ.)

Mesh Line (typ.)L

Q U

R S T

 = (lx/ly)2

Ix= Length of mesh in x direction;
Iy= Length of mesh in y direction

 = Poisson’s Ratioi

Figure 2.11.42 Corner node on free edge.

Table 2.11.1 Finite Difference coefficients for plates.

Sl. No. Symbol Expression

1 A 6+6α2+8α
2 B −4(1+α)
3 C −4α(1+α)
4 D 2α
5 E α2

6 F 1
7 G 5+6α2+8α
8 H α(2−ν)
9 I −2(2α−να+1)
10 J 1+4α(1−ν)+3α2(1−ν2)

11 K −2α[1−ν+α(1−ν2)]
12 L α2(1−ν2)/2
13 M 5+5α2+8α
15 O −2α(2−ν+α)
16 P 1+4α(1−ν)+(5/2)α2(1−ν2)

17 Q −2α[1−ν+(α/2)(1−ν2)]
18 R 2α(1−ν)+(1/2)(1−α2)(1−ν2)

19 S −2[α(1−ν)+(1/2)(1−ν2|)]
20 T (1/2)(1−ν2)
21 U 2α(1−ν)

2.11.9 Finite difference in polar co-ordinate

There are cases when solving a problem in polar co-ordinate makes the solution much
simpler to tackle than in Cartesian co-ordinate. For instance, circular plates with
different types of loading or chimney rafts on elastic foundations are cases when treat-
ing the problem in polar co-ordinate (Figure 2.11.43) makes the problem easier to
solve. In such cases, the finite difference equation in polar co-ordinate is as expressed
hereafter.



162 Dynamics of Structure and Foundation: 1. Fundamentals

h

h

r

Figure 2.11.43 Nodes in polar co-ordinate.

In polar co-ordinate

∇2w = ∂2w
∂r2 + 1

r
∂w
∂r

+ 1
r2

∂2w
∂θ2 (2.11.74)

With respect to above Figure one may express it in finite difference form as

∂w
∂r

= 1
2h

[wr+1,θ − wr−1,θ ] and
∂2w
∂r2 = 1

h2 [wr+1,θ − 2wr,θ + wr−1,θ ] (2.11.75)

∂2w
∂θ2 = 1

φ2 [wr,θ+1 − 2wr,θ + wr,θ−1] (2.11.76)

Hence ∇2w = ∂2w
∂r2 + 1

r
∂w
∂r

+ 1
r2

∂2w
∂θ2

= 1
h2 [wr+1,θ − 2wr,θ + wr−1,θ ] + 1

2hr
[wr+1,θ − wr−1,θ ]

+ 1
φ2r2 [wr,θ+1 − 2wr,θ + wr,θ−1] (2.11.77)
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or, h2∇2w =
[
1 + h

2r

]
wr+1,θ−2

[
1 +

(
h
ϕr

)2
]

wr,θ +
[
1 − h

2r

]
wr−1,θ

+
(

h
ϕr

)2

wr,θ+1 −
(

h
ϕr

)2

wr,θ−1 (2.11.78)

and so on . . . . . .

2.11.10 Finite difference solution for initial
value problem

We had explained earlier that the equation of vibration for lumped mass connected to
by spring and dashpot is expressed as

m
d2x
dt2 + c

dx
dt

+ kx = P(t) (2.11.79)

Based on the initial condition it is possible to break it up in finite difference equation
for solution of the problem. We will however not solve this problem here.

The same has been explained in detail in Chapter 5 (Vol. 1)22, under the heading
of Numerical Integration and Time history Analysis, wherein we have also described
other implicit methods like Wilson Theta, Newmark beta etc.

2.11.11 Finite difference solution for initial-boundary
value problem

Let us consider the equation

G
∂2u
∂z2 = ρ

∂2u
∂t2 (2.11.80)

where G = dynamic shear modulus of the medium; and ρ = mass density of the
medium.

Equation (2.11.80) is the equation of propagation of wave in an elastic medium.
The above equation can be further expressed as

∂2u
∂z2 = 1

v2
s

∂2u
∂t2 (2.11.81)

where vs = shear wave velocity of the medium.
In this case the meshing has to be done in z-t co-ordinate i.e. we break up equation

in length steps of h and time step t as given in Figure 2.11.44.

22 Basic concepts in structural dynamics.
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uz,t+1

uz,t uz+1,t

h

Δt

Figure 2.11.44 Meshing in z-t co-ordinate.

Based on finite difference theory expressed earlier we have

∂2u
∂z2 = 1

h2 [uz−1,t − 2uz,t + uz−1,t];

∂2u
∂t2 = 1

�t2 [uz,t−1 − 2uz,t + uz,t+1] (2.11.82)

Substituting it in the PDE we have

1
h2 [uz−1,t − 2uz,t + uz+1,t] = 1

v2
s�t2 [uz,t−1 − 2uz,t + uz,t+1]

➔ uz−1,t − 2(1 − r2)uz,t + uz+1,t − r2uz,t−1 − r2uz,t+1 = 0 (2.11.83)

The above can be pictorially expressed as

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

2

2

2

r

1)r1(21

r

where 
22

s

2
2

tv

h
r = (2.11.84)

In the above problem for r ≥ 1 the results become unstable, while for r ≤ 1
the computational effort is more and truncation error creeps in, the most optimum
solution is arrived at for r = 1.
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2.11.12 Finite difference application in dynamics

Finite difference equations may be effectively used in problems related to structural
dynamics.

Especially for cases when the moment of inertia undergoes an abrupt change numer-
ical analysis based on finite difference equation can be an effective tool to find out the
natural frequencies of a system.

In this section, we elucidate the fundamental concepts only.
For a beam element the equation of vibration in transverse direction is expressed as

EI
d4y
dx4 = mω2y (2.11.85)

Here E = Young’s Modulus of the beam; I = Moment of inertia of the beam cross-
section; m = mass per unit length; y = deflection; ω2 = square of the natural frequency.

Based on finite difference the above equation can be expressed as

EI
d4y
dx4 = EI

h4 [yi+2 − 4yi+1 + 6yi − 4yi−1 + yi−2] = mω2yi

or yi+2 − 4yi+1 + 6yi − 4yi−1 + yi−2 = mh4ω2

EI
yi

or yi+2 − 4yi+1 + 6yi − 4yi−1 + yi−2 = λyi where λ = mh4ω2

EI
(2.11.86)

The above equation when applied with appropriate boundary condition gives the
natural frequency of the system.

To further illustrate the matter let us consider a simply supported beam with self-
weight m per unit length as shown in Figure 2.11.45.

As stated earlier the finite difference equation free vibration is given by the
expression

yi+2 − 4yi+1 + 6yi − 4yi−1 + yi−2 = λyi (2.11.87)

m kN-sec2/m

0 1 2 3 4 5 6

L

Figure 2.11.45 A simply supported beam with mass m as an udL.
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Thus applying the above expression at node 2, 3 and 4 successively, we have

y4 − 4y3 + 6y2 − 4y1 + y0 = λy2

y5 − 4y4 + 6y3 − 4y2 + y1 = λy3 and (2.11.88)

y6 − 4y5 + 6y4 − 4y3 + y2 = λy4.

Since the beam is simply supported we have y1 = y5 = 0 and for the phantom nodes

y0 = −y2 and y4 = −y6
23.

Substituting the above values in the above equations we have

y4 − 4y3 + 5y2 = λy2 − 4y4 + 6y3 − 4y2 = λy3 and 5y4 − 4y3 + y2 = λy4

Expressing the above in matrix notation, we have

⎡
⎣ 5 −4 1

−4 6 −4
1 −4 5

⎤
⎦
⎧⎨
⎩

y2
y3
y4

⎫⎬
⎭ = λ

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦
⎧⎨
⎩

y2
y3
y4

⎫⎬
⎭

The above being a generalized eigen value problem can be further expressed as

⎡
⎣5 − λ −4 1

−4 6 − λ −4
1 −4 5 − λ

⎤
⎦
⎧⎨
⎩

y2
y3
y4

⎫⎬
⎭ = 0

Expanding above gives a cubical equation in λ given by

λ3 − 16λ2 + 52λ− 16 = 0

This equation can very well be solved by Newton-Raphson method or other
techniques like Stodola-Vinello’s method etc can be used.

Solution of the above equation24 gives the three roots as shown in Table 2.11.2.
It will be observed that there is some error in the frequencies with respect to exact

value. The reason for this being that the number of nodes considered for analysis is
crude/less. The results can surely be improved by taking more number of nodes or
using refined finite difference formulation as shown earlier- of course at the expense
of more computational effort.

23 The boundary conditions have been derived in detail for static problem of the beam earlier.
24 Refer to Section-5.2.6.: Techniques for eigen value solutions for further detail.
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Table 2.11.2 First three fundamental frequency of a simply supported beam.

Mode λ λ (finite difference) λ (exact value)

1 0.172 6.63
√

EI
mL4 9.86

√
EI

mL4

2 4.0 32
√

EI
mL4 39.47

√
EI

mL4

3 11.656 54.63
√

EI
mL4 88.8

√
EI

mL4

2.12 THE FINITE ELEMENT METHOD

The Finite Element Method (FEM) is a very powerful numerical method that has
invaded the domain of engineering and science; arguably one of the finest contributions
provided to engineering and science by aerospace and civil engineers. It has brought
about a completely new dimension to the numerical solution of problems related to
various disciplines.

Initially developed as a tool for stress analysis of the continuum, it was quickly
established onto a solid mathematical foundation when people from all disciplines like
civil, aerospace, mechanical, chemical, electrical engineering, geology and even people
from medical professions are using the method almost routinely to seek solutions to
problems they face in their respective professions.

Rapid development of FEM along with advancement in the computational capability
of computer has brought this technology within the grasp of the majority of engineers
and design offices where tasks that were thought to be impossible even twenty/thirty
years ago are now executed almost routinely.

2.12.1 The finite element club and its members

People who work with this technology can usually be classified into three categories:

• The developers – these are mostly engineers and scientists who develop the finite
elements for various uses25. They develop these elements for use in different stress
analysis, field problems, tests their accuracy, robustness of the mathematical for-
mulation used26. In other words, they are the people who develop the building
blocks, which others use to analyze problems at macro level.

• The assemblers – these are the people, who collect all these elements developed by
the “developers” (as mentioned above) and write general-purpose finite element
software27 to be used by various people. This is in fact is a formidable task, for

25 HCT triangular element-Developed by Hughes, Clough and Turner, 8-nodded iso-parametric elements
developed by Irons and Zienkiewicz, Higher order 6-nodded triangular elements developed by Carlos
Felippa to name a few.

26 For example patch test-of which we would talk later. . . .
27 ABAQUAS, ADINA, ANSYS, GTSRUDL, PAFEC, SAP 2000, STAAD PRO to name a few of them in

alphabetical order.
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team of engineers have worked for years developing these programs testing them,
checking them and updating them from feedback furnished by the users28.

• The end users – these are the people who would use the above software in their
day-to-day work to develop mathematical models of structures or system. They
would like to analyze and come up with the solution using them and interpreting
the results thus obtained from these programs for further use-like designing the
members/section or interpreting the behavior under a particular condition etc.

In this section, we would touch upon the functions of the first two categories as
mentioned above, however our major focus would be on the application part (the end
user category), which constitutes the major activity in today’s design office29.

2.12.2 Brief history on the development of f inite
element method

The name of Zienkiewicz, Irons and finite element method is almost synonymous.
There is no question about contribution of this duo in establishing the technology to
its present stature from an obscure abstract method understood by a few and applied
by still fewer. For in blooming days of FEM, computer, the inseparable twin of FEM
was something that was not accessible to everybody as it is today.

Historically, the possibility of the theory of finite element was first perhaps proposed
by Courant (1943), Prager and Synge (1947) wherein they mentioned that in an elastic
domain a constant strain field is equivalent to a regional descretization. The proposal
did not receive much attention at that time for basis of such analysis called for a
huge amount of computation which was deemed impossible then for IBM was yet
to arrive with their business computing machines which were later named as simply
computers30.

By 1960’s the aircraft industry was going through revolutionary changes. After the
end of Second World War, the need was felt to ameliorate the defense by developing
superior aircrafts31. Jet engine has already been invented and people realized using
them would render the aircrafts with having greater speed and flexibility in comparison
to the traditional propeller driven aircrafts.

During this time, the aircraft bodies-which were continuum (constituting of metal
sheets or plates) were mostly analyzed for stress based on lattice analogy as devel-
oped by Hrennikoff (1941) and McHenry (1943). However, this technology was valid
only for rectangular areas and could not be applied for non-rectangular shapes. On
the other hand, fluid-dynamists working on the profile of these second generation
aircrafts were coming up with weirdo shapes, which would make them aerodynami-
cally more efficient. The stress analysis group who were analyzing these aircrafts was

28 It is said that NASTRAN the FEM package used by NASA for stress analysis of spacecraft took almost
thirty years to be developed to its present stage today.

29 And where lies the nemesis of a number of errors giving a spectacular amount of garbage outputs.
30 The first commercially available computer was ENIAC –1 which came into being somewhere in late

1950 was a 4 ton giant required one complete building to house it and would invert a 17 × 17 matrix
in roughly 12–17 hours. . . .

31 The Mosquitoes, Harriers and Luftwaffe’s were fast fading into oblivion.
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thus confronted with significant difficulty in arriving at an accurate answer to these
irregular shapes as there was no technology in vogue.

In the summer of 1952–53, Ray. W. Clough32 joining the Summer Faculty Program
of Boeing Company faced this problem (Clough & Wilson 1999). He was working with
Joe Turner then the Head of Structural dynamics group on combined torsion-flexural
influence on swept back delta wings where experimental results matched poorly with
structural analysis results produced by one-dimensional elements.

Their joint effort first developed the stiffness matrix for a triangular element under
plane stress condition33. This significant historical work was reported much later
wherein Clough (1991) magnanimously gave complete credit to Turner on this pio-
neering work, the term finite element was then yet to be born. Turner presented this
Boeing pioneering work at the January 1954 meeting of the Institute of Aeronautical
Science in New York; however the work was formally published two years later in
September 1956 (Turner et al. 1956).

After his stint with Boeing Company, Clough went on a sabbatical leave to Norway,
where he had some time to reflect on his work at Boeing Company with Turner. He
also studied a series of papers published by Argyris from University of Stuttgart34,
wherein it was shown that, based on matrix transformation methods, most struc-
tural analysis methods can either be categorized as either force or a displacement
method.

It was during this period Clough concluded that two dimensional elements connected
to more then two nodes could be used to solve problems in continuum mechanics. For
Turner’s triangular elements the stress strain relationship within the element, displace-
ment compatibility between adjacent elements and force equilibrium on an integral
basis at a finite number of node points within the structure was satisfied. It was evi-
dent that satisfying these three fundamental boundary conditions proved convergence
to exact elasticity solution, as the mesh size was refined.

By end of 1950’s industry was going through a rapid growth and never ever in the his-
tory of mankind, stress-engineers were so much on demand in various fields. It was also
the height of cold war when US defense department was contemplating to build build-
ings and bunkers that were resistant to nuclear explosion. 1952 Tehachapi Earthquake
has devastated the west coast of USA bringing into light the inadequacy of the struc-
tural analytical tools available with civil engineers then. United States transportation
system was undergoing radical changes, with construction of Rapid Mass Transporta-
tion Systems having long span bridges, girders and highways. Manned space program
was one of the top national priorities35. Nuclear power plant was becoming a distinct
possibility with conventional fossil fuel reserve fast depleting36. Offshore oil drilling
in deep water and Alaskan pipeline required complete new technology to fulfill these
requirements.

32 Emeritus Professor of Structural Engineering, University of California, Berkeley, USA.
33 Popularly known as Constant Strain Triangular (CST) Element.
34 These papers were later edited by Butterrworth Publication and published as a book titled “Energy

Theorems in Structure”.
35 The start of the star wars. . . . . . .
36 Gulf Oil boom was yet to come. . . .
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Figure 2.12.1 First generation finite element model used for analysis of gravity dams.

In many of these cases the major obstacle was the accurate stress analysis of complex
continuum, as there was no comprehensive analytical tool available except a few with
simple boundary conditions.

Clough wanted to test his convictions on how this theory worked on continuum
with complex boundary conditions. On his return to Berkeley, he received a small
grant from National Science Foundation to support research on computer analysis of
structures.

Armed with an IBM 701 digital computer with 4k of 16 bit memory37 he started
to put this theory on test. Under Clough’s guidance, Ari Adini a graduate student
first came out with solutions of several plane stress problems using triangular ele-
ments. Since, all the matrices had to be hand computed before the final solution was
obtained through computer, it was considerably time consuming and only a coarse
mesh was possible. One of the first uses of such finite element application is as shown
in Figure 2.12.1.

This approach was used to produce all examples in paper titled “Finite Element
Method in Plane Stress Analysis” by Clough in 2nd ASCE Conference on Electronic
Computations in September 1960 and the name Finite Element Method came into
being.

After this, the method spread rapidly almost across the world and 1960–90 saw one
of the most spectacular amounts of research carried out in this area almost at every
corner of the world, covering most of the disciplines of technology.

37 The computer could solve only maximum 40 numbers of equations at a time.
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When Clough presented the paper in 1960 in 2nd ASCE conference it attracted
the attention of Zienkiewicz who was then in the faculty of North Western Uni-
versity USA. A few weeks after the presentation of the paper, Zienkiewicz invited
Clough to give a lecture to his students on finite element method in his University.
Zienkiewicz was then considered a leading expert in the application of finite dif-
ference method to continuum mechanics. People were excited, for they expected a
stimulating debate amongst the two doyens on the relative merits of the two methods.
However, after a few penetrating questions to Clough on finite element, Zienkiewicz
became an instant convert to the method. Zienkiewicz later migrated to University
of Wales at Swansea and founded the Department of Numerical Methods on Engi-
neering. He brought about phenomenal originality in finite element research. He
along with Bruce Irons established the finite element on a generic mathematical basis
rather then only a tool for stress analysis for continuum and showed that it could
be applied to many branch of engineering like rock mechanics, heat mass transfer,
fluid dynamics, geo-technical engineering and many other areas of engineering and
science. His first book on this topic (Zienkiewicz 1970) is still considered a landmark
contribution which has gone a long way to popularize the topic among the present
generation of engineers who have worked and are still working on this subject around
the world.

2.12.3 The basic philosophy

Since the development was first based on matrix method of structural analysis, we
follow the same path to explain the basic philosophy. This we believe would also be
easier for a civil engineer to understand who are new to this topic.

Shown in Figure 2.12.2 is an arbitrary shaped body with an external load for which
we would like to know the stress and displacement. The relationship between the load
and the displacement is given by

{P} = [K] {δ} (2.12.1)

where {P} = external load vector; [K] = stiffness matrix of the body and {δ} =
displacement vector of the body.

It is apparent that it would be difficult to derive the stiffness matrix of this body as
the shape of the body is arbitrary. Now let us look at Figure 2.12.3 carefully.

P

Figure 2.12.2 An arbitrary shaped body with external loads and supports.
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P

Figure 2.12.3 Arbitrary structure broken up into small finite shapes.

If we can break up the body into small parts of regular shape (could be triangle
or quadrilateral) whose stiffness is known to us and if we assemble38 the stiffness of
all these elements in a manner such that it represents the body (could be approxi-
mately) then surely substituting it in the equation, {P} = [K] {δ}, and we can have a
solution

{δ} = [K]−1 {P} . (2.12.2)

This in essence is the basic philosophy of the FEM theory.
Does it look familiar to something?
Recall the problem of the area of circle we solved at the outset, now if you

ponder over the matter it may be observed that both the philosophies are almost
analogous.

In the circle problem, we presumed we do not know the area of the circle and
approximated its value by summing the area of the triangle whose area is known to us.
More is the number of triangular area we considered, the error reduced progressively.
In FEM analysis also we will see that as we refine the mesh of elements taken the
results converge towards an exact value.

We would like to re-emphasize at this point that FEM like finite difference method
is also an approximate method. It can be shown that for a linear element finite
element solution is exactly same as a central difference solution of the problem by
using a finite difference technique. The accuracy of result (i.e. limiting the error to
an acceptable level) depends on a number of factors like order of polynomial chosen
to develop the element stiffness, refinement of mesh, using the appropriate finite ele-
ment which correctly resembles the behavior of the structure, correct simulation of
boundary condition etc.

2.12.4 Displacement based derivation of stiffness matrix

Before we enter the developers club it would be interesting to derive how stiff-
ness matrix is developed for various elements in general term. We start with the

38 Here by the word assemblage we mean summing up all the stiffness in some sense so that it approximately
represent the body.
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displacement based formulation as this would be easier for a civil engineer to follow.
The steps involved can be summarized as follows:

• For a particular element define displacement as a polynomial function expressed as
f = α1 +α2x+α3x2 +α4x3 +· · · · · ·αn+1xn. The shape functions should be chosen
in such a fashion that number of constants (α1,α2,α3 . . . . . . αn+1)= number of
degrees of freedom for the element. Let this be expressed as

{
f
} = [M] {α}.

• Express the nodal parameters in terms of constants {δ} = [C] {α}. Here the
nodal displacements and [C] is obtained by introducing nodal co-ordinates in
matrix [M].

• Find the displacement polynomial constant relationship as {α} = [C]−1 {δ} which
gives

{
f
} = [M] [C]−1 {δ} or

{
f
} = [N] {δ} (2.12.3)

where [N] = [M] [C]−1 and is known as the interpolation shape function or simply
shape function of the problem.

• Establish the strain displacement relationship. This is established by differentiating
the shape function as appropriate to obtain

{ε} = [B] {δ} (2.12.4)

• Determine the stress-strain relationship as {σ } = [D] {ε} which can then be
expressed in terms of displacement as

{σ } = [D] [B] {δ} . (2.12.5)

To obtain the stiffness matrix the easiest way is to impose an arbitrary virtual nodal
displacement and to equate the internal and external work done by the various external
force and internal stresses during that displacement.

Let such virtual displacement be expressed as d{δ} and this results in displacements
and strain within the element equal to

d{f } = [N] d{δ} and d{ε} = [B] d{δ}. (2.12.6)

Now the work done by nodal force is equal to the sum of the products of the
individual force components and corresponding displacement. Thus in matrix notation
this can expressed as

We = d{δ}T{P},

where We = external work done and {P} = external load vectors.
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The internal work done by the stress within the body is given by

Wi =
∫

d{ε}T{σ }.dv or, Wi =
∫

d {δ}T [B]T {σ } · dv (2.12.7)

Since, {σ } = [D] [B] {δ}, substituting the above we have

Wi =
∫

d {δ}T [B]T [D] [B] {δ} · dv (2.12.8)

Since the internal and external work done must be equal we have, We = Wi and

d{δ}T [P] =
∫

d {δ}T [B]T [D] [B] {δ} · dv

➔ {P} =
∫

[B]T [D] [B] {δ} · dv (2.12.9)

Considering {P} = [K] {δ} where [K] = stiffness matrix, we may write

[K] {δ} =
∫

[B]T [D] [B] {δ} dv

that finally results in

[K] =
∫

[B]T [D] [B] · dv (2.12.10)

We will now enter the developers club to see how the above formulation vide
Equation 2.12.10 is used to derive element stiffness matrices of several finite element
idealizations.

2.12.4.1 Element Stiffness Matrix of a 2D Beam Element

The beam element is strictly speaking a discrete element and not a continuum, as
such cannot be theoretically termed as finite element. Nonetheless, we will derive the
stiffness matrix based on the above theory to give you some mathematical background
on how the above theory is applied to develop the element stiffness.

Let us consider a beam having degrees of freedom as shown in Figure 2.12.4. Since
the total degrees of freedom is four we choose the displacement function as

f = α1 + α2x + α3x2 + α4x3 (2.12.11)

Now as
{
f
} = [M] {α} we have

{
f
} = 〈1 x x2 x3〉〈α1 α2 α3 α4〉T (2.12.12)

Now, at x = 0, {f } = δ1 = α1 and again, at x = L, {f } = δ2 = α1 + α2L +
α3L2 + α4L3.
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Y

X

L

Figure 2.12.4 A beam element in 2D having two degrees of freedom per node.

At x = 0, df
dx = θ1 = α2 and at x = L, df

dx = θ2 = α2 + 2α3L + 3α4L2.

The above can be expressed in matrix form as

{f } =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
1 L L2 L3

0 1 2L 3L2

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩
α1
α2
α3
α4

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩
δ1
θ1
δ2
θ2

⎫⎪⎪⎬
⎪⎪⎭➔

⎧⎪⎪⎨
⎪⎪⎩
α1
α2
α3
α4

⎫⎪⎪⎬
⎪⎪⎭ =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0

−3
L2

−2
L

3
L2

−1
L

2
L3

1
L2

−2
L3

1
L2

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
δ1
θ1
δ2
θ2

⎫⎪⎪⎬
⎪⎪⎭

i.e. {α} = [C]−1 {δ} (2.12.13)

Considering {f } = [M] [C]−1 {δ} we have

{f } =
〈
1 x x2 x3

〉
⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0

−3
L2

−2
L

3
L2

−1
L

2
L3

1
L2

−2
L3

1
L2

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
δ1
θ1
δ2
θ2

⎫⎪⎪⎬
⎪⎪⎭

➔ {f } = [N] [δ] (2.12.14)

where [N] = 〈1 x x2 x3〉

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0

−3
L2

−2
L

3
L2

−1
L

2
L3

1
L2

−2
L3

1
L2

⎤
⎥⎥⎥⎥⎥⎦
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➔ [N] =
〈(

1 − 3x2

L2 + 2x3

L3

) (
x − 2x2

L
+ x3

L2

) (
3x2

L2 − 2x3

L3

) (
−x2

L
+ x3

L3

)〉

Thus {f }=
〈(

1 − 3x2

L2 + 2x3

L3

)(
x − 2x2

L
+ x3

L2

)(
3x2

L2 − 2x3

L3

)(
−x2

L
+ x3

L3

)〉⎧⎪⎪⎨
⎪⎪⎩
δ1
θ1
δ2
θ2

⎫⎪⎪⎬
⎪⎪⎭

(2.12.15)

For a beam element we know that EI d2f
dx2 = −Mx which is same as {σ } = [D] {ε},

where {σ } = Mx, [D] = EI and {ε} = d2f
dx2 = [B] {δ}.

Thus [σ ] = EI
〈(

6
L2 − 12x

L3

)(
4
L

− 6x
L2

)(−6
L2 + 12x

L3

)(
2
L

− 6x
L2

)〉
〈δ1 θ1 δ2 θ2〉T

which gives

[B] =
〈(

6
L2 − 12x

L3

) (
4
L

− 6x
L2

) (−6
L2 + 12x

L3

) (
2
L

− 6x
L2

)〉
(2.12.16)

as [K] = ∫ [B]T [D] [B] · dv for beam element we have [K] = EI
∫ L

0
[B]T [B] dx

[K] = EI

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12
L3

6
L2 −12

L3

6
L2

6
L2

4
L

− 6
L2

2
L

−12
L3 − 6

L2

12
L3 − 6

L2

6
L2

2
L

− 6
L2

4
L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.12.17)

which is the element stiffness matrix for the beam.
It will be observed that in this case the FEM approximation converges to the exact

value as obtained usually by classical slope deflection method.

2.12.4.2 Element stiffness matrix for 2D triangular element

This is the first element that was put to use for analysis of continuum by FEM. As
stated earlier, was developed by Turner et al. 1956 and is still in use. Though it has
been found that rectangular and quadrilateral 2D elements developed subsequently
gives superior results.
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Prior to deriving the stiffness matrix of this triangular element we pose a simple
problem to you for some clarification. Recall the simply supported beam in Figure
2.10.5, where we derived the deflection having udl of w kN/m.

Based on solution of differential equation we have,

ymax = 5wL4

384EI
, Mmax = wL2

8

and maximum stress at center span could be expressed as

σmax = 3wL2

4BD2 ,

where B = width of the beam and D the overall depth.
Suppose, the beam under question looks as shown in Figure 2.12.5.
Now, are the answers we derived earlier are correct?
The reasons that the solution derived earlier may not be correct can be summarized

as follows

• The cut-out (presumed reasonably large) will reduce the moment of inertia I con-
siderably for which the deflection expected would be larger than a beam without
any cutout.

• The beam based on dimension looks to be neither a prismatic beam nor a deep
beam but something intermediate as such the differential expression EI d2y

dx2 = −Mx
may not be valid in this case.

• The stress around the opening would be significantly larger than σmax =(
3wL2

)
/
(
4BD2

)
and cannot be ignored, for if this is too high cracks may be

generated around the corners.

A simple problem, yet the solution is not easy. If you ponder further you will realize
that neither there is a closed form analytical solution to this nor it can be solved by
finite difference too!

Based on FEM method the problem may be solved as shown in Figure 2.12.6.
We break up the beam constituting of 65 nodes and 98 triangular elements (the node

and element numbers are not shown picture clarity)39. Knowing the element stiffness
matrix of a individual triangular element we assemble it to form the global stiffness of
the above beam and then find out the displacement from the equation {P} = [K]{δ} and
subsequently find out the stress developed. For problems such as these, finite element
method is almost unrivalled.

Now, we will derive the element stiffness matrix of this triangular element under
plane stress condition.

39 The model shown is only a conceptual one to give you an idea on how it should be solved and may not
necessarily be a correct model in terms of number of elements and nodes taken to arrive at a solution
with desired accuracy.
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B

a

Cutout b

Figure 2.12.5 Beam with cutout in center span (scaled proportionally).

Typical triangular
element

Figure 2.12.6 Finite element discretisation of beam with triangular elements.

Y vm

um
m (xm, ym)

ui uj

vi vj
X

j (xj, yj)

i (xi, yi)

Figure 2.12.7 2D-triangular element with nodal degrees of freedom.

Shown in Figure 2.12.7 is a triangular plane stress element having nodes i, j and
m. The co-ordinates of each node can be expressed as (xi, yi), (xj, yj) and (xm, ym)

respectively. Let the displacements at each node be expressed as (ui, vi), (uj, vj), and
(um, vm).

The polynomial of the shape function can be chosen for this case as

u = α1 + α2x + α3y and v = α4 + α5x + α6y. (2.12.18)
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The displacement function can be expressed as

{f } =
{

u
v

}
=
[
1 x y 0 0 0
0 0 0 1 x y

]
〈α1 α2 α3 α4 α5 α6〉T

➔ {f } = [M] {α} (2.12.19)

With respect to the nodal co-ordinates, displacements can be expressed as

ui = α1 + α2xi + α3yi; uj = α1 + α2xj + α3yj; um = α1 + α2xm + α3ym.

(2.12.20)

Above in matrix notation can be expressed as⎡
⎣1 xi yi

1 xj yj
1 xm ym

⎤
⎦
⎧⎨
⎩
α1
α2
α3

⎫⎬
⎭ =

⎧⎨
⎩

ui
uj
um

⎫⎬
⎭ (2.12.21)

Inversion of the above gives⎧⎨
⎩
α1

α2

α3

⎫⎬
⎭= 1

2�

⎡
⎣xjym − xmyj xmyi − xiym xiyj − xjyi

yj − ym ym − yi yi − yj

xm − xj xi − xm xj − xi

⎤
⎦
⎧⎨
⎩

ui

uj

um

⎫⎬
⎭ ➔ {α} = [C]−1 {δ}

(2.12.22)

where � = 1
2

∣∣∣∣∣∣
1 xi yi
1 xj yj
1 xm ym

∣∣∣∣∣∣ is the area of the triangle.

Similarly,

⎡
⎣1 xi yi

1 xj yj
1 xm ym

⎤
⎦
⎧⎨
⎩
α4
α5
α6

⎫⎬
⎭ =

⎧⎨
⎩

vi
vj
vm

⎫⎬
⎭

i.e.

⎧⎨
⎩
α4
α5
α6

⎫⎬
⎭ = 1

2�

⎡
⎣xjym − xmyj xmyi − xiym xiyj − xjyi

yj − ym ym − yi yi − yj
xm − xj xi − xm xj − xi

⎤
⎦
⎧⎨
⎩

vi
vj
vm

⎫⎬
⎭

The above can be expressed in a simplified form as

⎧⎨
⎩
α1
α2
α3

⎫⎬
⎭ = 1

2�

⎡
⎣ai aj am

bi bj bm
ci cj cm

⎤
⎦
⎧⎨
⎩

ui
uj
um

⎫⎬
⎭ and

⎧⎨
⎩
α4
α5
α6

⎫⎬
⎭ = 1

2�

⎡
⎣ai aj am

bi bj bm
ci cj cm

⎤
⎦
⎧⎨
⎩

vi
vj
vm

⎫⎬
⎭

(2.12.23)

where ai = xjym − xmyj, bi = yj − ym, ci = xm − xj.
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The polynomial constants for the full triangle can be expressed as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

α1
α2
α3
α4
α5
α6

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= 1
2�

⎡
⎢⎢⎢⎢⎢⎢⎣

ai 0 aj 0 am 0
bi 0 bj 0 bm 0
ci 0 cj 0 cm 0
0 ai 0 aj 0 am
0 bi 0 bj 0 bm
0 ci 0 cj 0 cm

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ui
vi
uj
vj
um
vm

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

,

where [M] =
[
1 x y 0 0 0
0 0 0 1 x y

]
.

Considering [N] = [M] [C]−1, we have

[N] = 1
2�

[
1 x y 0 0 0
0 0 0 1 x y

]
⎡
⎢⎢⎢⎢⎢⎢⎣

ai 0 aj 0 am 0
bi 0 bj 0 bm 0
ci 0 cj 0 cm 0
0 ai 0 aj 0 am
0 bi 0 bj 0 bm
0 ci 0 cj 0 cm

⎤
⎥⎥⎥⎥⎥⎥⎦

[N] = 1
2�

×
[
d11 0 d22 0 d33 0
0 d11 0 d22 0 d33

]
(2.12.24)

in which,

d11 = ai + bix + ciy; d22 = aj + bjx + cjy; d33 = am + bmx + cmy

The strain matrix for the triangle is given by

{ε} =
⎧⎨
⎩
εx
εy
γxy

⎫⎬
⎭ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂u
∂x
∂v
∂y

∂u
∂y

+ ∂v
∂x

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

= 1
2�

⎡
⎣bi 0 bj 0 bm 0

0 ci 0 cj 0 cm
ci bi cj bj cm bm

⎤
⎦
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ui
vi
uj
vj
um
vm

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= [B] {δ}

(2.12.25)

which gives

[B] = 1
2�

⎡
⎣bi 0 bj 0 bm 0

0 ci 0 cj 0 cm
ci bi cj bj cm bm

⎤
⎦ (2.12.26)
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For plane stress case the elasticity matrix (Timoshenko and Goodier 1970) may be
written as

[D] = E
1 − ν2

⎡
⎢⎣

1 ν 0
ν 1 0

0 0
1 − ν

2

⎤
⎥⎦ (2.12.27)

The stiffness matrix, which is given by [K] = ∫ [B]T [D][B]dv, for this particular case
is expressed as simply expressed as [K] = [B]T [D] · [B] ·� · t, since it is independent
of x and y; t is thickness in the z-direction.

The stiffness matrix can be finally expressed as

[K] = t
4�

⎡
⎢⎢⎢⎢⎢⎢⎣

bi 0 ci
0 ci bi
bj 0 cj
0 cj bj

bm 0 cm
0 cm bm

⎤
⎥⎥⎥⎥⎥⎥⎦
⎡
⎣ D1 D1D2 0

D1D2 D1 0
0 0 D12

⎤
⎦
⎡
⎣bi 0 bj 0 bm 0

0 ci 0 cj 0 cm
ci bi cj bj cm bm

⎤
⎦

in which D1 = E/(1 − ν2), D2 = ν and D12 = D1 (1 − D2) /2.

or, [K] = t
4�

⎡
⎢⎢⎢⎢⎢⎣

bi 0 ci
0 ci bi
bj 0 cj
0 cj bj

bm 0 cm
0 cm bm

⎤
⎥⎥⎥⎥⎥⎦
⎡
⎣ D1bi D1D2ci D1bj D1D2cj D1bm D1D2cm

D1D2bi D1ci D1D2bj D1cj D1D2bm D1cm
D12ci D12bi D12cj D12bj D12cm D12bm

⎤
⎦

(2.12.28)

[ ]

1
2

12 i

D

+ D c

1 2 i iD D b c 2
1 iD c

Symmetric
12 i i+D b c 2

12 i+D b

1 i jD b b 2
1 jD b1 2 i iD D b c

12 i j+D b c12 i j+D c c 2
12 j+D ct

or K =

1 2 i jD D b c 1 i jD c c 1 2 j jD D b c 2
1 jD c

12 j i+D b c 12 i j+D b b 12 j j+D b c 2
12 j+D b

1 j mD b b1 i mD b b 1 2 m iD D b c

12 i m+ D c c 12 i m+D b c 12 j m+D c c

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

1 m2D b1D 2 m jD b c

12 j m+D b c 212 m+D c

1 2 j mD D b c 1 j mD 1
Dc c1 2 i mD D b c 1 i mD c c 2 m mD b c 2

1 mD c

12 m i+ D b c 12 i m+D b b 12 m j+D b c 12 j m+D b b 12 m m+D b c 212 m+D b

2
ib
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2.12.5 Plane strain CST element

The steps involved in deriving the element stiffnes matrix is identical to the plane stress
case as derived above(including the shape functions). The only difference is that the
[D] matrix in the equation [K] = ∫ [B]T [D] [B] dv is different.

For plane strain condition the [D] matrix is given by

[D] = E(1 − ν)

(1 + ν)(1 − 2ν)

⎡
⎢⎢⎢⎢⎣

1
ν

1 − ν
0

ν

1 − ν
1 0

0 0
1 − 2ν

2(1 − ν)

⎤
⎥⎥⎥⎥⎦ ,

this can be further expresssed as

[D] =
⎡
⎣ D1 Symmetrical

D1D2 D1
0 0 D12

⎤
⎦ (2.12.29)

where, D1 = E(1−ν)
(1+ν)(1−2ν) , D2 = ν

(1−ν) , D12 = D1(1−D2)
2 ,

This would give the same element stiffness matrix as derived above except that the
matrix [D] as mentioned herein is different.

2.12.6 Why constant strain and how effective
is the element?

We have shown while deriving the element stiffness that the [B] matrix vis a vis the
strain matrix remains unchanged with repsect to x and y coordinate. In other words,
irrespective of the orientation of the x and y coordinate the strain remains in-variant.
It is for this property the element is named as constant strain triangle (CST).

In todays scenario, where in a commercially available software the option of various
types of finite elements available in its library is multiple, many analyst frown on this
element construing it as an inefficent element. For though the element is found to give
reasonable result with displacements, their convergence in terms of stress value is poor.
The results are also meaningful only when the mesh is sufficently refined40. Moreovoer
since the shape of the polynomial is linear it does not have the capability to simulate
rotation (d2y/dx2) and is found to give higher stiffnes then it actually should be.

If the material in use is nearly incompressible41, the stress calculation can create
lot of problems in the results. Nevertheless when the continuum consists of corners
or one wants to change from one shape to the other where high stress gradient is not
prevalent, the element still has a lot of use.

40 Meaning more computation, more storage data, and more inputs.
41 That is Poisson’s ratio approaches 0.5.
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P

Stress

Depth

Triangular Element with nodal load P
Stress variation along the body

Figure 2.12.8 CST-element with variation of stress under point load.

2.12.7 Why convergence improve with
ref ined meshes

We had mentioned ealier that output results improve with refinement of elements.
The reason for the same can well be derived from engineering intuition rather then a
formal mathematical proof. Shown in Figure 2.12.8 is a triangular element with a nodal
load P. Theoretically speaking this is a point load and the point at which it is acting
has an infinitesimally small area tending to zero giving infinite stress at that point.

As we progressively move inside the triangle the cross sectional area increases and
after a certain distance stress vis a vis strain becomes finite. The variation of stress is
as shown above.

Now suppose we progressively decrease the area of the triangle we can achieve a
state that when the traingle is sufficiently small the strain within the body (and stress)
becomes constant and truly represents a state of constant strain. Thus it is apparent
that as the meshes are refined the triangle area diminish and tends towards a true
constant strain for which the results improve due to convergence.

2.12.8 The Constitutional laws which bound
the developers

Before we proceed further to derive element stiffness matrix of other elements we
would like to explain a few things and rules first. This we believe would make the
subsequent understanding better.

While discussing the CST element we came up with comments like “Analysts con-
strue it is an inefficient element” or “the stress convergence is poor”, this might
make you wonder that if there is something called good or bad elements, or how
do we know which results tend to converge and which do not? Very pertinent ques-
tions, which we believe, you should always ask yourself when carrying out a finite
element analysis (FEA).

The finite element library available in the market is like a huge super bazaar, where
choices are many (Kardestuncer and Norie 1987). Each of these elements available
in the market has its own distinct merits and a few limitations too. There are indeed
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elements available which are excellent, good, bad and even temperamental! (i.e. it
gives very good results for certain geometry while produces poor results for others).
So, before putting an element into use, knowing its strength and weaknesses is strongly
advisable.

In order to assess this (what makes an element good or bad. . .) one needs to know
a few basic rules that go into the development of finite elements.

2.12.9 The rule of polynomial – the entry rule
to developers club

While generating the element stiffness matrix of the 2D beam and CST element we
had shown that the starting point is developing a polynomial shape function.

While developing the beam element we had also stated that – number of coefficients
(α1,α2,α3, . . . . . . αν) in a polynomial function must be equal to the total degrees of
freedom for each element.

Stop! and ponder for a while – the above is actually a rule. From where did this rule
come? Is it by trial and error, intuition or is there a logical basis to it?

Recall the beam equation EI d2y
dx2 = −Mx, and double differentiation of the above

gives,

EI
d4y
dx4 = w, (2.12.30)

where, w is the external load acting on the beam.
For no load acting on the beam, the above equation can be expressed as

d4y
dx4 = 0 (2.12.31)

From which we get on successive integration

y = C1

6
x3 + C2

2
x2 + C3x + C4, (2.12.32)

where C1, C2, C3, and C4 are integration constants and are functions of nodal degrees
of freedom for each element.

The above thus in generic term can be expressed as

y = α1 + α2 x + α3x2 + α4x3 (2.12.33)

Thus it is observed that the above shape function equation correctly represents the
degrees of freedoms for each element – and this is the logic from where the rule came
into being42.

42 Posing this query in an interview we have also heard answer to this as it is Zienkeiwics’s first law!
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Based on above for a line element having n degrees of freedom can be expressed in
generalized co-ordinate as

u = α1 + α2x + α3x2 + α4x3 + · · · · · · + αnxn−1 (2.12.34)

Here greater the number of terms be included in the shape function more closer
would be the result to the exact solution.

The above in matrix notation can be expressed as

{u} = [M] {α} (2.12.35)

where [M] = 〈1 x x2 x3 . . . . . .xn−1〉 and {α}T = 〈α1 α2 α3 α4 . . . . . . αn〉.
For two-dimensional element in generalized coordinate the shape function can be

expressed as

u(x, y) = α1 + α2x + α3y + α4x2 + α5xy + α6y2 · · · · · · + αpyn

v(x, y) = αp+1 + αp+2x + αp+3y + αp+4x2 + αp+5xy + αp+6y2 · · · · · · + α2pyn

and p =
n+1∑
i=1

i (2.12.36)

The above in matrix notation can be expressed as

{
δx,y
} =

{
u(x, y)
v(x, y)

}
= [M] {α} =

[{M1}T {0}T

{0}T {M1}T

]
{α} (2.12.37)

where [M] = 〈1 x y x2 xy . . . . . . yn〉; {α}T = 〈α1 α2 α3 α4 . . . . . . α2p〉.
Similarly, a three dimensional displacement function in generalized coordinate of

nth order is given by

u(x, y, z) = α1 + α2x + α3y + α4z + α5xz + · · · · · · + αpzn

v(x, y, z) = αp+1 + αp+2x + αp+3y + αp+4z + αp+5xz + · · · · · · + α2pzn

w(x, y, z) = α2p+1 + α2p+2x + α2p+3y + α2p+4z + α2p+5xz + · · · · · · + α3pzn

(2.12.38)

where p = ∑n+1
i=1 i (n + 2 − i) and u, v, and w are the displacements along x, y and

z directions.
Each of the above polynomial can be truncated to any degrees of freedom to give

linear, bilinear quadratic . . . or higher order elements. For the CST element derived
earlier we assumed the displacement as linear thus we chose the shape function as

u(x, y) = α1 + α2x + α3y and v(x, y) = α4 + α5x + α6y (2.12.39)
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If the shape function is assumed bilinear we can choose the polynomial function as

u(x, y) = α1 + α2x + α3y + α4xy and v(x, y) = α5 + α6x + α7y + α8xy
(2.12.40)

For a quadratic model we can write this as

u(x, y) = α1 + α2x + α3y + α4x2 + α5xy + α6y2

v(x, y) = α7 + α8x + α9y + α10x2 + α11xy + α12y2
(2.12.41)

and so on. . . . . .

2.12.10 How do we select the polynomial
function correctly?

In the previous section we have given the generic form of shape functions in terms of
generalized coordinate. This might tempt you to join the developers club and formulate
a finite element of your own-just go ahead and do it43.

However, for doing so the first criterion is to select the polynomial function in a
fashion that it correctly predicts the behavior that you intend it to exhibit44.

The first condition to this is to select the polynomial in such a fashion that it should
be independent of the orientation of the local co-ordinate system. This property is
otherwise known as geometrical or spatial isotropy.

This is usually achieved by using the Pascal hierarchical triangle and especially for
two and three dimensional element it is to be ensured that the terms are chosen in such
a fashion that the terms are not skewed towards one particular coordinate but has a
balance in the expression. The 2D Pascal hierarchical triangle is a shown Figure 2.12.9.

1 Constant

x y Linear

x2 xy  y2 Quadratic

x3 x2y xy2 y3 Cubic

x4 x3y x2y2 xy3 y4 Quartic

x5 x4y x3y2 x2y3 xy4 y5 Quintic

Figure 2.12.9 Pascal hierarchical triangle for 2D finite elements.

43 However while developing the same just make sure that it is not already available in the market-no point
in re-inventing the wheel.

44 If this basic condition is not satisfied be sure that the results will put you in lot of problems.
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1
x y

x2 xy y2

x3 x2y xy2 y3

Figure 2.12.9a Pascal triangle for 2D elements.

1

z
x

x2 xz y
z2

xy yzx3

x2z xz2 z3

x2y y2

xy2 yz2

y2z

y3

Figure 2.12.10 Pascal pyramid for 3D finite elements.

Thus for quadratic element the polynomial function shall be based on Figure 2.12.9a.
For three dimensional elements similarly we derive the polynomials based on pascal

pyramid as given in Figure 2.12.10.

2.12.11 The law of convergence – the three
commandments

We had stated at the outset that FEM is an approximate analysis where by there could
be some error in the solution. This error is minimized by increasing the number of
elements, when the result tend to converge to an exact value.

In many cases the stiffness matrix derived based on displacement formulation
gives lower deflection than an exact solution (i.e. the stiffness derived is higher than
the actual stiffness of the structure). As the finite element meshes are refined the
approximate displacement approaches the exact solution as qualitatively shown in
Figure 2.12.1145.

45 This also known as monotonic convergence.
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Exact value

10 30 80 100 150

Number of elements

Figure 2.12.11 Monotonic convergence with increase in number of elements.

Figure 2.12.12 Rigid body deformation of a rectangular element in translational and rotational mode.

In order to ensure that the element do follow this behavior of monotonic convergence
the following three laws must be conformed to.

1 The displacement function must be continuous within an element and also must be
compatible with adjacent element.

The continuity of the function is basically satisfied by the chosen polynomial func-
tion which is inherently continuous, second condition implies that at common node of
two elements the displacement must be same, in other words they should not deform
without causing any openings, discontinuities or overlaps.

2 The displacement modes must include rigid body mode of the element.
A rigid body mode as we know is the most fundamental deformation an element

can undergo. In this case the body moves physically without undergoing any stress or
strain.

It is apparent from Figure 2.12.12 that all nodes in rigid body mode experience same
displacement. One such combination should occur for both translation and rotation
for an element.

For instance for the beam and CST element α1 represent the rigid body displacement.

3 The displacement must include a constant strain state of the element.
The above law means that there should exist at least one mode for each of the combi-

nations where all the points within the element can undergo a state of constant strain.
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We had already explained earlier that as the mesh get finer and finer i.e as the
elements approach an infinitesimal size, the strain approach a constant state and if
this condition is not satisfied the results will not converge to a correct solution.

For the CST element the terms α2x and α3y represents this condition since

εx = ∂u
∂x

= α2 and εy = ∂v
∂y

= α3 are constants.

In finite element procedure elements which satisfies the first law are called compat-
ible or conforming elements while elements which obeys law (2) and (3) are called
complete elements.

Generally an element stiffness matrix developed must be complete and conforming
to converge to a correct result as meshes are progressively refined.

2.12.12 Non-conforming elements an exception
to the law

Like all law have an exception46 there is also an exception to the laws as posed
above. Usually conforming elements have higher stiffness than the actual structure
and deflection converges as a lower bound (Figure 2.12.11).

To circumvent this problem, elements have been developed where additional
polynomial terms are taken beyond the conforming limit which makes it more flexible
and for certain problems gives much better results even with a coarser mesh. Such
type of elements are called the non-conforming elements as it violates the law(1) as
described previously. This element gives great computational advantage over conform-
ing elements where significant refinement are required especially in areas where there
is a high stress gradient.

One must however be careful with such elements for at times their values become
dependent on Poisson’s ratio and gives poor result if the meshes undergo high
distortion. Finally the bounded nature of the convergence is lost.

Inspite of the above demerits Non-conforming elements have been successfully used
in many practical problems with excellents results. We will discuss more about this
element at a later stage.

2.12.13 Natural coordinates: the gateway to numerical
analysis through computer

We had derived earlier that the element stiffness matrix based on FEM is expressed as

[K] =
∫

[B]T [D][B]dv. (2.12.42)

46 Except possibly the natural law of creation where all living things born must one day perish without
exception. . .
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While deriving the beam and CST elements we had hand computed the stiffness
matrix where all the matrix inversions and integrations were carried out manually
and explicitly.

For many higher order elements and elements based on iso parametric formula-
tion, such explicit integration or matrix inversion is not feasible, since the procedure
becomes quite tedious and laborious.

Forgiving the inherent laziness prevalent in human nature and also considering,
that computers are at hand we usually let computer carry out such inversions and
integrations.

Since computer cannot carry out the integration
∫ ξ

0 f (x)dx we usually resort to
numerical integration to arrive at a solution to such integrals. It is in this case
transferring the functions from generalized coordinate to natural co-ordinates gives us
significant computational advantage and has great application in FEM47.

To elaborate this further let us take an integral

I =
H∫

0

b∫
0

[
sin

πx
2H

sin
3πx
2H

+ cos
πy
2b

cos
3πy
2b

]
dxdy which can be expressed as

➔ I = b

H∫
0

sin
πx
2H

sin
3πx
2H

dx + H

b∫
0

cos
πy
2b

cos
3πy
2b

dy (2.12.43)

Considering
∫ n

0 u ·v ·dx = u
∫

v dx
∣∣n
0 −∫ n

0

[
du
dx

∫
vdx
]
dx we can carry out the explicit

integration of each term above, which though is a bit tedious is still manageable.
Now suppose the integral happens to be say

I =
H∫

0

b∫
0

[
sin

πx
2H

sin
3πx
2H

+ cos
πy
2b

cos
3πy
2b

]2

dxdy (2.12.44)

You are surely in for a tough time for it becomes inordinately difficult and laborious
to carry out this integral analytically.

The only option then is to resort to numerical integration through computer. But
there also we are faced with a difficulty as because the limits of the integral H and
b are only symbolic that a computer cannot handle. So what do we do here?

We tackle the problem as mentioned hereafter.

47 Historically there is possibly some confusion as to who first applied this technique in deriving the stiffness
of finite elements. Some believe it was Carlos Felippa who first used this technique to derive the higher
order plane stress, plane strain and plate bending element – “Refined Finite Element Analysis of Linear
and Non Linear Two Dimensional Structures”, PhD Dissertation, Dept. of Civil Engineering University
of California, Berkeley 1966.

While others feel it was B.M. Irons who first used this technique in deriving the element stiffness
matrix based on iso-parametric formulation. We shall be grateful if somebody can let us know the exact
information.
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We convert the function x and y into another co-ordinate ξ and η where it becomes
independent of H and b.

Here let x = H(1+ξ)
2 and y = b(1+η)

2 which gives dx = Hdξ
2 and dy = bdη

2 moreover
as ξ → 1; x → H and ξ → −1; x → 0 similarly as η → 1; y → b and η → −1; y → 0.

Based on above the integral can now be expressed as

I = bH
4

1∫
−1

1∫
−1

[
sin

π (1 + ξ)

4
sin

3π (1 + ξ)

4
+ cos

π (1 + η)

4
cos

3π (1 + η)

4

]2

dξdη

(2.12.45)
Looking at the above integral, it is seen that we have converted the x-y coordinate

of the integral into a natural coordinate ξ − η. The integral here is independent of
the limits H and b, and got converted into a specific limit of 1 and −1. The internal
parameters are also independent of H and b and poses no difficulty in carrying out a
direct numerical integration.

This type of transformation has great application in derivation of element stiffness
matrix in FEM which we will see subsequently.

2.12.14 Numerical integration technique used
for FEM

Having stated above that numerical integration in natural coordinate are usually
deployed for derivation of element stiffness matrix in FEM, it would be worthwhile
to know what scheme to use for this, as options available are many.

Of all the methods available48 it has been found that Gauss Quadrature Formula is
particularly suitable and proves to be most efficient in performing numerical integra-
tion for expression like [K] = ∫ [B]T [D] [B] dv. The method is briefly described as in
the following.

2.12.15 Gauss quadrature scheme for numerical
integration

Gauss was looking for an answer to the following problem. “If there exists an integral∫ b
a f (x)dx, whose value has to be evaluated from a given number of values f (x), what

selected values of absicca in general give most accurate result?”
Gauss observed that points on the absicca need not be equally spaced but they

should be symmetrical about the midpoint of the interval of the integration.
Without going into the detail of derivation of the formula (Sastry 1987), the

procedure for application of the same is as follows:

For one dimensional case: I =
1∫

−1

f (ξ)dξ =
n∑

i=1

Wifi, (2.12.46)

where Wi = weighting function and fi = Value of f (ξ) at the Gauss-point i.

48 Trapezoidal, Romberg, Simpson rule, Newton Coates Method . . . etc.
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For two dimensional case, integration by Gauss Quadrature is expressed as

I =
1∫

−1

⎡
⎣ 1∫

−1

f (ξ , η)dξ

⎤
⎦ dη (2.12.47)

The integration is carried out by first evaluating the inner integral by keeping
the outer integral constant and then finally evaluating the outer integral as shown
hereafter.

I =
1∫

−1

⎡
⎣ 1∫

−1

f (ξ , η) dξ

⎤
⎦dη =

1∫
−1

[Wif (ξ , η)]dη = WiWjf (ξ , η), (2.12.48)

where Wi, Wj are weighted functions.
The sampling points and their weights for Gauss quadrature are as given in

Table 2.12.1. In the expression for double integral it is assumed that there are nj
sampling points in the ξ -direction and ni points in the η-direction. There are thus con-
sequently (ni ×nj) number of sampling points in all. Usually same number of sampling
points are used in each direction so that ni = nj, but need not be an essential rule.
Shown in Figure 2.12.13 are samples for (2 × 2) and (3 × 3) integration by Gauss
quadrature scheme.

Table 2.11.3 Sampling points and their weights for Gaussian integration.

Number of points Position of point (ξi) Weights (W i)

1 0 2
2 0.577340269 1

−0.577340269 1
3 0 0.8888888

0.774596669 0.5555555
−0.77456669 0.5555555

4 0.861136311 0.347854845
−0.861136311 0.347854845

0.339981043 0.652145154
−0.339981043 0.652145154

1/ 3

1/ 3

3/5

3/5

1/ 3 1/ 3 3/5 3/5

Figure 2.12.13 Gauss samples at two and three points respectively.



Theory of elasticity and numerical methods in engineering 193

To elaborate further let us consider the integral

I =
1∫

−1

1∫
−1

1 + ξ2

4a
1 − η2

4b
dξdη = 1

16ab

1∫
−1

1∫
−1

(1 + ξ2)(1 − η2)dξdη (2.12.49)

Considering 2 × 2 integration values of sampling points at selected node are given
Figure 2.12.14.

Here Wi = Wj = 1.0

f (ξ1, η1) = [{1 + (−1/
√

3)2}{1 − (−1/
√

3)2}] = (1 + 1/3)(1 − 1/3) = 8/9

f (ξ1, η2) = [{1 + (1/
√

3)2}{1 − (−1/
√

3)2}] = 8/9;

f (ξ2, η1) = [{1 + (−1/
√

3)2}{1 − (1/
√

3)2}] = 8/9 and

f (ξ2, η2) = [{1 + (1/
√

3)2}{1 − (1/
√

3)2}] = 8/9.

Thus I = 1
16ab

Wi[f (ξ , η)]i×jWj (2.12.50)

I = 1
16ab

〈1 1〉
[
f (ξ2, η1) f (ξ2, η2)

f (ξ1, η1) f (ξ1, η2)

]{
1
1

}
(2.12.51)

I = 1
16ab

[1 1]
[
8/9 8/9
8/9 8/9

] [
1
1

]
= 2

9ab
(2.12.52)

By analytical solution we have, I = 1
16ab

1∫
−1

1∫
−1

(1 + ξ2)(1 − η2)dξdη (2.12.53)

I = 1
16ab

⎡
⎣ 1∫

−1

(1 + ξ2)dξ

⎤
⎦
⎡
⎣ 1∫

−1

(1 − η2)dη

⎤
⎦ ;

I = 1
16ab

⎡
⎣(ξ)1−1 +

(
ξ3

3

)1

−1

⎤
⎦
⎡
⎣(η)1−1 −

(
η3

3

)1

−1

⎤
⎦

Node Point

Gauss Point

Figure 2.12.14 Gauss samples at two Gauss-points.
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I = 1
16ab

[
2 + 1

3
+ 1

3

] [
2 − 1

3
− 1

3

]
; I = 1

16ab

[
8
3

] [
4
3

]
= 2

9ab
,

— the results matches exactly to two point Gauss quadrature integration.
Going through the above example you might wonder as to what level of numerical

integration should be used in evaluating the elemental properties?
For n integration points Gauss Quadrature procedure provides exact evaluation of

integral of any polynomial function of degree 2n − 1 or less.
For example two point integration would give exact result for polynomial upto third

order. It might instinctively be felt that the procedure should be carried out exactly
or as close to exactly as possible – but however is always not good! The reason for
this being use of excessive sampling points is computationally expensive and use of
lower order (thus not exact) integration can be beneficial in practice as it tends to
result in reduced stiffness which compensates the natural tendency of over stiffness
of a structure for displacement based formulation. This is often termed as reduced
integration technique.

However if a lower order integration is carried out for deriving the element stiffness
does not necessarily ensure overstiffness for the whole body, as such bound condition
discussed earlier no longer applies. This however is of not much consequence so long
as the final results converge to correct value as the meshes are progressively refined.

2.12.16 Stiffness matrix for 4-nodded rectangular
element under plane strain condition

Having established the natural co-ordinate and the numerical integration scheme we
use these theories to develop the element stiffness matrix for a rectangular element
under plane strain condition.

Shown in Figure 2.12.15 is a four-nodded rectangular element in generalized X-Y
coordinate and natural ξ–η co-ordinate where the relation between the generalized
and natural co-ordinate is given by

ξ = x
a

and η = y
b

The rectangular element has two degrees of freedom for each node and is given by
(uj, vj) where j = 1, 2, 3, 4.

Based on the law of polynomial as expressed earlier in generalized co-ordinate the
same can be expressed for a four nodded element as

[δ] = α1 + α2x + α3y + α4xy (2.12.54)

Thus in natural co-ordinate the same can be expressed as

u = α1 + α2ξ + α3η + α4ξη and v = α5 + α6ξ + α7η + α8ξη (2.12.55)
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3(1,1)

1 2

X

Figure 2.12.15 Rectangular element in natural coordinate.

Thus in natural co-ordinate for the rectangular element as shown above we have

u1 = α1 − α2 − α3 + α4; u2 = α1 + α2 − α3 − α4

u3 = α1 + α2 + α3 + α4 and u4 = α1 − α2 + α3 − α4, which gives

⎧⎪⎪⎨
⎪⎪⎩

u1
u2
u3
u4

⎫⎪⎪⎬
⎪⎪⎭ =

⎡
⎢⎢⎣

1 −1 −1 1
1 1 −1 −1
1 1 1 1
1 −1 1 −1

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩
α1
α2
α3
α4

⎫⎪⎪⎬
⎪⎪⎭ and

⎧⎪⎪⎨
⎪⎪⎩

v1
v2
v3
v4

⎫⎪⎪⎬
⎪⎪⎭ =

⎡
⎢⎢⎣

1 −1 −1 1
1 1 −1 −1
1 1 1 1
1 −1 1 −1

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩
α5
α6
α7
α8

⎫⎪⎪⎬
⎪⎪⎭

(2.12.56)

Considering {f } = [M] {α} we have

{f } =
[
1 ξ η ξη 0 0 0 0
0 0 0 0 1 ξ η ξη

]
〈α1 α2 α3 α4 α5 α6 α7 α8〉T (2.12.57)

Letting the computer do the donkey work we invert the 4 × 4 matrix to obtain

⎧⎪⎪⎨
⎪⎪⎩
α1
α2
α3
α4

⎫⎪⎪⎬
⎪⎪⎭ = 1

4

⎡
⎢⎢⎣

1 1 1 1
−1 1 1 −1
−1 −1 1 1
1 −1 1 −1

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

u1
u2
u3
u4

⎫⎪⎪⎬
⎪⎪⎭ and

⎧⎪⎪⎨
⎪⎪⎩
α5
α6
α7
α8

⎫⎪⎪⎬
⎪⎪⎭ = 1

4

⎡
⎢⎢⎣

1 1 1 1
−1 1 1 −1
−1 −1 1 1
1 −1 1 −1

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

v1
v2
v3
v4

⎫⎪⎪⎬
⎪⎪⎭
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1
α2
α3
α4
α5
α6
α7
α8

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= 1
4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 1 0 1 0
−1 0 1 0 1 0 −1 0
−1 0 −1 0 1 0 1 0
1 0 −1 0 1 0 −1 0
0 1 0 1 0 1 0 1
0 −1 0 1 0 1 0 −1
0 −1 0 −1 0 1 0 1
0 1 0 −1 0 1 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1
v1
u2
v2
u3
v3
u4
v4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

or [α] = [C]−1 [δ]

(2.12.58)

Again considering [N] = [M] [C]−1 we have

[N] = 1
4

[
1 ξ η ξη 0 0 0 0
0 0 0 0 1 ξ η ξη

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 1 0 1 0
−1 0 1 0 1 0 −1 0
−1 0 −1 0 1 0 1 0
1 0 −1 0 1 0 −1 0
0 1 0 1 0 1 0 1
0 −1 0 1 0 1 0 −1
0 −1 0 −1 0 1 0 1
0 1 0 −1 0 1 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The above on multiplication gives

[N] =
[
N1 0 N2 0 N3 0 N4 0
0 N1 0 N2 0 N3 0 N4

]
(2.12.59)

where

N1 = (1 − ξ) (1 − η)

4
, N2 = (1 + ξ) (1 − η)

4
, N3 = (1 + ξ) (1 + η)

4
and

N4 = (1 − ξ) (1 + η)

4
.

The strain matrix is given by

⎧⎨
⎩
εx
εy
γxy

⎫⎬
⎭ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂N1

∂x
0

∂N2

∂x
0

∂N3

∂x
0

∂N4

∂x
0

0
∂N1

∂y
0

∂N2

∂y
0

∂N3

∂y
0

∂N4

∂y

∂N1

∂y
∂N1

∂x
∂N2

∂y
∂N2

∂x
∂N3

∂y
∂N3

∂x
∂N4

∂y
∂N4

∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u1
v1
u2
v2
u3
v3
u4
v4

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

or {ε} = [B] {δ} (2.12.60)
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Considering
∂

∂x
= ∂

∂ξ
× ∂ξ

∂x
= 1

a
∂

∂ξ
and

∂

∂y
= ∂

∂η
× ∂η

∂y
= 1

b
∂

∂η
gives,

⎧⎨
⎩
εx
εy
γxy

⎫⎬
⎭ =

⎡
⎢⎢⎢⎢⎣
η − 1

4a
0

1 − η

4a
0

1 + η

4a
0 −1 + η

4a
0

0
ξ − 1

4b
0 −1 + ξ

4b
0

1 + ξ

4b
0

1 − ξ

4b
ξ − 1

4b
η − 1

4a
−1 + ξ

4b
1 − η

4a
1 + ξ

4b
1 + η

4a
1 − ξ

4b
−1 + η

4a

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1
v1
u2
v2
u3
v3
u4
v4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Thus, [B] =

⎡
⎢⎢⎢⎣
η − 1

4a
0

1 − η

4a
0

1 + η

4a
0 −1 + η

4a
0

0
ξ − 1

4b
0 −1 + ξ

4b
0

1 + ξ

4b
0

1 − ξ

4b
ξ − 1

4b
η − 1

4a
−1 + ξ

4b
1 − η

4a
1 + ξ

4b
1 + η

4a
1 − ξ

4b
−1 + η

4a

⎤
⎥⎥⎥⎦

Considering the element stiffness matrix as [K] = ∫∫
v

∫
[B]T [D] [B] dv in this case

as the condition is plane strain, we have

[D] = E (1 − ν)

(1 + ν) (1 − 2ν)

⎡
⎢⎢⎢⎢⎣

1
ν

1 − v
0

ν

1 − ν
1 0

0 0
1 − 2ν

2 (1 − ν)

⎤
⎥⎥⎥⎥⎦ which finally gives

[K] = η(1 − ν)

(1 + ν) (1 − 2ν)

1∫
−1

1∫
−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(η − 1)/4a 0 (ξ − 1)/4b
0 (ξ − 1)/4b (η − 1)/4a

(1 − η)/4a 0 −(1 + ξ)/4b
0 −(1 + ξ)/4b (1 − η)/4a

(1 + η)/4a 0 (1 + ξ)/4b
0 (1 + ξ)/4b (1 + η)/4a

−(1 + η)/4a 0 (1 − ξ)/4b
0 (1 − ξ)/4b −(1 + η)/4a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎣

1
ν

1 − v
0

ν

1 − ν
1 0

0 0
1 − 2ν

2 (1 − ν)

⎤
⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎣

η− 1
4a

0
1 − η

4a
0

1 + η
4a

0 −1 + η
4a

0

0
ξ − 1
4b

0 −1 + ξ
4b

0
1 + ξ
4b

0
1 − ξ
4b

ξ − 1
4b

η− 1
4a

−1 + ξ
4b

1 − η
4a

1 + ξ
4b

1 + η
4a

1 − ξ
4b

−1 + η
4a

⎤
⎥⎥⎥⎥⎦dξdη

(2.12.61)

This gives the stiffness matrix for the four nodded rectangular element.
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The integration is carried out for two point Gauss integration and this is carried out
at each of the Gauss sampling point and since weighting function is 1.0 for this case
we simply add the four stiffnesses to get the global stiffness matrix49.

The 4-nodded rectangular element is considered a far more superior element
than CST. It gives much better result than CST even when the meshes are not
so refined especially when the aspect ratio (a/b is near or equal to 1). It is a
very effective element which can be used to model soil under plane strain con-
dition or deep beams under various nodal or distributed loads where flexural
behavior is not predominant. The behavior of this four-nodded rectangular ele-
ment under pure flexure is not good. The reason for the same is as explained
below.

Figure 2.12.16 shows the actual and ideal behavior of the 4-nodded rectangular ele-
ment. It is evident that the element cannot deform in ideal fashion under pure flexure.
The reason for this is development of spurious shear strain energy that makes it much
stiffer then it actually should be and lock the element especially when the aspect ratio
is large.

It has been shown elsewhere (Cook et al. (1989) that for same displacement, ratio
of M1 and M2 is given by

M1

M2
= 1

1 + ν

[
1

1 − ν
+ 1

2

(a
b

)2
]

(2.12.62)

It is evident from above that for large aspect ratio for stress calculation the results
would be highly erroneous. Even with aspect of ratio of one, which is considered
ideal, the error is of the order of 48%. However, when a/b is 0.5 error is about 16%.
Thus, if one uses this element at all for case where flexural behavior is dominating it
would be preferable to use an aspect ratio less than 1.0 in direction of major stress
gradient.

As shown in Figure 2.12.17, the parasitic shear that develops due to spurious
shear strain, makes M1>M2 and locks the meshes when the aspect ratio a/b is
large.

M2
M2

M1MM M1

4 Nodded Rectangular Element Behavior of Finite Element Ideal Behavior

Figure 2.12.16 Deformation of 4-nodded finite element under actual and idealized mode.

49 This has been explained by a numerical example later.
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Figure 2.12.17 Variation of M1/M2 with aspect ratio a/b for v = 0.25.

2.12.17 Iso-parametric formulation for elements
with arbitrary shape

Till now we had derived element stiffness matrix for elements that has regular shape
like triangle rectangle etc. However, in practical engineering, in many cases we are
faced with problems when the surfaces are curved.

Trying to model them based on finite element it was found that triangular and
rectangular elements are always not very effective, and a shape which was much more
general was necessary. This requirement led to the development of element shapes of
arbitrary nature.

Before we get into the derivation of the same we reinforce our argument by a typical
finite element model of a circular disc where three of its quadrants are modeled by
three types of elements.

Figure 2.12.18 is self-explanatory, while modeling with the triangular element as we
approach the center the triangles become highly distorted with high aspect ratio more
overnumberofelementsmayhave tobe takenmuchmore tocometoameaningful result.

The rectangular elements on the other hand cannot take into consideration the last
portion that is semi-triangular and has to be further divided into further rectangles
calling for further mesh refinement. On the contrary, a mixture of rectangular and
quadrilateral element as is observed is best suited to cater to the situation where the
mesh is uniform and stress interpretation becomes relatively easy due to the unifor-
mity of the mesh. The iso-parametric elements come in different shapes as shown in
Figure 2.12.19.

To understand the basis of iso-parametric formulation we derive the 4-nodded
quadrilateral originally proposed by Taig (1961) and generalized by Irons (1966) for
other elements (we would take up the curved elements when we discuss elements of
higher order).

Rectangle as we know is nothing but a particular case of quadrilateral whose oppo-
site sides are equal and angle subtended at each corner is 90 degrees. Naturally, the
starting point for the derivation of the element stiffness matrix is the rectangular
element that we had derived earlier.

This we call as the parent element. Now consider Figure 2.12.20:
Shown therein is a rectangular element in natural co-ordinate and an iso-parametric

quadrilateral element in global co-ordinate. We will now derive the property of the
quadrilateral element from the parent rectangular element by a process termed as
mapping.
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Rectangular Finite Element

Triangle

Quadrilateral & Rectangle

Figure 2.12.18 A circular disc modeled by various elements in each quadrant.

Four Nodded
Quadrilateral

Eight nodded curved
Element

Eight nodded brick
Element

Figure 2.12.19 Different types of iso-parametric elements.

3 (1,1) 4(x4,y4) 3(x3,y3)

1(x1,y1) 2(x2,y2)

Parent Element Isoparametric Element

2

2

Figure 2.12.20 The parent element and the iso-parametric element.
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The geometry of the quadrilateral element is described by

x =
4∑

i=1

Gi(x, y)xi and y =
4∑

i=1

Gi(x, y)yi (2.12.63)

the term Gi(x, y) can be assumed to be a geometric interpolation function and each
such function is related to a particular node of the quadrilateral.

Now if we consider the parent element and the quadrilateral are geometrically
equivalent then we can say that

(ξ1, η1) = (−1, −1) ⇔ (x1, y1) :: (ξ2, η2) = (1, −1) ⇔ (x2, y2)

(ξ3, η3) = (1, 1) ⇔ (x3, y3) and (ξ4, η4) = (−1, 1) ⇔ (x4, y4) (2.12.64)

Here the symbol ⇔ signifies corresponds to or maps to.
Now observing the equation shown for x and y it is evident that the geometric

function Gi(x, y) must be unity at node related to it and zero at all other nodes. This
property is again same as the shape function we use to derive the nodal displacement
thus the geometric expression for the global co-ordinate in terms of natural co-ordinate
becomes

x =
4∑

i=1

Ni(ξ , η)xi and y =
4∑

i=1

Ni(ξ , η)yi (2.12.65)

Since both geometric and nodal displacements are expressed by same interpolation
function – these elements are called iso-parametric elements.

You might still have some misgivings in the geometric expression given above in
terms of shape function which was almost put in intuitively.

To give you a more formal mathematical proof we take a specific example to explain
this further.

Shown in Figure 2.12.21 is quadrilateral with nodes 1, 2, 3, 4 whose nodal coor-
dinates are shown in the parenthesis. We derive the equation of line 2–3 based on
mapping and co-ordinate geometry.

If the mapping formula is correct, it should give same result. Based on iso-parametric
mapping we have

x = (1 − ξ) (1 − η)

4
x1 + (1 + ξ) (1 − η)

4
x2 + (1 + ξ) (1 + η)

4
x3

+ (1 − ξ) (1 + η)

4
x4 and

y = (1 − ξ) (1 − η)

4
y1 + (1 + ξ) (1 − η)

4
y2 + (1 + ξ) (1 + η)

4
y3 + (1 − ξ) (1 + η)

4
y4



202 Dynamics of Structure and Foundation: 1. Fundamentals

4(2,6)

3(4,3)

1(1,1)
2(3,1)

Figure 2.12.21 Four-nodded quadrilateral element with nodal coordinates.

Now substituting the value of the nodal coordinates we have

x = (1 − ξ) (1 − η)

4
(1)+ (1 + ξ) (1 − η)

4
(3)+ (1 + ξ) (1 + η)

4
(4)

+ (1 − ξ) (1 + η)

4
(2)

y = (1 − ξ) (1 − η)

4
(1)+ (1 + ξ) (1 − η)

4
(1)+ (1 + ξ) (1 + η)

4
(3)

+ (1 − ξ) (1 + η)

4
(6)

On the edge 2–3, ξ = 1, thus substituting this value in the above two equation
we have

x = 7 + η

2
and y = 2 + η

We thus have two equations

η = 2x − 7 and η = y − 2

eliminating η from the above two equation we have y = 2x − 5.
Based on coordinate geometry, at node 2 considering the equation of straight line

as y = mx + c and we have
At node-2 1 = 3m + c :: A node-3 3 = 4m + c.
Solving the above two equation we have m = 2 and c = −5 which again gives

y = 2x − 5

which is the same as iso-parametric mapping.
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To derive the element stiffness matrix for the quadrilateral element in Figure 2.12.20
we start with the strain matrix

⎧⎨
⎩
εx
εy
γxy

⎫⎬
⎭ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂u
∂x
∂v
∂y

∂u
∂y

+ ∂v
∂x

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, where u =
4∑

i=1

Ni(ξ , η)ui and v =
4∑

i=1

Ni(ξ , η)vi

(2.12.66)

as u is a function of x and y so based on chain rule of differential calculus we can write

∂u
∂ξ

= ∂u
∂x
∂x
∂ξ

+ ∂u
∂y
∂y
∂ξ

and
∂u
∂η

= ∂u
∂x
∂x
∂η

+ ∂u
∂y
∂y
∂η

Above in matrix notation can be expressed as

⎧⎪⎪⎨
⎪⎪⎩
∂u
∂ξ

∂u
∂η

⎫⎪⎪⎬
⎪⎪⎭ =

⎡
⎢⎢⎣
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩
∂u
∂x
∂u
∂y

⎫⎪⎪⎬
⎪⎪⎭ (2.12.67)

The above mathematical expression is otherwise simply expressed as

⎧⎪⎪⎨
⎪⎪⎩
∂u
∂ξ

∂u
∂η

⎫⎪⎪⎬
⎪⎪⎭ = [J]

⎧⎪⎪⎨
⎪⎪⎩
∂u
∂x
∂u
∂y

⎫⎪⎪⎬
⎪⎪⎭

The matrix [J] is known as the Jacobian matrix and is expressed as

[J] =
[
J11 J12
J21 J22

]
=

⎡
⎢⎢⎣
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

⎤
⎥⎥⎦

Thus,

J11 = ∂x
∂ξ

= ∂

∂ξ

4∑
i=1

Nixi = ∂

∂ξ

[
(1 − ξ) (1 − η)

4
x1 + (1 + ξ) (1 − η)

4
x2

]

+ ∂

∂ξ

[
(1 + ξ) (1 + η)

4
x3 + (1 − ξ) (1 + η)

4
x4

]

or J11 = 1
4

[(η − 1) x1 + (1 − η) x2 + (1 + η) x3 − (1 + η) x4]
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Similarly

J12 = [(η − 1) y1 + (1 − η) y2 + (1 + η) y3 − (1 + η) y4] /4;

J21 = [(ξ − 1) x1 − (1 + ξ) x2 + (1 + ξ) x3 + (1 − ξ) x4] /4 and

J22 = [(ξ − 1) y1 − (1 + ξ) y2 + (1 + ξ) y3 + (1 − ξ) y4] /4

This displacement relation in terms of Jacobian matrix can now be expressed as

⎧⎪⎪⎨
⎪⎪⎩
∂u
∂x
∂u
∂y

⎫⎪⎪⎬
⎪⎪⎭ = [J]−1

⎧⎪⎪⎨
⎪⎪⎩
∂u
∂ξ

∂u
∂η

⎫⎪⎪⎬
⎪⎪⎭ ; which can be expanded to

⎧⎪⎪⎨
⎪⎪⎩
∂u
∂x
∂u
∂y

⎫⎪⎪⎬
⎪⎪⎭ = 1∣∣J∣∣

[
J22 −J12

−J21 J11

]⎧⎪⎨
⎪⎩
∂u
∂ξ
∂u
∂η

⎫⎪⎬
⎪⎭ (2.12.68)

where the term
∣∣J∣∣ represents the determinant of the Jacobian Matrix.

Since the interpolation function remains same for the displacement v, proceeding in
identical manner we have

⎧⎪⎪⎨
⎪⎪⎩
∂v
∂x
∂v
∂y

⎫⎪⎪⎬
⎪⎪⎭ = 1∣∣J∣∣

[
J22 −J12

−J21 J11

]⎧⎪⎪⎨
⎪⎪⎩
∂v
∂ξ

∂v
∂η

⎫⎪⎪⎬
⎪⎪⎭

Thus, the strain matrix can now be expressed as

⎧⎨
⎩
εx
εy
γxy

⎫⎬
⎭ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂u
∂x
∂v
∂y

∂u
∂y

+ ∂v
∂x

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= 1∣∣J∣∣
⎡
⎣ J22 −J12 0 0

0 0 −J21 J11
−J21 J11 J22 −J12

⎤
⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂ξ

∂u
∂η

∂v
∂ξ

∂v
∂η

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.12.69)

or

⎧⎨
⎩
εx
εy
γxy

⎫⎬
⎭ = [G]

〈
∂u
∂ξ

∂u
∂η

∂v
∂ξ

∂v
∂ξ

〉T
where [G] is called the geometric mapping

matrix and is identified as [G] = 1∣∣J∣∣
⎡
⎣ J22 −J12 0 0

0 0 −J21 J11
−J21 J11 J22 −J12

⎤
⎦ (2.12.70)
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Since u =
∑4

i=1
Ni(ξ , η)ui; v =

∑4

i=1
Ni(ξ , η)vi we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂ξ

∂u
∂η

∂v
∂ξ

∂v
∂η

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂N1

∂ξ
0

∂N2

∂ξ
0

∂N3

∂ξ
0

∂N4

∂ξ
0

∂N1

∂η
0

∂N2

∂η
0

∂N3

∂η
0

∂N4

∂η
0

0
∂N1

∂ξ
0

∂N2

∂ξ
0

∂N3

∂ξ
0

∂N4

∂ξ

0
∂N1

∂η
0

∂N2

∂η
0

∂N3

∂η
0

∂N4

∂η

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1
v1
u2
v2
u3
v3
u4
v4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Substituting this in strain equation one obtains

⎧⎨
⎩
εx
εy
γxy

⎫⎬
⎭ = 1∣∣J∣∣

⎡
⎣ J22 −J12 0 0

0 0 −J21 J11
−J21 J11 J22 −J12

⎤
⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂N1

∂ξ
0

∂N2

∂ξ
0

∂N3

∂ξ
0

∂N4

∂ξ
0

∂N1

∂η
0

∂N2

∂η
0

∂N3

∂η
0

∂N4

∂η
0

0
∂N1

∂ξ
0

∂N2

∂ξ
0

∂N3

∂ξ
0

∂N4

∂ξ

0
∂N1

∂η
0

∂N2

∂η
0

∂N3

∂η
0

∂N4

∂η

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1
v1
u2
v2
u3
v3
u4
v4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

i.e. [B] {δ} (2.12.71)

The [B] matrix can be explicitly expressed as

[B]T = 1
4
∣∣J∣∣

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−J22(1 − η)+ J12(1 − ξ) 0 J21(1 − η)− J11(1 − ξ)

0 J21(1 − η)− J11(1 − ξ) −J22(1 − η)+ J12(1 − ξ)

J22(1 − η)+ J12(1 + ξ) 0 −J21(1 − η)− J11(1 + ξ)

0 −J21(1 − η)− J11(1 + ξ) J22(1 − η)+ J12(1 + ξ)

J22(1 + η)− J12(1 + ξ) 0 −J21(1 + η)+ J11(1 + ξ)

0 −J21(1 + η)+ J11(1 + ξ) J22(1 + η)− J12(1 + ξ)

−J22(1 + η)− J12(1 − ξ) 0 J21(1 + η)+ J11(1 − ξ)

0 J21(1 + η)+ J11(1 − ξ) −J22(1 + η)− J12(1 − ξ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.12.72)
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Considering [K]e = ∫∫∫ [B]T [D][B] dv for constant thickness t we can express it as
[K]e = t

∫∫
[B]T [D] [B]dx · dy. It can be shown that, dA = dx · dy = ∣∣J∣∣ dξdη, thus the

element stiffness matrix for the quadrilateral can be expressed as

[K]e = t

1∫
−1

1∫
−1

[B]T [D] [B]
∣∣J∣∣dξ · dη (2.12.73)

Time for a numeric example specifically to appease those engineers, who frown on
spattering of del, zi and phi and would rather have hard Figures on hand to have a
feel on the matter.

Fair enough, to elaborate the theory more clearly we solve following problem.

Example 2.12.1

Given in Figure 2.12.22, the quadrilateral element having nodal coordinates as
shown in the parentheses determine the element stiffness based on iso-parametric
formulation given thickness of the element is 200 mm and Young’s modulus
E = 2 × 108 kN/m2, and Poisson’s ratio ν = 0.25.

4(2,6)

3(4,3)

1(1,1) 2(3,1)

Figure 2.12.22 Four noded isoparametric quadrilateral.

Solution:

This is a plane stress case as such the matrix [D] is given by

[D] = E
1 − ν2

⎡
⎢⎣

1 ν 0
ν 1 0

0 0
1 − ν

2

⎤
⎥⎦

Substituting the value E = 2 × 108 kN/m2 and ν = 0.25 we get

[D] =
⎡
⎣ 2.33 0.533 0

0.533 0.533 0
0 0 0.80

⎤
⎦× 108 kN/m2
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For derivation of stiffness matrix we had shown in the theoretical derivation
2 point Gauss integration would suffice.

Considering

J11 = [(η − 1) x1 + (1 − η) x2 + (1 + η) x3 − (1 + η) x4] /4

J12 = [(η − 1) y1 + (1 − η) y2 + (1 + η) y3 − (1 + η) y4] /4

J21 = [(ξ − 1) x1 − (1 + ξ) x2 + (1 + ξ) x3 + (1 − ξ) x4] /4

J22 = [(ξ − 1) y1 − (1 + ξ) y2 + (1 + ξ) y3 + (1 − ξ) y4] /4 and∣∣J∣∣ = J11 J22 − J12 J21

Based on above the nodal coordinates and the Jacobian parameters are as
derived hereafter

Node x y ξ η J11 J12 J21 J22 Det-J

1 1 1 −0.57735027 −0.57735027 1 −0.3169 0.5 2.1830 2.341506351
2 3 1 0.57735027 −0.57735027 1 −0.3169 0.5 1.3169 1.475480947
3 4 3 0.57735027 0.57735027 1 −1.1830 0.5 1.3169 1.908493649
4 2 6 −0.57735027 0.57735027 1 −1.1830 0.5 2.1830 2.774519053

We will now determine the matrix [B] and the stiffness t[B]T [D][B]|J| at each
Gauss point at the 4 sample points calling them kg1, kg2, kg3, kg4 where

[B]T = 1
4
∣∣J∣∣

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−J22(1 − η)+ J12(1 − ξ) 0 J21(1 − η)− J11(1 − ξ)

0 J21(1 − η)− J11(1 − ξ) −J22(1 − η)+ J12(1 − ξ)

J22(1 − η)+ J12(1 + ξ) 0 −J21(1 − η)− J11(1 + ξ)

0 −J21(1 − η)− J11(1 + ξ) J22(1 − η)+ J12(1 + ξ)

J22(1 + η)− J12(1 + ξ) 0 −J21(1 + η)+ J11(1 + ξ)

0 −J21(1 + η)+ J11(1 + ξ) J22(1 + η)− J12(1 + ξ)

−J22(1 + η)− J12(1 − ξ) 0 J21(1 + η)+ J11(1 − ξ)

0 J21(1 + η)+ J11(1 − ξ) −J22(1 + η)− J12(1 − ξ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

For point 1 the gauss points are (−1/
√

3, −1/
√

3) for which50

[B] =
−0.42102 0 0.3533 0 0.112815 0 −0.0451 0

0 −0.0842 0 −0.1293 0 0.0225 0 0.1909

−0.0842 −0.4210 −0.1293 0.3533 0.0225 0.1128 0.1909 −0.0451

50 The dotted line shown in the following page is a match line, meaning the matrix extend beyond

the line in the same sequence.
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[
kg1
] = t [B]T [D] [B]

∣∣J∣∣

[kg1] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.80 × 10 + 07 2.21 × 10 + 06 −1.45 × 10 + 07 2.45 × 10 + 05 |
2.21 × 10 + 06 7.35 × 10 + 06 1.30 × 10 + 06 −4.49 × 10 + 06 |

−1.45 × 10 + 07 1.30 × 10 + 06 1.31 × 10 + 07 −2.85 × 10 + 06 |
2.45 × 10 + 05 −4.49 × 10 + 06 −2.85 × 10 + 06 6.35 × 10 + 06 |

−4.82 × 10 + 06 −5.93 × 10 + 05 3.87 × 10 + 06 −6.57 × 10 + 04 |
−5.93 × 10 + 05 −1.97 × 10 + 06 −3.48 × 10 + 05 1.20 × 10 + 06 |

1.30 × 10 + 06 −2.92 × 10 + 06 −2.52 × 10 + 06 2.67 × 10 + 06 |
−1.87 × 10 + 06 −8.95 × 10 + 05 1.90 × 10 + 06 −3.06 × 10 + 06 |

| −4.82 × 10 + 06 −5.93 × 10 + 05 1.30 × 10 + 06 −1.87 × 10 + 06

| −5.93 × 10 + 05 −1.97 × 10 + 06 −2.92 × 10 + 06 −8.95 × 10 + 05

| 3.87 × 10 + 06 −3.48 × 10 + 05 −2.52 × 10 + 06 1.90 × 10 + 06

| −6.57 × 10 + 04 1.20 × 10 + 06 2.67 × 10 + 06 −3.06 × 10 + 06

| 1.29 × 10 + 06 1.59 × 10 + 05 −3.47 × 10 + 05 5.00 × 10 + 05

| 1.59 × 10 + 05 5.28 × 10 + 05 7.82 × 10 + 05 2.40 × 10 + 05

| −3.47 × 10 + 05 7.82 × 10 + 05 1.57 × 10 + 06 −5.38 × 10 + 05

| 5.00 × 10 + 05 2.40 × 10 + 05 −5.38 × 10 + 05 3.72 × 10 + 06

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

For point 2 the gauss points are 1/
√

3, −1/
√

3 for which,

[kg2] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.46 × 10 + 07 −9.32 × 10 + 05 −1.24 × 10 + 07 2.87 × 10 + 06 |
−9.32 × 10 + 05 5.62 × 10 + 06 3.92 × 10 + 06 −5.48 × 10 + 06 |
−1.24 × 10 + 07 3.92 × 10 + 06 1.23 × 10 + 07 −4.96 × 10 + 06 |

2.87 × 10 + 06 −5.48 × 10 + 06 −4.96 × 10 + 06 1.01 × 10 + 07 |
−5.58 × 10 + 06 −1.94 × 10 + 06 3.39 × 10 + 06 7.59 × 10 + 05 |
−1.17 × 10 + 06 −1.60 × 10 + 06 −2.93 × 10 + 05 −1.89 × 10 + 06 |

3.31 × 10 + 06 −1.05 × 10 + 06 −3.28 × 10 + 06 1.33 × 10 + 06 |
−7.69 × 10 + 05 1.47 × 10 + 06 1.33 × 10 + 06 −2.70 × 10 + 06 |

| −5.58 × 10 + 06 −1.17 × 10 + 06 3.31 × 10 + 06 −7.69 × 10 + 05

| −1.94 × 10 + 06 −1.60 × 10 + 06 −1.05 × 10 + 06 1.47 × 10 + 06

| 3.39 × 10 + 06 −2.93 × 10 + 05 −3.28 × 10 + 06 1.33 × 10 + 06

| 7.59 × 10 + 05 −1.89 × 10 + 06 1.33 × 10 + 06 −2.70 × 10 + 06

| 3.10 × 10 + 06 1.38 × 10 + 06 −9.08 × 10 + 05 −2.03 × 10 + 05

| 1.38 × 10 + 06 2.99 × 10 + 06 7.84 × 10 + 04 5.07 × 10 + 05

| −9.08 × 10 + 05 7.84 × 10 + 04 8.80 × 10 + 05 −3.56 × 10 + 05

| −2.03 × 10 + 05 5.07 × 10 + 05 −3.56 × 10 + 05 7.23 × 10 + 05

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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For point 3 the gauss points are 1/
√

3, 1/
√

3 for which,

[kg3] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.29 × 10 + 06 1.59 × 10 + 05 −3.47 × 10 + 05 5.00 × 10 + 05 |
1.59 × 10 + 05 5.28 × 10 + 05 7.82 × 10 + 05 2.40 × 10 + 05 |

−3.47 × 10 + 05 7.82 × 10 + 05 1.57 × 10 + 06 −5.38 × 10 + 05 |
5.00 × 10 + 05 2.40 × 10 + 05 −5.38 × 10 + 05 3.72 × 10 + 06 |

−4.82 × 10 + 06 −5.93 × 10 + 05 1.30 × 10 + 06 −1.87 × 10 + 06 |
−5.93 × 10 + 05 −1.97 × 10 + 06 −2.92 × 10 + 06 −8.95 × 10 + 05 |

3.87 × 10 + 06 −3.48 × 10 + 05 −2.52 × 10 + 06 1.90 × 10 + 06 |
−6.57 × 10 + 04 1.20 × 10 + 06 2.67 × 10 + 06 −3.06 × 10 + 06 |

| −4.82 × 10 + 06 −5.93 × 10 + 05 3.87 × 10 + 06 −6.57 × 10 + 04

| −5.93 × 10 + 05 −1.97 × 10 + 06 −3.48 × 10 + 05 1.20 × 10 + 06

| 1.30 × 10 + 06 −2.92 × 10 + 06 −2.52 × 10 + 06 2.67 × 10 + 06

| −1.87 × 10 + 06 −8.95 × 10 + 05 1.90 × 10 + 06 −3.06 × 10 + 06

| 1.80 × 10 + 07 2.21 × 10 + 06 −1.45 × 10 + 07 2.45 × 10 + 05

| 2.21 × 10 + 06 7.35 × 10 + 06 1.30 × 10 + 06 −4.49 × 10 + 06

| −1.45 × 10 + 07 1.30 × 10 + 06 1.31 × 10 + 07 −2.85 × 10 + 06

| 2.45 × 10 + 05 −4.49 × 10 + 06 −2.85 × 10 + 06 6.35 × 10 + 06

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

For point 4 the gauss points are −1/
√

3, 1/
√

3 for which,

[kg4] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.10 × 10 + 06 1.38 × 10 + 06 −9.08 × 10 + 05 −2.03 × 10 + 05 |
1.38 × 10 + 06 2.99 × 10 + 06 7.84 × 10 + 04 5.07 × 10 + 05 |

−9.08 × 10 + 05 7.84 × 10 + 04 8.80 × 10 + 05 −3.56 × 10 + 05 |
−2.03 × 10 + 05 5.07 × 10 + 05 −3.56 × 10 + 05 7.23 × 10 + 05 |
−5.58 × 10 + 06 −1.17 × 10 + 06 3.31 × 10 + 06 −7.69 × 10 + 05 |
−1.94 × 10 + 06 −1.60 × 10 + 06 −1.05 × 10 + 06 1.47 × 10 + 06 |

3.39 × 10 + 06 −2.93 × 10 + 05 −3.28 × 10 + 06 1.33 × 10 + 06 |
7.59 × 10 + 05 −1.89 × 10 + 06 1.33 × 10 + 06 −2.70 × 10 + 06 |

| −5.58 × 10 + 06 −1.94 × 10 + 06 3.39 × 10 + 06 7.59 × 10 + 05

| −1.17 × 10 + 06 −1.60 × 10 + 06 −2.93 × 10 + 05 −1.89 × 10 + 06

| 3.31 × 10 + 06 −1.05 × 10 + 06 −3.28 × 10 + 06 1.33 × 10 + 06

| −7.69 × 10 + 05 1.47 × 10 + 06 1.33 × 10 + 06 −2.70 × 10 + 06

| 1.46 × 10 + 07 −9.32 × 10 + 05 −1.24 × 10 + 07 2.87 × 10 + 06

| −9.32 × 10 + 05 5.62 × 10 + 06 3.92 × 10 + 06 −5.48 × 10 + 06

| −1.24 × 10 + 07 3.92 × 10 + 06 1.23 × 10 + 07 −4.96 × 10 + 06

| 2.87 × 10 + 06 −5.48 × 10 + 06 −4.96 × 10 + 06 1.01 × 10 + 07

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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The total stiffness matrix for element is now given by

[K] e =
4∑

i=1

[
k gi
] = [kg1

]+ [kg2
]+ [kg3

]+ [kg4
]

or

[K]e =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.70 × 10 + 07 2.82 × 10 + 06 −2.81 × 10 + 07 3.41 × 10 + 06 |
2.82 × 10 + 06 1.65 × 10 + 07 6.08 × 10 + 06 −9.22 × 10 + 06 |

−2.81 × 10 + 07 6.08 × 10 + 06 2.78 × 10 + 07 −8.70 × 10 + 06 |
3.41 × 10 + 06 −9.22 × 10 + 06 −8.70 × 10 + 06 2.09 × 10 + 07 |

−2.08 × 10 + 07 −4.29 × 10 + 06 1.19 × 10 + 07 −1.94 × 10 + 06 |
−4.29 × 10 + 06 −7.15 × 10 + 06 −4.61 × 10 + 06 −1.16 × 10 + 05 |

1.19 × 10 + 07 −4.61 × 10 + 06 −1.16 × 10 + 07 7.23 × 10 + 06 |
−1.94 × 10 + 06 −1.16 × 10 + 05 7.23 × 10 + 06 −1.15 × 10 + 07 |

| −2.08 × 10 + 07 −4.29 × 10 + 06 1.19 × 10 + 07 −1.94 × 10 + 06
| −4.29 × 10 + 06 −7.15 × 10 + 06 −4.61 × 10 + 06 −1.16 × 10 + 05
| 1.19 × 10 + 07 −4.61 × 10 + 06 −1.16 × 10 + 07 7.23 × 10 + 06
| −1.94 × 10 + 06 −1.16 × 10 + 05 7.23 × 10 + 06 −1.15 × 10 + 07
| 3.70 × 10 + 07 2.82 × 10 + 06 −2.81 × 10 + 07 3.41 × 10 + 06
| 2.82 × 10 + 06 1.65 × 10 + 07 6.08 × 10 + 06 −9.22 × 10 + 06
| −2.81 × 10 + 07 6.08 × 10 + 06 2.78 × 10 + 07 −8.70 × 10 + 06
| 3.41 × 10 + 06 −9.22 × 10 + 06 −8.70 × 10 + 06 2.09 × 10 + 07

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This matrix will always be symmetric having diagonal element (Kii) as positive.
The correctness can be established by sum of any particular row or column – that
will be zero.

2.12.18 Other form of isoparametric elements

We had shown earlier that for isoparametric element the geometric function is
given by

x =
4∑

i=1

Gixi and y =
4∑

i=1

Giyi (2.12.74)

which when transferred to iso-parametric domain gets transferred to x = ∑4
i=1 Nixi

and y = ∑4
i=1 Ni yi. Here the term Gi defines the geometric interpolation function

for the element and the term Ni is the polynomial function which describes the
displacement at the node.

When Gi = Ni the element is called iso-parametric.
For Gi < Ni the element is called sub-parametric, and for Gi > Ni, they are

called super-parametric element. Though isoparametric elements are the most popular
sometimes the other forms as mentioned above are also used.
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2.12.19 Iso-parametric formulation of CST element

We had derived the element stiffness matrix of CST element explicitly based on gener-
alized global co-ordinate. We will see through Figure 2.12.23 how this element can be
derived also from the iso-parametric formulation. We are not re-inventing the wheel
for this derivation has an important bearing subsequently for deriving the element
stiffness of four-nodded quadrilateral by a different method that we will study later.

Since the element is in natural coordinate, we write x = ∑3
i=1 Nixi and y =∑3

i=1 Niyi.
The above expression can be expanded in natural coordinate as

x = (x1 − x3) ξ + (x2 − x3)η + x3 and y = (y1 − y3) ξ + (y2 − y3)η + y3

(2.12.75)

We had shown earlier while deriving the stiffness matrix [K]e for the quadrilateral
element that relation between global and natural co-ordinate is given by

⎧⎪⎪⎨
⎪⎪⎩
∂u
∂ξ

∂u
∂η

⎫⎪⎪⎬
⎪⎪⎭ = [J]

⎧⎪⎪⎨
⎪⎪⎩
∂u
∂x
∂u
∂y

⎫⎪⎪⎬
⎪⎪⎭ where [J] =

[
J11 J12

J21 J22

]
=

⎡
⎢⎢⎣
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

⎤
⎥⎥⎦

Differentiating the expression of x and y furnished above we have

[J] =
[
x1 − x3 y1 − y3
x2 − x3 y2 − y3

]

Thus [J]−1 = 1
|J|
[

y2 − y3 −(y1 − y3)

−(x2 − x3) x1 − x3

]
and |J| = (x1 − x3) (y2 − y3) −

(y1 − y3)(x2 − x3)

3(x3,y3)

1(x1,y1) 2(x2,y2)
u2

v2

v1

v3

u1

u3

x

y

Figure 2.12.23 A CST element in global and natural coordinate.
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Thus

⎧⎪⎪⎨
⎪⎪⎩
∂u
∂x
∂u
∂y

⎫⎪⎪⎬
⎪⎪⎭ = [J]−1

⎧⎪⎪⎨
⎪⎪⎩
∂u
∂ξ

∂u
∂η

⎫⎪⎪⎬
⎪⎪⎭; or

⎧⎪⎪⎨
⎪⎪⎩
∂u
∂x
∂u
∂y

⎫⎪⎪⎬
⎪⎪⎭ = 1∣∣J∣∣

[
y2 − y3 −(y1 − y3)

−(x2 − x3) x1 − x3

] ⎧⎪⎪⎨
⎪⎪⎩
∂u
∂ξ

∂u
∂η

⎫⎪⎪⎬
⎪⎪⎭.

This gives the relation between the global and natural coordinate. Similarly for other
direction⎧⎪⎪⎨

⎪⎪⎩
∂v
∂x
∂v
∂y

⎫⎪⎪⎬
⎪⎪⎭ = 1∣∣J∣∣

⎡
⎣ y2 − y3 −(y1 − y3)

−(x2 − x3) x1 − x3

⎤
⎦
⎧⎪⎨
⎪⎩
∂v
∂ξ
∂v
∂η

⎫⎪⎬
⎪⎭

The strain matrix is given by

⎧⎨
⎩
εx
εy
γxy

⎫⎬
⎭ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂u
∂x
∂v
∂y

∂u
∂y

+ ∂v
∂x

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

= 1∣∣J∣∣

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(y2 − y3)
∂u
∂ξ

− (y1 − y3)
∂u
∂η

− (x2 − x3)
∂v
∂ξ

+ (x1 − x3)
∂v
∂η

− (x2 − x3)
∂u
∂ξ

+ (x1 − x3)
∂u
∂η

+ (y2 − y3)
∂v
∂ξ

− (y1 − y3)
∂v
∂η

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.12.76)

Since the formulation is iso-parametric we can assume displacement functions as

u = (u1 − u3) ξ + (u2 − u3)η + u3 and v = (v1 − v3) ξ + (v2 − v3)η + v3
(2.12.77)

Substituting the above values of u and v in strain matrix we have

⎧⎨
⎩
εx
εy
γxy

⎫⎬
⎭ = 1∣∣J∣∣

⎧⎪⎪⎨
⎪⎪⎩

(y2 − y3) u1 + (y3 − y1) u2 + (y1 − y2)u3
(x3 − x2) v1 + (x1 − x3) v2 + (x2 − x1) v3

(x3 − x2) u1 + (y2 − y3)v1 + (x1 − x3)u2 + (y3 − y1)v2
+(x2 − x1)u3 + (y1 − y2)v3

⎫⎪⎪⎬
⎪⎪⎭

The above can be further expressed as

⎧⎨
⎩
εx
εy
γxy

⎫⎬
⎭ = 1∣∣J∣∣

⎡
⎣y2 − y3 0 y3 − y1 0 y1 − y2 0

0 x3 − x2 0 x1 − x3 0 x2 − x1
x3 − x2 y2 − y3 x1 − x3 y3 − y1 x2 − x1 y1 − y2

⎤
⎦
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u1
v1
u2
v2
u3
v3

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
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i.e {ε} = [B] {δ} which gives

[B] = 1∣∣J∣∣
⎡
⎣y2 − y3 0 y3 − y1 0 y1 − y2 0

0 x3 − x2 0 x1 − x3 0 x2 − x1
x3 − x2 y2 − y3 x1 − x3 y3 − y1 x2 − x1 y1 − y2

⎤
⎦ (2.12.78)

Considering [K]e = ∫∫∫ [B]T [D] [B] dv for constant thickness t we can express it as

[K]e = Ae × t × [B]T [D] [B] (2.12.79)

In this case as the element is independent of the orientation of the global axes
x and y, Gauss integration is not required.

Example 2.12.2

For a plane stress triangular element as shown in Figure 2.12.24 calculate the
element stiffness matrix based on isoparametric formulation. Consider Emat =
2.85 × 108 kN/m2 and ν = 0.25. The thickness of the element is 0.25 m.

3(2,4)

1(1,1) 2(3,1)

Figure 2.12.24

Solution:

The nodes and their coordinates are as shown hereafter in tabular form

Node Number xi yi

1 1 1
2 3 1
3 2 4



214 Dynamics of Structure and Foundation: 1. Fundamentals

Thickness of triangle = 0.25 m; Area of triangle = 3.0 m2

[D] = E
1 − ν2

⎡
⎢⎣

1 ν 0
ν 1 0

0 0
1 − ν

2

⎤
⎥⎦ =

⎡
⎣2.99 × 108 7.47 × 107 0

7.47 × 107 2.99 × 108 0
0 0 1.12 × 108

⎤
⎦

|J| = (x1 − x3)(y2 − y3)− (y1 − y3)(x2 − x3) which gives |J| = (1 − 2)(1 − 4)−
(1 − 4)(3 − 2) = 6

[B] = 1∣∣J∣∣
⎡
⎣y2 − y3 0 y3 − y1 0 y1 − y2 0

0 x3 − x2 0 x1 − x3 0 x2 − x1
x3 − x2 y2 − y3 x1 − x3 y3 − y1 x2 − x1 y1 − y2

⎤
⎦

or, [B] =
⎡
⎣ −0.5 0 0.5 0 0 0

0 −0.16667 0 −0.16667 0 0.33333
−0.16667 −0.5 −0.16667 0.5 0.3333 0

⎤
⎦

Considering the stiffness matrix as [K]e = Ae × t × [B]T [D] [B] we have

[K]e =
5.83 × 10+07 1.17 × 10+07 −5.37 × 10+07 −2.33 × 10+06 −4.67 × 10+06 −9.33 × 10+06

1.17 × 10+07 2.72 × 10+07 2.33 × 10+06 −1.48 × 10+07 −1.40 × 10+07 −1.24 × 10+07

−5.37 × 10+07 2.33 × 10+06 5.83 × 10+07 −1.17 × 10+07 −4.67 × 10+06 9.33 × 10+06

−2.33 × 10+06 −1.48 × 10+07 −1.17 × 10+07 2.72 × 10+07 1.40 × 10+07 −1.24 × 10+07

−4.67 × 10+06 −1.40 × 10+07 −4.67 × 10+06 1.40 × 10+07 9.33 × 10+06 0.00 × 10+00

−9.33 × 10+06 −1.24 × 10+07 9.33 × 10+06 −1.24 × 10+07 0.00 × 10+00 2.49 × 10+07

2.12.20 Condensation – The Houdini51 trick
of vanishing nodes

Many of you must have seen a magician perform on stage, vanishing before your eyes
a number of objects like a rabbit, pigeon coins etc. It is of course an illusion, for the
objects do not actually vanish and are very much there. The magician only creates
an illusion that this is gone. Condensation technique is also something very similar
to this. It is a vanishing or an elimination trick where the desired or an unwanted
degree of freedom vanishes from the matrix reducing the size, though the effect of the
eliminated degree of freedom is still retained in the original matrix.

This particular technique has great application in FEM and structural dynamics for
developing compound element and as an eigen-value economizer respectively. Since

51 Houdini was a great magician who pioneered the art of vanishing objects before the audience, which in
technical term is called “Shuffling”. In professional magician’s circle the art of vanishing an object is
popularly known as “Doing a Houdini”.
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the reduction is carried out over static equilibrium equation the method is also called
“Static Condensation Technique” among finite element analysts.

Let us consider the static equilibrium condition in matrix notation

[[K11] [K12]
[K21] [K22]

]{{u1}
{u2}

}
=
{{P1}
{P2}

}
(2.12.80)

where K11, K12 . . . . . .K22 etc. are stiffness of the system where they could either be
a number or a sub-matrix, u1, u2 are displacements which are either a number or a
sub-matrix and P1 and P2 are nodal loads acting on u1 and u2.

We presume that for some reason we want to eliminate the u2 degree of freedom
from the matrix.

To eliminate u2 we expand the above equilibrium equation to get

[K11] {u1} + [K12] {u2} = {P1} and [K21] {u1} + [K22] {u2} = {P2} (2.12.81)

From the second equation we have

{u2} = {P2} − [K21] {u1}
[K22]

= [K22]−1 {{P2} − [K21] {u1}} (2.12.82)

Substituting this in the first equation we have

[K11] [u1] + [K12] {[K22]−1 [[P2] − [K21] [u1]]} = [P1] (2.12.83)

The above on simplification gives

[[K11] − [K12] [K22]−1 [K21]]{u1} = {P1} − [K12] [K22]−1 {P2} (2.12.84)

Considering [Kc] and {Pc} as condensed stiffness and load matrix we have

[Kc] {u1} = {Pc} (2.12.85)

where [Kc] = [[K11] − [K12] [K22]−1 [K21]] and {Pc} = {P1} − [K12] [K22]−1 {P2}

Example 2.12.3

For a particular system the stiffness and load matrix are as given hereafter

[K] =

⎡
⎢⎢⎣

10 −5 0 4
−5 20 2 4
0 2 40 12
4 4 12 400

⎤
⎥⎥⎦ and {P} =

⎧⎪⎪⎨
⎪⎪⎩

100
20
50
–10

⎫⎪⎪⎬
⎪⎪⎭
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The equilibrium equation is given by [K] {u} = {P} where {u}T =
〈u1 u2 u3 u4〉.

Eliminate u4 from the system by static condensation and compare the values
of u1, u2 and u3 with the original matrix.

Solution:

Here considering [K] {u} = {P} we have

⎡
⎢⎢⎢⎢⎣

10 −5 0 | 4
−5 20 2 | 4
0 2 40 | 12

−− −− −− −− −−
4 4 12 | 400

⎤
⎥⎥⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

u1
u2
u3
u4

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

100
20
50

−10

⎫⎪⎪⎬
⎪⎪⎭

Since we want to eliminate u4 we partition the matrix as shown by dotted line
representing the above matrix as

[{K11} {K12}
{K21} {K22}

]
; where [K11] =

⎡
⎣10 −5 0

−5 20 2
0 2 40

⎤
⎦, [K12] =

⎧⎨
⎩

4
4
12

⎫⎬
⎭,

[K21] = [4 4 12
]

, [K22] = 400

Considering the expression

[Kc] = [[K11] − [K12] [K22]−1 [K21]], we have

[Kc] =
⎡
⎣10 −5 0
−5 20 2
0 2 40

⎤
⎦− 1

400

⎡
⎣4

4
12

⎤
⎦[4 4 12

]

=
⎡
⎣ 9.96 −5.04 −0.12

−5.4 19.96 1.88
−0.12 1.88 39.64

⎤
⎦

The condensed load matrix is given by

{Pc} = {P1} − [K12] [K22]−1 {P2} ;

{Pc} =
⎧⎨
⎩

100
20
50

⎫⎬
⎭− −10

400

⎧⎨
⎩

4
4

12

⎫⎬
⎭ =

⎧⎨
⎩

100.1
20.1
50.3

⎫⎬
⎭

Substituting the above values in the expression [Kc] {uc} = {Pc} and solving in
math-cad we have
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⎩

u1
u2
u3

⎫⎬
⎭ =

⎧⎨
⎩

12.061032
3.947161
1.118231

⎫⎬
⎭ the original matrix gives the values as

⎧⎪⎪⎨
⎪⎪⎩

u1
u2
u3
u4

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

12.061032
3.947161
1.118231

−0.218629

⎫⎪⎪⎬
⎪⎪⎭.

The results are found to be exactly matching in this case.

2.12.21 Alternative method of deriving a quadrilateral
element

Element stiffness matrix of a quadrilateral element can also be derived from assemblage
of four CST elements as shown in Figure 2.12.25.

In this case, after generating the element stiffness matrix for each of the four CST
elements they are assembled to form the quadrilateral element as shown in the figure.

Since each of the CST elements has two degrees of freedom per node the global
assemblage gives a matrix that has an order of 10 × 10. While that of a normal
quadrilateral element is 8 × 8.

This is achieved by eliminating the node 5 (marked by a dotted circle in the figure)
by means of static condensation. One of the CST elements is shown in Figure 2.12.26.

8 6

4 7 5 
3

10

9

5

2
4

1
3

1 2

Figure 2.12.25 Four-nodded quadrilateral as an assemblage of four CST elements.

f

e

b
d

a  
c

Figure 2.12.26 A CST element with local degrees of freedom.
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Let the element stiffness matrix for an element i be expressed as

[K]i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(K11)i (K12)i (K13)i (K14)i (K15)i (K16)i

(K21)i (K22)i (K23)i (K24)i (K25)i (K26)i

(K31)i (K32)i (K33)i (K34)i (K35)i (K36)i

(K41)i (K42)i (K43)i (K44)i (K45)i (K46)i

(K51)i (K52)i (K53)i (K54)i (K55)i (K56)i

(K61)i (K62)i (K63)i (K64)i (K65)i (K66)i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.12.86)

Here the subscript i outside the parenthesis represents the element number.
The local and global coordinate relations are as given hereafter

Element number Local coordinate a b c d e f

1 Global coordinate 1 2 3 4 9 10
2 Global coordinate 3 4 5 6 9 10
3 Global coordinate 5 6 7 8 9 10
4 Global coordinate 1 2 7 8 9 10

Assembling the four elements we get the global matrix as shown hereafter

[K]G =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(K11)1 + (K11)4 (K12)1 + (K12)4 (K13)1 (K14)1 |
(K21)1 + (K21)4 (K22)1 + (K11)2 + (K22)4 (K23)1 + (K12)2 (K24)1 |
(K31)1 (K32)1 + (K21)2 (K33)1 + (K22)2 (K34)1 |
(K41)1 (K42)1 (K43)1 (K44)1 |
0 (K31)2 (K32)2 0 |
0 (K41)2 (K42)2 0 |
(K31)4 (K32)4 0 0 |
(K41)4 (K42)4 0 0 |
(K51)1 + (K51)4 (K52)1 + (K51)2 + (K52)4 (K53)1 + (K53)2 (K54)1 |
(K61)1 + (K61)4 (K62)1 + (K61)2 + (K62)4 (K63)1 + (K61)2 (K64)1 |

| 0 0 (K13)4 (K14)4 |
| (K13)2 (K14)2 (K23)4 (K24)4 |
| (K23)2 (K24)2 0 0 |
| 0 0 0 0 |
| (K33)2 + (K11)3 (K34)2 + (K12)3 (K13)3 (K14)3 |
| (K43)2 + (K21)3 (K44)2 + (K22)3 (K23)3 (K24)3 |
| (K31)3 (K32)3 (K33)3 + (K33)4 (K34)3 + (K34)4 |
| (K41)3 (K42)3 (K43)3 + (K43)4 (K44)3 + (K44)4 |
| (K53)2 + (K51)3 (K54)2 + (K52)3 (K53)3 + (K53)4 (K54)3 + (K54)4 |
| (K63)2 + (K61)3 (K64)2 + (K62)3 (K63)3 + (K63)4 (K64)3 + (K64)4 |
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| (K15)1 + (K15)4 (K16)1 + (K16)4
| (K25)1 + (K15)2 + (K25)4 (K26)1 + (K16)2 + (K26)4
| (K35)1 + (K35)2 (K36)1 + (K36)2
| (K45)1 (K46)1
| (K35)2 + (K15)3 (K36)2 + (K16)3
| (K45)2 + (K25)3 (K46)2 + (K26)3
| (K35)3 + (K35)4 (K36)3 + (K36)4
| (K45)3 + (K45)4 (K46)3 + (K46)4
| (K55)1 + (K55)2 + (K55)3 + (K55)4 (K56)1 + (K56)2 + (K56)3 + (K56)4
| (K65)1 + (K65)2 + (K65)3 + (K65)4 (K66)1 + (K66)2 + (K66)3 + (K66)4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The global displacement vector is given by

{U}T = 〈u1 u2 u3 u4 u5 u6 u7 u8 u9 u10〉 (2.12.87)

Once the global matrix is formed the displacements u9 and u10 which are the
displacements for the internal node needs to be condensed out. This crunches the
assembled 10 × 10 matrix to the desired 8 × 8 matrix for a four nodded quadrilateral
element.

2.12.22 The Reverse Logic – How correct it is?

Many people believe that since a quadrilateral is an improved element over CST and
because a quadrilateral element can be derived from assemblage of 4 CST the reverse
is also true.

That is, a CST may be obtained from a quadrilateral (having nodes i, j, k, l) by
defining k = l and this will give an improved result. If an element is defined in such
a fashion in any standard commercial FEM software it will not destabilize and would
indeed give a stiffness matrix that is symmetric, but on comparison it has been found
that in such degenerated element error induced is quite high and should be avoided as
far as practicable.

2.12.23 Incompatible or Non-conforming
element – Where two wrongs make one right52

It is unfortunate that many users who use FEM almost regularly do not appreciate the
power of this element and how much effort can be reduced by judicious use of this.

We had stated earlier that Rectangular and Quadrilateral Elements though gives
better results than CST are not so accurate under flexural load. However for cases
such as shown in Figure 2.12.27, the flexural behavior of the system is inevitable.

52 Comment of Prof. G. Strang, Dept. of Mathematics-MIT, on reviewing Prof Ed Wilson’s derivation of
the maverick formulation.



220 Dynamics of Structure and Foundation: 1. Fundamentals

P

A Cantilever Girder under Point Load Slope stability of an Earth Dam

Figure 2.12.27 Systems where flexural behavior dominates.

y

2a         

x
2b

Rectangular element

Ideal Behavior under Flexure

Figure 2.12.28 Rectangular element ideal deformation under flexure.

So, what do we do, if we want to do a FEM analysis? Shall we accept such erro-
neous result? Or abandon the use of such element for the problems as posed above,
proclaiming FEM a failure?

The situation is not so bad as it seems for people especially not so conversant with
non-conforming element would usually try to overcome this by

• Use of refined meshes in the area of high stress gradient.
• Use of higher order elements whose inherent polynomial function – the very

backbone of stiffness matrix, are much better equipped to simulate this behavior.

The above solutions are not without its problem. For instance in the earth dam
problem it is difficult to identify the area where the major stress will be induced (the
critical slip circle), and one has to make a number of trial runs before arriving at a
correct refined mesh zone – this means more effort, more time = “More Money”.

While using higher order elements the number of nodes increases significantly result-
ing in more input effort and the model in hand, if it is big the cost of run can surely
become quite expensive.

The third alternative is to improve the performance of the 4 nodded quadrilateral
(Figure 2.12.28) itself by inducing correction to it so that its flexural behavior gets
better. This was what was attempted by Wilson et al. (1973) and we would like to
discuss it here.

Previously while introducing this element to you, we had just mentioned about its
inadequacy against flexural behavior without trying to analyze – why it happens?
Except mentioning the fact that parasitic shear locks the meshes.
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In this section we would examine the behavior of this element a bit more carefully.
From our knowledge of strength of material we know that for a rectangular section

under flexure

σx = E
R

y, σy = τxy = 0, (2.12.88)

where R = radius of curvature of the beam; y = distance of extreme fiber from the
neutral axis and E = modulus of elasticity.

The strain within the element is given by

εx = ∂u
∂x

= y
R

; εy = ∂v
∂y

= −νy
R

and γxy = ∂u
∂y

+ ∂v
∂x

= 0 (2.12.89)

Integrating the strain expression in x direction we have

u = xy
R

+ C1, (2.12.90)

where C1 is an integration constant.
Now since at the origin (i.e. the centroid of the section) we have at x = 0 u = 0,

imposing this boundary condition we have C1 = 0 which gives

u = xy
R

(2.12.91)

Similarly integrating the strain equation in y direction we have, v = −νy2

2R
+ C2.

Since γxy = ∂u
∂y

+ ∂v
∂x

= 0 we have
∂v
∂x

= −∂u
∂y

= − x
R

[
∵ u = xy

R

]

Thus v = − x2

2R + C3. Hence, v can be expressed as v = − x2

2R − νy2

2R + C2 + C3.

➔ v = − x2

2R
− νy2

2R
+ C4, (2.12.92)

where C4 = C2 + C3
Since v = 0 across the cross section of the element, at four corners we have v = 0

at x = ±a and y = ±b ⇒ C4 = a2

2R + νb2

2R which gives

v =
(

1 − x2

a2

)
a2

2R
+
(

1 − y2

b2

)
νb2

2R
(2.12.93)
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Now assuming, α1 = 1
R ,α2 = a2

2R and α3 = b2

2R we can write

u = α1xy; v = α2

(
1 − x2

a2

)
+ α3

(
1 − y2

b2

)
. (2.12.94)

Thus looking at the displacement function it is seen that under flexural mode the
polynomial function for the quadrilateral element simulates correctly the behavior in
x direction. However, for y direction the absence of the quadratic term makes it stiffer
as such is incapable of projecting the flexural behavior properly.

To simulate this behavior Wilson proposed to modify the displacement function as
follows.

He proposed

u = N1u1 + N2u2 + N3u3 + N4u4 + N5α1 + N6α2 and

v = N1v1 + N2v2 + N3v3 + N4v4 + N5α3 + N6α4 (2.12.95)

Here as derived earlier N1 = (1−ξ)(1−η)
4 , N2 = (1+ξ)(1−η)

4 , N3 = (1+ξ)(1+η)
4 , N4 =

(1−ξ)(1+η)
4 and N5 = (1 − ξ2), N6 = (1 − η2) – the two missing terms which

conforming elements do not cater to53.
We had shown earlier while deriving the stiffness matrix [K]e for the conform-

ing quadrilateral element that relation between global and natural co-ordinate is
given by

⎧⎪⎪⎨
⎪⎪⎩
∂u
∂ξ

∂u
∂η

⎫⎪⎪⎬
⎪⎪⎭ = [J]

⎧⎪⎪⎨
⎪⎪⎩
∂u
∂x

∂u
∂y

⎫⎪⎪⎬
⎪⎪⎭ where [J] =

[
J11 J12
J21 J22

]
=

⎡
⎢⎢⎣
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

⎤
⎥⎥⎦ (2.12.96)

Here

x = (1 − ξ) (1 − η)

4
x1 + (1 + ξ) (1 − η)

4
x2 + (1 + ξ) (1 + η)

4
x3

+ (1 − ξ) (1 + η)

4
x4 and

y = (1 − ξ) (1 − η)

4
y1 + (1 + ξ) (1 − η)

4
y2 + (1 + ξ) (1 + η)

4
y3

+ (1 − ξ) (1 + η)

4
y4 (2.12.97)

53 The two wrongs that violate the compatibility law.
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which gives

J11 =
[
(η − 1)

4
x1 + (1 − η)

4
x2 + (1 + η)

4
x3 − (1 + η)

4
x4

]

J12 = 1
4

[(η − 1) y1 + (1 − η) y2 + (1 + η) y3 − (1 + η) y4]
(2.12.98)

J21 = 1
4

[(ξ − 1) x1 − (1 + ξ) x2 + (1 + ξ) x3 + (1 − ξ) x4]

J22 = 1
4

[(ξ − 1) y1 − (1 + ξ) y2 + (1 + ξ) y3 + (1 − ξ) y4]

This displacement relation in terms of the Jacobian matrix can now be expressed as{
∂u
∂x
∂u
∂y

}
= [J]−1

{
∂u
∂ξ

∂u
∂η

}
which can be expanded to

{
∂u
∂x
∂u
∂y

}
= 1∣∣J∣∣

[
J22 −J12

−J21 J11

] { ∂u
∂ξ

∂u
∂η

}
where

the term
∣∣J∣∣ represents the determinant of the Jacobian.

Since the interpolation function remains same for the displacement v, proceeding in
identical manner we have

⎧⎪⎪⎨
⎪⎪⎩
∂v
∂x
∂v
∂y

⎫⎪⎪⎬
⎪⎪⎭ = 1∣∣J∣∣

[
J22 −J12

−J21 J11

]⎧⎪⎪⎨
⎪⎪⎩
∂v
∂ξ

∂v
∂η

⎫⎪⎪⎬
⎪⎪⎭

Thus, the strain matrix can now be expressed as

⎧⎨
⎩
εx
εy
γxy

⎫⎬
⎭ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂u
∂x
∂v
∂y

∂u
∂y

+ ∂v
∂x

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= 1∣∣J∣∣
⎡
⎣ J22 −J12 0 0

0 0 −J21 J11
−J21 J11 J22 −J12

⎤
⎦〈∂u

∂ξ

∂u
∂η

∂v
∂ξ

∂v
∂η

〉T

or

⎧⎨
⎩
εx
εy
γxy

⎫⎬
⎭ = [G]

〈
∂u
∂ξ

∂u
∂η

∂v
∂ξ

∂v
∂η

〉T
where [G] = 1∣∣J∣∣

⎡
⎣ J22 −J12 0 0

0 0 −J21 J11
−J21 J11 J22 −J12

⎤
⎦

Since u =
6∑

i=1
Ni(ξ , η)ui : v =

6∑
i=1

Ni(ξ , η)vi we have

u = N1u1 + N2u2 + N3u3 + N4u4 + N5α1 + N6α2

v = N1v1 + N2v2 + N3v3 + N4v4 + N5α3 + N6α4 (2.12.99)
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This gives
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂ξ
∂u
∂η
∂v
∂ξ
∂v
∂η

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂N1

∂ξ

∂N2

∂ξ

∂N3

∂ξ

∂N4

∂ξ

∂N5

∂ξ

∂N6

∂ξ
0 0 0 0 0 0

∂N1

∂η

∂N2

∂η

∂N3

∂η

∂N4

∂η

∂N5

∂η

∂N6

∂η
0 0 0 0 0 0

0 0 0 0 0 0
∂N1

∂ξ

∂N2

∂ξ

∂N3

∂ξ

∂N4

∂ξ

∂N5

∂ξ

∂N6

∂ξ

0 0 0 0 0 0
∂N1

∂η

∂N2

∂η

∂N3

∂η

∂N4

∂η

∂N5

∂η

∂N6

∂η

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

× 〈u1 u2 u3 u4 α1 α2 v1 v2 v3 v4 α3 α4〉T

⎧⎨
⎩
εx

εy

γxy

⎫⎬
⎭ = [G]

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂N1

∂ξ

∂N2

∂ξ

∂N3

∂ξ

∂N4

∂ξ

∂N5

∂ξ

∂N6

∂ξ
0 0 0 0 0 0

∂N1

∂η

∂N2

∂η

∂N3

∂η

∂N4

∂η

∂N5

∂η

∂N6

∂η
0 0 0 0 0 0

0 0 0 0 0 0
∂N1

∂ξ

∂N2

∂ξ

∂N3

∂ξ

∂N4

∂ξ

∂N5

∂ξ

∂N6

∂ξ

0 0 0 0 0 0
∂N1

∂η

∂N2

∂η

∂N3

∂η

∂N4

∂η

∂N5

∂η

∂N6

∂η

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

× 〈u1 u2 u3 u4 α1 α2 v1 v2 v3 v4 α3 α4〉T

⎧⎨
⎩
εx

εy

γxy

⎫⎬
⎭ = 1

|J|

⎡
⎣ J22 −J12 0 0

0 0 −J21 J11
−J21 J11 J22 −J12

⎤
⎦

× 1
4

⎡
⎢⎢⎣
η − 1 1 − η 1 + η −(1 + η) −8ξ 0 0 0 0 0 0 0
ξ − 1 −(1 + ξ) 1 + ξ 1 − ξ 0 −8η 0 0 0 0 0 0

0 0 0 0 0 0 η − 1 1 − η 1 + η −(1 + η) −8ξ 0
0 0 0 0 0 0 ξ − 1 −(1 + ξ) 1 + ξ 1 − ξ 0 −8η

⎤
⎥⎥⎦

× 〈u1 u2 u3 u4 α1 α2 v1 v2 v3 v4 α3 α4〉T

The above can be adjusted and written as⎧⎨
⎩
εx

εy

γxy

⎫⎬
⎭ = 1

|J|

⎡
⎣ J22 −J12 0 0

0 0 −J21 J11
−J21 J11 J22 −J12

⎤
⎦

× 1
4

⎡
⎢⎢⎣
η − 1 0 (1 − η) 0 (1 + η) 0 −(1 + η) 0 −8ξ 0 0 0
ξ − 1 0 −(1 + ξ) 0 1 + ξ 0 1 − ξ 0 0 −8η 0 0

0 (η − 1) 0 (1 − η) 0 1 + η 0 −(1 + η) 0 0 −8ξ 0
0 ξ − 1 0 −(1 + ξ) 0 1 + ξ 0 1 − ξ 0 0 0 −8η

⎤
⎥⎥⎦

× 〈u1 v1 u2 v2 u3 v3 u4 v4 α1 α2 α3 α4〉T (2.12.100)

{ε} = [ B] {δ} which gives [ B] = 1
4
∣∣J∣∣
⎡
⎣ J22 −J12 0 0

0 0 −J21 J11
−J21 J11 J22 −J12

⎤
⎦

×

⎡
⎢⎢⎣
η − 1 0 (1 − η) 0 (1 + η) 0 −(1 + η) 0 −8ξ 0 0 0
ξ − 1 0 −(1 + ξ) 0 1 + ξ 0 1 − ξ 0 0 −8η 0 0

0 (η − 1) 0 (1 − η) 0 1 + η 0 −(1 + η) 0 0 −8ξ 0
0 ξ − 1 0 −(1 + ξ) 0 1 + ξ 0 1 − ξ 0 0 0 −8η

⎤
⎥⎥⎦

(2.12.101)
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Considering [K]e = t
∫ 1
−1

∫ 1
−1 [B]T [D] [B]

∣∣J∣∣ dξ · dη we can now easily find out the
stiffness matrix whose order would be (12 × 12).

From this matrix we eliminate the internal degrees of freedom α1, α2, α3 & α4 and
crunch it to the desired 8 × 8 matrix.

2.12.24 How tough is this lawbreaker?

In any democratic civilized society that enjoys freedom of speech and work – flaunt-
ing of constitutional law is construed as a criminal offence. The finite element
developers club that has always functioned under a democratic framework54 where
members freely exchanged ideas, formulations55, was no exception. Thus, when
Wilson proposed the novel formulation violating the first law of compatibility, skep-
tics around were in abundance. Fortunately for us, he got away with the crime without
being prosecuted and unlike the proceedings in a criminal court even got praised for
it (Hughes 1974).

In-spite of violating the compatibility condition the element just worked fine giving
excellent result under flexural load-provided the shape of the mesh was a rectangle.
However, if the shape of the mesh was a generic quadrilateral, the stress results were
not so good and under constant displacement condition even the rectangular elements
were found to give erroneous results.

The element was thus only conditionally stable, and as mentioned earlier was
perceived to be a temperamental element. This prompted Taylor56 (1976) to
revise and upgrade the element, so that the deficiencies mentioned above are
eliminated. We present herein this improved element that has great practical
application.

2.12.25 Taylor’s improved incompatible quadrilateral

We had shown earlier that displacement function for incompatible element is
given by

u = N1u1 + N2u2 + N3u3 + N4u4 + N5α1 + N6α2 and

v = N1v1 + N2v2 + N3v3 + N4v4 + N5α3 + N6α4 (2.12.102)

The global coordinates are expressed as

x = N1x1 + N2x2 + N3x3 + N4x4;

y = N1y1 + N2y2 + N3y3 + N4y4 (2.12.103)

54 This was possibly one of the main reasons for the development of this subject to such a great height in
such a short period of time.

55 Including pinching each others source code at times. . . .
56 One of the member along with Prof. Ed.Wilson who proposed this model. . .
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We express the displacement function in generic matrix notation as

{δt} = [N] {δ} + [�] {α} (2.12.104)

where [�] =
[
N5 N6 0 0
0 0 N5 N6

]
and {α}T = 〈α1,α2,α3,α4 〉

For conforming element considering, {ε} = [B] {δ}, the strain equation for the
present case can be written as

{ε} = [B] {δ} + [�′] {α}, (2.12.105)

where [�′] = differentiation of the function [�] with respect to global x and y.
Again for conforming element the stiffness matrix is given by

[K]e =
∫ ∫ ∫

[B]T [D] [B] dv,

for the present case, the stiffness matrix is given by

[K]e =
∫ ∫ ∫ {

[B]T

[�′]T
}

[D] [[B] [�′]] dv or,

[K]e =
[ ∫ ∫ ∫

[B]T [D] [B] dv
∫ ∫ ∫

[B]T [D] [�′]dv∫ ∫ ∫ [�′]T [D] [B] dv
∫ ∫ ∫ [�′]T [D] [�]dv

]
(2.12.106)

i.e.
[[Kδδ] [Kδα]
[Kαδ] [Kαα]

]
=
[∫ ∫ ∫

[B]T [D] [B] dv
∫ ∫ ∫

[B]T [D] [�′]dv∫ ∫ ∫ [�′]T [D] [B] dv
∫ ∫ ∫ [�′]T [D] [�]dv

]

Considering the equilibrium equation, [K] {δ} = {P}, we have

[[Kδδ] [Kδα]
[Kαδ] [Kαα]

]{{δ}
{α}
}

=
{{P}
{0}
}

(2.12.107)

where [Kδδ] represents the stiffness matrix corresponding to the displacement {δ},
while [Kαα] is the stiffness related to the nonconforming displacement {α} and
[Kδα] = [Kαδ].

Let the displacement vector under constant deformation case be {δc}. Under this
condition the displacement vector related to the incompatible mode must not get
activated. From second row of matrix equilibrium relation as stated above
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we have

[Kαδ] {δc} + [Kαα] {α} = {0} (2.12.108)

Since incompatible displacement shall remain inactive, hence {α} = {0}, and it gives

[Kαδ] {δc} = {0} ➔

∫ ∫ ∫
[�′]T [D] [B] {δc} dv = {0} . (2.12.109)

Now considering {ε} = [B] {δ} we can express the above equation as,

∫ ∫ ∫
[�′]T [D] {εc} dv = {0} (2.12.110)

where {εc} is constant strain → considering the displacement as constant.
As the material matrix, [D] is also a constant we may write

∫ ∫ ∫
[�′]T dv = [0]; or

∫ ∫ ∫
[�′] dv = [0]T (2.12.111)

Thus in terms of iso-parametric formulation we have

t

1∫
−1

1∫
−1

[�′] ∣∣J∣∣ dξdη = [0] (2.12.112)

where, [�′] = 1
4|J|
[

J22 −J12

−J21 J11

][
−8ξ 0 0 0

0 0 −8η 0

]
= 1

4

∣∣J∣∣
[

8J22ξ 0 8J12η 0

8J21ξ 0 −8J11η 0

]
;

and t is the thickness in the normal direction of the plane.
Thus we can say that

t

1∫
−1

1∫
−1

[−8J22ξ 0 0 8J12η

8J21ξ 0 0 −8J11η

] ∣∣J∣∣ dξdη = [0] (2.12.113)

It is evident that the above integrals can only be zero when ξ = η = 0; i.e. the
integration is carried out at the centroid of the element, instead of the Gauss points.

The Jacobian matrix evaluated at the centroid of the element is given by

[J] =
[

J11 J12

J21 J22

]
= 1

4

[−x1 + x2 + x3 − x4 −y1 + y2 + y3 − y4

−x1 − x2 + x3 + x4 −y1 − y2 + y3 + y4

]
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➔ [J]−1 = 1
4
∣∣J∣∣
[−y1 − y2 + y3 + y4 y1 − y2 − y3 + y4

x1 + x2 − x3 − x4 −x1 + x2 + x3 − x4

]
;

∣∣J∣∣ = J11 × J22 − J12 × J21

Let the above be expressed as∣∣Jc
∣∣−1 = 1

4

∣∣∣∣∣ jc22 −jc21

−jc12 jc11

∣∣∣∣∣ the Jacobean matrix at centroid and let

∣∣Jg
∣∣−1 = 1

4

∣∣∣∣∣ jg22 −jg21

−jg12 jg11

∣∣∣∣∣ the Jacobean matrix as expressed in Eqn (2.12.96) to

(2.11.98).
Then [B] Matrix is thus expressed as

[B] = 1
4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−jg22(1 − η) jg22(1 − η) jg22(1 + η) |
+jg12(1 − ξ) 0 +jg12(1 − ξ) 0 −Jg

12(1 + ξ) |
jg21(1 − η) −jg21(1 − η) |

0 −jg11(1 − ξ) 0 −jg11(1 + ξ) 0 |
jg21(1 − η) −jg22(1 − η) −jg21(1 − η) jg22(1 − η) −jg21(1 + η) |

−jg11(1 − ξ) +jg12(1 − ξ) −jg11(1 + ξ) +jg12(1 + ξ) +jg11(1 + ξ) |

| −jg22(1 + η)

| 0 +jg11(1 − ξ) 0 −8jc22ξ 8jc12η 0 0

| −jg21(1 − η) jg21(1 + η)

| +jg11(1 + ξ) 0 +jg11(1 − ξ) 0 0 8jc21ξ −8jc11η

| jg22(1 + η) jg21(1 + η) −jg22(1 + η)

| −jg12(1 + ξ) +jg11(1 − ξ) −jg12(1 − ξ) −8jc11ξ −8jc11η −8jc22ξ 8jc12η

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.12.114)

It may be observed that for first 8 columns global Jacobean [J]g is used while for
columns 9 to 12 Jacobean at centroid [J]c is used.

Considering, [K]e = t
∫ 1
−1

∫ 1
−1 [B]T [D] [B]

∣∣J∣∣ dξ · dη, we can now easily formu-
late the element stiffness matrix of order 12 × 12 from which we condense out the
incompatible displacement functions [α]4

i =1 to formulate the desired stiffness matrix
of order 8 × 8.

This element is stable and without the flaws as discussed earlier and is used in a
number of commercially available FEM software.
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Example 2.12.4

Given the quadrilateral element (Figure 2.12.29) having nodal coordinates as
shown in the parentheses determine the element stiffness based on Taylor’s
incompatible formulation given thickness of the element is 200 mm and Young’s
modulus E = 2 × 108 kN/m2, and Poisson’s ratio ν = 0.25.

3(4,3)

2(3,1)1(1,1)

4(2,6)

Figure 2.12.29 Four noded quadrilateral element.

Solution:

This is a plane stress case as such the matrix [D] is given by

[D] = E
1 − ν2

⎡
⎢⎣

1 ν 0
ν 1 0

0 0
1 − ν

2

⎤
⎥⎦ ;

Substituting the value E = 2 × 108 kN/m2 and ν = 0.25, we get

[D] =
⎡
⎣2.33 0.533 0

0.533 0.533 0
0 0 0.80

⎤
⎦× 108 kN/m2

For derivation of stiffness matrix at we had shown in the theoretical derivation
2 point Gauss integration suffice.

Here

[
Jc] =

[
Jc
11 Jc

12

Jc
21 Jc

22

]
= 1

4

[−x1 + x2 + x3 − x4 −y1 + y2 + y3 − y4
−x1 − x2 + x3 + x4 −y1 − y2 + y3 + y4

]

∣∣Jc
∣∣ = Jc

11 × Jc
22 − Jc

12 × Jc
21

Based on above the nodal coordinates and the Jacobian parameters are as
derived hereafter
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For the element the global Jacobian [Jg] elements are as given hereafter

Node x y ξ η J11 J12 J21 J22 Det-J

1 1 1 −0.57735027 −0.57735027 −0.316987298 0.5 2.183012702 2.341506351 −0.316987298

2 3 1 0.57735027 −0.57735027 −0.316987298 0.5 1.316987298 1.475480947 −0.316987298

3 4 3 0.57735027 0.57735027 −1.183012702 0.5 1.316987298 1.908493649 −1.183012702

4 2 6 −0.57735027 0.57735027 −1.183012702 0.5 2.183012702 2.774519053 −1.183012702

The centroidal Jacobian element are given by Jc
11 = 1, Jc

12 = −0.75, Jc
21 = 0.5,

Jc
22 = 1.75 and Det Jc = 2.125

We will now determine the matrix [B] and the stiffness [B]T [D] [B] at each
Gauss point at the 4 sample points calling them kg1,kg2, kg3, kg4 where

[B] = 1
4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−jg22(1 − η) jg22(1 − η) jg22(1 + η) |
+jg12(1 − ξ) 0 +jg12(1 − ξ) 0 −Jg

12(1 + ξ) |

jg21(1 − η) −jg21(1 − η) |

0 −jg11(1 − ξ) 0 −jg11(1 + ξ) 0 |

jg21(1 − η) −jg22(1 − η) −jg21(1 − η) jg22(1 − η) −jg21(1 + η) |

−jg11(1 − ξ) +jg12(1 − ξ) −jg11(1 + ξ) +jg12(1 + ξ) +jg11(1 + ξ) |

| −jg22(1 + η)

| 0 +jg11(1 − ξ) 0 −8jc22ξ 8jc12η 0 0

| − jg21(1 − η) jg21(1 + η)

| + jg11(1 + ξ) 0 +jg11(1 − ξ) 0 0 8jc21ξ −8jc11η

| jg22(1 + η) jg21(1 + η) −jg22(1 + η)

| − jg12(1 + ξ) +jg11(1 − ξ) −jg12(1 − ξ) −8jc11ξ −8jc11η −8jc22ξ 8jc12η

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

For point 1 the gauss points are − 1√
3
, − 1√

3
for which

[B] =
−0.4210 0.0000 0.3143 0.0000 0.1436 0.0000 0.0699 0.0000 0.9509 −0.4075 0.0000 0.0000

0.0000 −0.0842 0.0000 −0.0391 0.0000 0.0226 0.0000 0.1910 0.0000 0.0000 0.2717 0.5434

−0.0842 −0.4210 −0.1293 0.3533 0.0226 0.1128 0.1910 −0.0451 0.5434 0.5434 0.9509 −0.4075
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The stiffness matrix57 for Gauss point 1
[
kg1
] = [B]T [D] [B]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.84E+07 4.73E+06 −2.74E+07 −1.50E+06 −1.31E+07 −1.27E+06 |
4.73E+06 1.57E+07 2.95E+06 −1.12E+07 −1.40E+06 −4.21E+06 |

−2.74E+07 2.95E+06 2.24E+07 −4.31E+06 9.39E+06 −7.89E+05 |
−1.50E+06 −1.12E+07 −4.31E+06 1.03E+07 3.39E+05 3.00E+06 |
−1.31E+07 −1.40E+06 9.39E+06 3.39E+05 4.44E+06 3.76E+05 |
−1.27E+06 −4.21E+06 −7.89E+05 3.00E+06 3.76E+05 1.13E+06 |
−7.56E+06 −6.75E+06 2.71E+06 5.25E+06 2.49E+06 1.81E+06 |
−3.98E+06 −1.91E+06 3.67E+06 −2.87E+06 1.38E+06 5.12E+05 |
−8.91E+07 −2.26E+07 5.81E+07 1.34E+07 3.01E+07 6.05E+06 |

3.29E+07 −1.65E+07 −3.29E+07 1.62E+07 −1.15E+07 4.41E+06 |
−1.25E+07 −3.69E+07 −5.29E+06 2.46E+07 3.80E+06 9.89E+06 |
−9.45E+06 3.97E+06 1.33E+07 −1.60E+07 3.42E+06 −1.06E+06 |

| −7.56E+06 −3.98E+06 −8.91E+07 3.29E+07 −1.25E+07 −9.45E+06
| −6.75E+06 −1.91E+06 −2.26E+07 −1.65E+07 −3.69E+07 3.97E+06
| 2.71E+06 3.67E+06 5.81E+07 −3.29E+07 −5.29E+06 1.33E+07
| 5.25E+06 −2.87E+06 1.34E+07 1.62E+07 2.46E+07 −1.60E+07
| 2.49E+06 1.38E+06 3.01E+07 −1.15E+07 3.80E+06 3.42E+06
| 1.81E+06 5.12E+05 6.05E+06 4.41E+06 9.89E+06 −1.06E+06
| 3.96E+06 2.21E+04 2.25E+07 2.23E+06 1.55E+07 −4.20E+06
| 2.21E+04 7.94E+06 7.72E+06 −6.11E+06 7.63E+06 2.36E+07
| 2.25E+07 7.72E+06 2.17E+08 −5.90E+07 5.51E+07 9.83E+06
| 2.23E+06 −6.11E+06 −5.90E+07 5.90E+07 3.54E+07 −2.95E+07
| 1.55E+07 7.63E+06 5.51E+07 3.54E+07 8.81E+07 4.87E+05
| −4.20E+06 2.36E+07 9.83E+06 −2.95E+07 4.87E+05 7.63E+07

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

For point 2 the gauss points are (1/
√

3, −1/
√

3) for which
[kg2] =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.03E+07 −3.10E+06 −2.83E+07 −1.34E+06 −2.77E+07 −3.73E+06 |
−3.10E+06 1.21E+07 1.31E+07 −6.24E+06 −5.74E+06 −2.30E+06 |
−2.83E+07 1.31E+07 3.60E+07 −6.23E+06 1.80E+07 −1.68E+06 |
−1.34E+06 −6.24E+06 −6.23E+06 9.52E+06 7.52E+06 1.04E+07 |
−2.77E+07 −5.74E+06 1.80E+07 7.52E+06 3.22E+07 7.78E+06 |
−3.73E+06 −2.30E+06 −1.68E+06 1.04E+07 7.78E+06 1.40E+07 |

2.35E+06 −3.29E+06 −5.04E+06 2.14E+06 2.38E+05 1.26E+06 |
−2.50E+06 3.57E+06 4.18E+06 1.53E+06 7.44E+05 4.28E+06 |

7.33E+07 1.31E+07 −4.94E+07 −1.84E+07 −8.34E+07 −1.95E+07 |
3.53E+07 −1.76E+07 −4.61E+07 8.72E+06 −2.14E+07 2.76E+06 |
1.01E+07 −3.21E+07 −3.53E+07 1.26E+07 1.24E+07 2.06E+05 |

−1.29E+07 1.94E+07 2.26E+07 6.77E+06 2.93E+06 2.10E+07 |
| 2.35E+06 −2.50E+06 7.33E+07 3.53E+07 1.01E+07 −1.29E+07
| −3.29E+06 3.57E+06 1.31E+07 −1.76E+07 −3.21E+07 1.94E+07
| −5.04E+06 4.18E+06 −4.94E+07 −4.61E+07 −3.53E+07 2.26E+07
| 2.14E+06 1.53E+06 −1.84E+07 8.72E+06 1.26E+07 6.77E+06
| 2.38E+05 7.44E+05 −8.34E+07 −2.14E+07 1.24E+07 2.93E+06
| 1.26E+06 4.28E+06 −1.95E+07 2.76E+06 2.06E+05 2.10E+07
| 1.03E+06 −7.45E+05 −6.52E+04 6.64E+06 8.50E+06 −4.16E+06
| −7.45E+05 2.87E+06 −2.33E+06 −5.45E+06 −1.17E+07 1.48E+07
| −6.52E+04 −2.33E+06 2.17E+08 5.90E+07 −2.76E+07 −9.83E+06
| 6.64E+06 −5.45E+06 5.90E+07 5.90E+07 4.72E+07 −2.95E+07
| 8.50E+06 −1.17E+07 −2.76E+07 4.72E+07 8.81E+07 −6.25E+07
| −4.16E+06 1.48E+07 −9.83E+06 −2.95E+07 −6.25E+07 7.63E+07

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

57 Here stiffness values are directly taken from computer output where E+06 mean 10+06.
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For point 3 the gauss points are (1/
√

3, 1/
√

3) for which
[kg3] =
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4.15E+06 5.11E+05 3.00E+05 −9.40E+05 −1.44E+07 −1.91E+06 |
5.11E+05 1.70E+06 2.58E+06 8.43E+05 −1.85E+06 −6.33E+06 |
3.00E+05 2.58E+06 4.40E+06 3.29E+06 −1.18E+06 −9.64E+06 |

−9.40E+05 8.43E+05 3.29E+06 9.18E+06 3.15E+06 −3.14E+06 |
−1.44E+07 −1.85E+06 −1.18E+06 3.15E+06 4.97E+07 6.91E+06 |
−1.91E+06 −6.33E+06 −9.64E+06 −3.14E+06 6.91E+06 2.36E+07 |

6.05E+06 −1.44E+06 −3.32E+06 −4.24E+06 −2.08E+07 5.36E+06 |
−7.13E+05 1.35E+06 3.94E+06 8.89E+06 2.34E+06 −5.04E+06 |

2.93E+07 7.42E+06 8.68E+06 −1.61E+06 −1.02E+08 −2.77E+07 |
−1.08E+07 5.42E+06 1.08E+07 1.13E+07 3.71E+07 −2.02E+07 |

4.11E+06 1.21E+07 1.77E+07 2.68E+06 −1.48E+07 −4.53E+07 |
3.11E+06 −1.30E+06 −7.85E+06 −2.63E+07 −1.05E+07 4.87E+06 |

| 6.05E+06 −7.13E+05 2.93E+07 −1.08E+07 4.11E+06 3.11E+06
| −1.44E+06 1.35E+06 7.42E+06 5.42E+06 1.21E+07 −1.30E+06
| −3.32E+06 3.94E+06 8.68E+06 1.08E+07 1.77E+07 −7.85E+06
| −4.24E+06 8.89E+06 −1.61E+06 1.13E+07 2.68E+06 −2.63E+07
| −2.08E+07 2.34E+06 −1.02E+08 3.71E+07 −1.48E+07 −1.05E+07
| 5.36E+06 −5.04E+06 −2.77E+07 −2.02E+07 −4.53E+07 4.87E+06
| 1.20E+07 −4.46E+06 3.71E+07 −2.57E+07 −8.93E+06 1.15E+07
| −4.46E+06 8.79E+06 9.40E+05 1.24E+07 6.52E+06 −2.51E+07
| 3.71E+07 9.40E+05 2.17E+08 −5.90E+07 5.51E+07 9.83E+06
| −2.57E+07 1.24E+07 −5.90E+07 5.90E+07 3.54E+07 −2.95E+07
| −8.93E+06 6.52E+06 5.51E+07 3.54E+07 8.81E+07 4.87E+05
| 1.15E+07 −2.51E+07 9.83E+06 −2.95E+07 4.87E+05 7.63E+07

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

For point 4 the gauss points are (−1/
√

3, 1/
√

3) for which
[kg4] =
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.47E+07 4.12E+06 5.12E+06 −6.30E+05 −1.83E+07 −3.06E+06 |
4.12E+06 8.28E+06 1.71E+06 −1.27E+06 −1.62E+06 −6.28E+06 |
5.12E+06 1.71E+06 1.80E+06 −2.60E+05 −6.17E+06 −1.47E+06 |

−6.30E+05 −1.27E+06 −2.60E+05 1.93E+05 2.53E+05 9.49E+05 |
−1.83E+07 −1.62E+06 −6.17E+06 2.53E+05 2.60E+07 −1.55E+06 |
−3.06E+06 −6.28E+06 −1.47E+06 9.49E+05 −1.55E+06 1.03E+07 |

6.91E+06 −3.18E+06 2.07E+06 4.79E+05 −1.31E+07 6.36E+06 |
−1.46E+06 −2.74E+06 −3.16E+05 4.33E+05 4.33E+06 −5.54E+06 |
−5.63E+07 −1.72E+07 −1.97E+07 2.62E+06 6.92E+07 1.38E+07 |
−1.65E+07 8.25E+06 −4.91E+06 −1.24E+06 3.17E+07 −1.62E+07 |

5.72E+06 1.20E+07 3.11E+06 −1.79E+06 7.55E+06 −2.89E+07 |
3.26E+06 6.07E+06 5.99E+05 −9.65E+05 −1.12E+07 1.54E+07 |

| 6.91E+06 −1.46E+06 −5.63E+07 −1.65E+07 5.72E+06 3.26E+06
| −3.18E+06 −2.74E+06 −1.72E+07 8.25E+06 1.20E+07 6.07E+06
| 2.07E+06 −3.16E+05 −1.97E+07 −4.91E+06 3.11E+06 5.99E+05
| 4.79E+05 4.33E+05 2.62E+06 −1.24E+06 −1.79E+06 −9.65E+05
| −1.31E+07 4.33E+06 6.92E+07 3.17E+07 7.55E+06 −1.12E+07
| 6.36E+06 −5.54E+06 1.38E+07 −1.62E+07 −2.89E+07 1.54E+07
| 9.67E+06 −4.33E+06 −2.48E+07 −2.39E+07 −1.87E+07 1.18E+07
| −4.33E+06 1.13E+07 4.63E+06 1.08E+07 2.32E+07 −2.93E+07
| −2.48E+07 4.63E+06 2.17E+08 5.90E+07 −2.76E+07 −9.83E+06
| −2.39E+07 1.08E+07 5.90E+07 5.90E+07 4.72E+07 −2.95E+07
| −1.87E+07 2.32E+07 −2.76E+07 4.72E+07 8.81E+07 −6.25E+07
| 1.18E+07 −2.93E+07 −9.83E+06 −2.95E+07 −6.25E+07 7.63E+07

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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The total stiffness matrix for element is now given by

[K]e =
4∑

i=1

[
kgi
] = [kg1

]+ [kg2
]+ [kg3

]+ [kg4
]

or [K]e =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8.75E+07 6.26E+06 −5.02E+07 −4.42E+06 −7.35E+07 −9.96E+06 |
6.26E+06 3.77E+07 2.03E+07 −1.79E+07 −1.06E+07 −1.91E+07 |

−5.02E+07 2.03E+07 6.46E+07 −7.51E+06 2.00E+07 −1.36E+07 |
−4.42E+06 −1.79E+07 −7.51E+06 2.92E+07 1.13E+07 1.12E+07 |
−7.35E+07 −1.06E+07 2.00E+07 1.13E+07 1.12E+08 1.35E+07 |
−9.96E+06 −1.91E+07 −1.36E+07 1.12E+07 1.35E+07 4.91E+07 |

7.74E+06 −1.47E+07 −3.57E+06 3.62E+06 −3.12E+07 1.48E+07 |
−8.65E+06 2.68E+05 1.15E+07 7.99E+06 8.80E+06 −5.79E+06 |
−4.28E+07 −1.92E+07 −2.28E+06 −4.00E+06 −8.57E+07 −2.74E+07 |

4.09E+07 −2.04E+07 −7.31E+07 3.50E+07 3.60E+07 −2.92E+07 |
7.48E+06 −4.49E+07 −1.97E+07 3.81E+07 8.93E+06 −6.41E+07 |

−1.60E+07 2.81E+07 2.87E+07 −3.66E+07 −1.53E+07 4.02E+07 |
| 7.74E+06 −8.65E+06 −4.28E+07 4.09E+07 7.48E+06 −1.60E+07
| −1.47E+07 2.68E+05 −1.92E+07 −2.04E+07 −4.49E+07 2.81E+07
| −3.57E+06 1.15E+07 −2.28E+06 −7.31E+07 −1.97E+07 2.87E+07
| 3.62E+06 7.99E+06 −4.00E+06 3.50E+07 3.81E+07 −3.66E+07
| −3.12E+07 8.80E+06 −8.57E+07 3.60E+07 8.93E+06 −1.53E+07
| 1.48E+07 −5.79E+06 −2.74E+07 −2.92E+07 −6.41E+07 4.02E+07
| 2.67E+07 −9.51E+06 3.46E+07 −4.08E+07 −3.54E+06 1.49E+07
| −9.51E+06 3.09E+07 1.10E+07 1.17E+07 2.57E+07 −1.61E+07
| 3.46E+07 1.10E+07 8.66E+08 0.00E+00 5.51E+07 0.00E+00
| −4.08E+07 1.17E+07 0.00E+00 2.36E+08 1.65E+08 −1.18E+08
| −3.54E+06 2.57E+07 5.51E+07 1.65E+08 3.52E+08 −1.24E+08
| 1.49E+07 −1.61E+07 0.00E+00 −1.18E+08 −1.24E+08 3.05E+08

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The above matrix now needs to be subjected to static condensation to eliminate
the α1,α2,α3, and α4.

Here [K]11 =

8.75E+07 6.26E+06 −5.02E+07 −4.42E+06 −7.35E+07 −9.96E+06 7.74E+06 −8.65E+06
6.26E+06 3.77E+07 2.03E+07 −1.79E+07 −1.06E+07 −1.91E+07 −1.47E+07 2.68E+05

−5.02E+07 2.03E+07 6.46E+07 −7.51E+06 2.00E+07 −1.36E+07 −3.57E+06 1.15E+07
−4.42E+06 −1.79E+07 −7.51E+06 2.92E+07 1.13E+07 1.12E+07 3.62E+06 7.99E+06
−7.35E+07 −1.06E+07 2.00E+07 1.13E+07 1.12E+08 1.35E+07 −3.12E+07 8.80E+06
−9.96E+06 −1.91E+07 −1.36E+07 1.12E+07 1.35E+07 4.91E+07 1.48E+07 −5.79E+06

7.74E+06 −1.47E+07 −3.57E+06 3.62E+06 −3.12E+07 1.48E+07 2.67E+07 −9.51E+06
−8.65E+06 2.68E+05 1.15E+07 7.99E+06 8.80E+06 −5.79E+06 −9.51E+06 3.09E+07

[K]12 =

−4.28E+07 4.09E+07 7.48E+06 −1.60E+07
−1.92E+07 −2.04E+07 −4.49E+07 2.81E+07
−2.28E+06 −7.31E+07 −1.97E+07 2.87E+07
−4.00E+06 3.50E+07 3.81E+07 −3.66E+07
−8.57E+07 3.60E+07 8.93E+06 −1.53E+07
−2.74E+07 −2.92E+07 −6.41E+07 4.02E+07

3.46E+07 −4.08E+07 −3.54E+06 1.49E+07
1.10E+07 1.17E+07 2.57E+07 −1.61E+07
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[K]21 =

−4.28E+07 −1.92E+07 −2.28E+06 −4.00E+06 −8.57E+07 −2.74E+07 3.46E+07 1.10E+07
4.09E+07 −2.04E+07 −7.31E+07 3.50E+07 3.60E+07 −2.92E+07 −4.08E+07 1.17E+07
7.48E+06 −4.49E+07 −1.97E+07 3.81E+07 8.93E+06 −6.41E+07 −3.54E+06 2.57E+07

−1.60E+07 2.81E+07 2.87E+07 −3.66E+07 −1.53E+07 4.02E+07 1.49E+07 −1.61E+07

[K]22 =

8.66E+08 0.00E+00 5.51E+07 0.00E+00
0.00E+00 2.36E+08 1.65E+08 −1.18E+08
5.51E+07 1.65E+08 3.52E+08 −1.24E+08
0.00E+00 −1.18E+08 −1.24E+08 3.05E+08

Considering [Kc] = [[K11] − [K12] [K22]−1 [K21]]

7.68E+07 6.47E+06 −3.52E+07 −9.50E+06 −8.48E+07 −9.67E+06 1.83E+07 −8.77E+06
6.47E+06 3.12E+07 1.81E+07 −1.23E+07 −1.08E+07 −2.85E+07 −1.45E+07 4.02E+06

−3.52E+07 1.81E+07 3.77E+07 1.28E+06 3.24E+07 −1.68E+07 −1.92E+07 1.28E+07
−9.50E+06 −1.23E+07 1.28E+06 2.20E+07 6.23E+06 1.92E+07 8.38E+06 4.81E+06
−8.48E+07 −1.08E+07 3.24E+07 6.23E+06 9.79E+07 1.32E+07 −2.05E+07 8.90E+06
−9.67E+06 −2.85E+07 −1.68E+07 1.92E+07 1.32E+07 3.57E+07 1.50E+07 −4.30E+05

1.83E+07 −1.45E+07 −1.92E+07 8.38E+06 −2.05E+07 1.50E+07 1.60E+07 −9.62E+06
−8.77E+06 4.02E+06 1.28E+07 4.81E+06 8.90E+06 −4.30E+05 −9.62E+06 2.88E+07

Multiplying above by thickness t we finally have the stiffness matrix as

1.54E+07 1.29E+06 −7.04E+06 −1.90E+06 −1.70E+07 −1.93E+06 3.66E+06 −1.75E+06
1.29E+06 6.23E+06 3.61E+06 −2.46E+06 −2.16E+06 −5.70E+06 −2.90E+06 8.04E+05

−7.04E+06 3.61E+06 7.54E+06 2.57E+05 6.48E+06 −3.37E+06 −3.84E+06 2.55E+06
−1.90E+06 −2.46E+06 2.57E+05 4.41E+06 1.25E+06 3.84E+06 1.68E+06 9.61E+05
−1.70E+07 −2.16E+06 6.48E+06 1.25E+06 1.96E+07 2.65E+06 −4.09E+06 1.78E+06
−1.93E+06 −5.70E+06 −3.37E+06 3.84E+06 2.65E+06 7.13E+06 3.01E+06 −8.60E+04

3.66E+06 −2.90E+06 −3.84E+06 1.68E+06 −4.09E+06 3.01E+06 3.21E+06 −1.92E+06
−1.75E+06 8.04E+05 2.55E+06 9.61E+05 1.78E+06 −8.60E+04 −1.92E+06 5.75E+06

You can now check the values against stiffness matrix as derived in Example
2.12.1 and see that values of stiffness derived herein are lower in magnitude,
meaning thereby that element is much more flexible compared to the original
isoparametric formulation.

2.12.26 Higher order f inite elements – The
second generation members of the FEM family

Until now, we had derived element stiffness matrix for elements whose shape function
varies linearly from one node to the other, where nodes are situated at the junction of
two lines intersecting each other.
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In this section, we discuss some higher order elements and the procedure to derive
their shape functions vis-à-vis the element stiffness matrix.

2.12.26.1 Why Higher Order – What is its necessity?

A question many users possibly ask themselves who are new to the topic. What stops
us remaining happy with what we have rather than unnecessarily complicating our life
with more complex formulation? Is it research for research sake? Or was this really
required?

For students who are still within the premise of the University (and care to go
through this book) we can assure you that these elements were not developed to give
you more tough time in the exam.

The specific reason for their development can be summarized as follows:
We had stated at the outset that FEA results converge as meshes are progressively

refined.
The question which then naturally arises is – “Mesh refinement to what extent?”

For instance for the beam as shown in Figure 2.12.30, how many elements would
suffice 20, 30, 100 elements?

The answer to this query to be precise is dependent on the problem in
hand and its boundary condition. However, to give you some qualitative idea
results as reported by Abel and Popov (1968) are presented hereafter for your
perusal.

For a cantilever beam, modeled with four node linear quadrilateral elements with
a concentrated load P at the free end, tip deflections are as shown in Figure 2.12.30
and compared as hereunder.

Case No. of nodes No. of elements u v

1 9 4 1.417668 −1.207257
2 25 16 1.474063 −1.254745
3 81 64 1.492148 −1.269067

Exact solution – 1.500 −1.275

P PP

Case-1 Case-2 Case-3

Figure 2.12.30 Cantilever beam with varying mesh.
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It is apparent from the above data that mesh refinement (or the number of node
to be considered) has to be quite high with linear elements to arrive at an accurate
result. In the child hood of FEM when major software programs were developed in
FORTRAN IV and VII and automatic mesh generation and renumbering of nodes to
minimize the band width were not a part and parcel of the pre-processors, most of
the input data were furnished in formatted forms (like I5, F10.4, E10.6 etc.). This
called for significant effort from the user and was quite laborious in terms of data
checking.

Even a small problem had quite a good amount of input data while with practical
problems of even modest size the overall problem was getting sufficiently big thus cre-
ating serious memory space problem in many cases. For unlike the present generation
of computers, the systems that were in use in late 60 to 80 did had limited memory
space and speed.

It was perhaps at this juncture the eternal proverb “Necessity is the mother of
invention” took over and people started looking into the possibility of higher order
elements where desired results could be arrived at by using cruder meshes thus reducing
the modeling effort too.

Though never documented clearly – this we believe is the major motivation behind
the development of these second generation elements often termed as higher order
elements. We start with the eight node rectangular element (of size 2a × 2b) and try
to derive the [N] matrix.

Since the objective is to use higher order polynomials based on compatibility law it
is evident that number of nodes per element increase since number of coefficients must
be equal to the number of nodal degrees of freedom.58

For eight nodded rectangular element we have 16 degrees of freedom (two per node,
2.12.31), when we have

u = α1 + α2x + α3y + α4x2 + α5xy + α6y2 + α7x2y + α8xy2 (2.12.115)

7(0,1)

8(–1,0)

4(–1,1)

6(1,0)

3(1,1)

1(–1,–1) 5(0,–1) 2(1,–1)

Figure 2.12.31 Eight-nodded rectangular element.

58 It should thus be noted that number of nodes may not decrease though number of elements used in a
model may reduce with higher order elements.
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The above in natural coordinate is expressed as

u = α1 + α2ξ + α3η + α4ξ
2 + α5ξη + α6η

2 + α7ξ
2η + α8ξη

2 (2.12.116)

Thus substituting the co-ordinate values of nodes 1 to 8 as shown in the above
Figure we have

u1 = α1 − α2 − α3 + α4 + α5 + α6 − α7 − α8

u2 = α1 + α2 − α3 + α4 − α5 + α6 − α7 + α8

u3 = α1 + α2 + α3 + α4 + α5 + α6 + α7 + α8

u4 = α1 − α2 + α3 + α4 − α5 + α6 + α7 − α8

u5 = α1 − α3 + α6; u6 = α1 + α2 + α4

u7 = α1 + α3 + α6; u8 = α1 − α2 + α4

(2.12.117)

The above when expressed in matrix notation can be represented as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1

u2

u3

u4

u5

u6

u7

u8

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −1 1 1 1 −1 −1
1 1 −1 1 −1 1 −1 1
1 1 1 1 1 1 1 1
1 −1 1 1 −1 1 1 −1
1 0 −1 0 0 1 0 0
1 1 0 1 0 0 0 0
1 0 1 0 0 1 0 0
1 −1 0 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1

α2

α3

α4

α5

α6

α7

α8

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.12.118)

Inversion of the matrix gives

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1

α2

α3

α4

α5

α6

α7

α8

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= 1
4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 −1 −1 2 2 2 2
0 0 0 0 0 2 0 −2
0 0 0 0 −2 0 2 0
1 1 1 1 −2 0 −2 0
1 −1 1 −1 0 0 0 0
1 1 1 1 0 −2 0 −2

−1 −1 1 1 2 0 −2 0
−1 1 1 −1 0 −2 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1

u2

u3

u4

u5

u6

u7

u8

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.12.119)
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Similarly

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α9
α10
α11
α12
α13
α14
α15
α16

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= 1
4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 −1 −1 2 2 2 2
0 0 0 0 0 2 0 −2
0 0 0 0 −2 0 2 0
1 1 1 1 −2 0 −2 0
1 −1 1 −1 0 0 0 0
1 1 1 1 0 −2 0 −2

−1 −1 1 1 2 0 −2 0
−1 1 1 −1 0 −2 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v1
v2
v3
v4
v5
v6
v7
v8

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.12.120)

Combining the above will give a 16 × 16 matrix which is expressed as

{α} = [C]−1 {δ} (2.12.121)

and the [M] Matrix is given by

[M] =
[
1 ξ η ξ2 ξη η2 ξ2η ξη2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 ξ η ξ2 ξη η2 ξ2η ξη2

]

(2.12.122)

Multiplication of [M] [C]−1 would give the desired shape function [N].
But if you try to carry out this operation you will find it surprisingly laborious and

chance of making a computational mistake is quite high. This made people realize that
conventional procedure used for linear elements to determine the shape function was
not a very effective method in this case especially if we take elements of still higher
order. The problem would become an absolute disaster for instance with higher order
brick elements of say 20 nodes.

Thus alternative method was devised to determine the shape functions which would
not be labor intensive or unmanageable and at the same time would predict the
expressions correctly and quickly.

We now present herein various techniques used to define shape function for these
higher order elements other then the method as shown previously.

2.12.27 Lagrange’s interpolation function – An
extension to school co-ordinate geometry59

We start with an elementary problem of school co-ordinate geometry.
As shown in Figure 2.12.32 is a straight line which passes through two points A and

B having co-ordinates (x0, y0) and (x1, y1) respectively, we would like to formulate its
generic equation.

59 Professional Engineers whose mathematical base has eroded a bit due to lack of practice need not panic
with the terminology (Lagrange’s Interpolation) it is nothing but a little bit of high school coordinate
geometry and its extension.
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Y 

B(x1,y1)

A(x0,y0)

X 

Figure 2.12.32 A straight line passing through two points A and B.

If the general equation of the line is, y = mx + c, we can argue that since the
line passes through the points A and B the points (x0, y0) and (x1, y1) must satisfy the
equation. Thus we have, y0 = mx0+c and, y1 = mx1+c. Eliminating c from the above
two equations we have m = y0−y1

x0−x1
which gives the gradient of the line. Substituting

this value in the equation, y0 = mx0 + c, we have c = x0y1−x1y0
x0−x1

. Thus the straight line
equation can be expressed as

y = y0 − y1

x0 − x1
x + x0y1 − x1y0

x0 − x1

The above on simplification and slight algebraic manipulation can be expressed as

y = x − x1

x0 − x1
y0 + x − x0

x1 − x0
y1

which is the desired expression for the straight line.
Now, the above can be further expressed as

y = L0(x)y0 + L1(x)y1

where, L0(x) = x−x1
x0−x1

and L1(x) = x−x0
x1−x0

are called Lagrange’s interpolation function.
One should observe a feature of these coefficients is that
For x = x0 L0(x) → 1 and L1(x) → 0 and for x = x1 L0(x) → 0 and L1(x) → 1
The above can thus be generically represented as

Li(xj) = 1 for i = j

= 0 for i 
= j.

Extending the above argument for a line passing through 3 points (x0, y0), (x1, y1)
and (x2, y2) we have

y = (x − x1)(x − x2)

(x0 − x1)(x0 − x2)
y0 + (x − x0)(x − x2)

(x1 − x0)(x1 − x2)
y1
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Observe here that while line passes through 3 points the relation is quadratic and
can be expressed in terms of Lagrange’s functions as

y = L0(x)y0 + L1(x) y1 + L2(x)y2

The Lagrange’s coefficient thus passing through (N+1)-points can thus be ex-
pressed as

LN,k(x) = (x − x0) · · · · · · (x − xk−1) (x − xk+1) · · · · · · (x − xN)

(xk − x0) · · · · · · (xk − xk−1)(xk − xk+1) · · · · · · (xk − xN)
(2.12.123)

The above in terms of natural co-ordinate can be can thus be expressed as

fi(ξ) = (ξ − ξ1) · · · · · · (ξ − ξi−1) (ξ − ξi+1) · · · · · · (ξ − ξN)

(ξi − ξ1) · · · · · · (ξi − ξi−1)(ξi − ξi+1) · · · · · · (ξi − ξN)
(2.12.124)

It should be noted in the above expression that the node concerned should be absent
from the numerator and should only be present in the denominator.

Thus, for a straight line as shown in Figure 2.12.33.

1(–1,–1) 2(1,–1)

Figure 2.12.33 Lagrangian interpolation for a line element.

N1 = f1(ξ) = ξ − ξ2

ξ1 − ξ2
= ξ − 1

−1 − 1
= 1 − ξ

2
and

N2 = f2(ξ) = ξ − ξ1

ξ2 − ξ1
= ξ − (−1)

1 − (−1)
= ξ + 1

2

We will now derive the shape function by Lagrange’s interpolation formula of
4 node rectangular element shown in Figure 2.12.34, for which we had derived the
shape function earlier.

2b

2a 3 (1,1)(–1,1) 4

(–1,–1)
1 2

(1,–1)

Figure 2.12.34 Lagrangian interpolation for a 4 nodded element.
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N1 = f1(ξ)f1(η) = ξ − ξ2

ξ1 − ξ2

η − η4

η1 − η4
= ξ − 1

−1 − 1
η − 1

−1 − 1
= 1

4
(1 − ξ) (1 − η)

N2 = f2(ξ) f2(η) = ξ − ξ1

ξ2 − ξ1

η − η3

η2 − η3
= ξ + 1

2
η − 1

−1 − 1
= 1

4
(1 + ξ) (1 − η)

N3 = f3(ξ) f3(η) = ξ − ξ4

ξ3 − ξ4

η − η2

η3 − η2
= 1

4
(1 + ξ) (1 + η)

N4 = f4(ξ) f4(η) = ξ − ξ3

ξ4 − ξ3

η − η1

η4 − η1
= 1

4
(1 − ξ) (1 + η) (2.12.125)

This is same as what we had derived before but differently.

2.12.27.1 Nine node Rectangular Element

We present here the shape function for nine-nodded rectangular element (Figure
2.12.35) based on Lagrange’s interpolation function having quadratic polynomial
function. You should realize here that eight node rectangular element is not possi-
ble directly, for if we remove the internal node 9 the interpolation function between
8–6 and 5–7 becomes linear and does not remain quadratic – for we had shown
earlier that a line must pass through minimum three nodes to develop quadratic
polynomial.

The function being quadratic in this case we have

N1 = (ξ − ξ2)(ξ − ξ5)

(ξ1 − ξ2)(ξ1 − ξ5)

(η − η4)(η − η8)

(η1 − η4)(η1 − η8)
= (ξ − 1)(ξ − 0)
(−1 − 1)(−1 − 0)

(η − 1)(η − 0)
(−1 − 1)(−1 − 0)

= 1
4

[ξη(ξ − 1) (η − 1)]

N5 = (ξ − ξ2)(ξ − ξ1)

(ξ5 − ξ2)(ξ5 − ξ1)

(η − η9)(η − η7)

(η5 − η9)(η5 − η7)
= (ξ − 1)(ξ + 1)
(0 − 1)(0 + 1)

(η − 1)(η − 0)
(−1 − 0)(−1 − 1)

= 1
2

[
η (η − 1) (1 − ξ2)

]

N2 = (ξ − ξ5) (ξ − ξ1)

(ξ2 − ξ5)(ξ2 − ξ1)

(η − η6)(η − η3)

(η2 − η6)(η2 − η3)
= 1

4
ξη (ξ + 1) (η − 1)

(–1,1) 4 7(0,1) 3(1,1)

8(–1,0)

(–1,–1) (1,–1)

9(0,0) 6(1,0)

2
5(0,–1)1

Figure 2.12.35 A nine nodded element.
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N6 = (ξ − ξ9)(ξ − ξ8)

(ξ6 − ξ9)(ξ6 − ξ8)

(η − η2)(η − η3)

(η6 − η2)(η6 − η3)
= 1

2
ξ(ξ + 1)(1 − η2) (2.12.126)

Proceeding in identical manner we may have

N3 = 1
4

[ξη(ξ + 1) (η + 1)] ; N4 = 1
4

[ξη(ξ − 1) (η + 1)] ;

N7 = 1
2
η (η + 1)(1 − ξ2); N8 = 1

2
ξ(ξ − 1) (1 − η2);

N9 = (1 − ξ2) (1 − η2). (2.12.127)

The internal node 9 is an internal node as such after formulation of the element
stiffness matrix (of order 18 × 18) needs to be condensed out. The condensed matrix
which will finally have eight nodes will have a matrix of order 16 × 16.

2.12.28 Elements of Serendipidity family – named after
Princes of Serendip

Though the word “Serendipdity” is not a commonly used English word, yet is a com-
mon terminology used by the members of FEM developers club. The word was coined
originally by Horace Walpole (in literary sense) and adapted by Zienkiewicz. The
reason for the same will be explained later.

First, let us see, what are the properties of these elements those belong to this group.
While deriving the shape functions based on Lagrange’s interpolation function, we
had shown that for the polynomial functions having order more than one we have to
take additional internal nodes. The internal node is finally condensed out to crunch
the matrix considering only those nodes which are at the boundary of the element. As
the degree of the polynomial increases cubic, quartic etc the number of internal nodes
will also increase.

As an example we show in Figure 2.12.36, the number of node required for a
rectangular element having cubic polynomial function.

In this case we see that after formulation of stiffness matrix we have to condense
out the four nodes 13 to 16. Thus it is evident that for finite elements of higher order
derived from Lagrange’s interpolation formula the computational work that needs
to be done at element level is more. For a finite element model of say 500 elements
with this cubic 16 node element we have to thus perform condensation of 2000 nodes
which would invariably kill a significant amount of computer time. To overcome this
problem a different technique was devised where considering the internal nodes are
not required.

Elements having polynomial functions developed by this method where internal
nodes are not required for the formulating the desired polynomial functions are known
as elements of Serendipidity family.

Eight-nodded quadrilaterals/rectangular elements belong to this group/family.
To understand the concept we start with four node rectangular elements shown in

Figure 2.12.37 whose shape functions we had derived earlier.
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12 7

11
8

15 16

13 14

4 9 10 3

1 5 6 2

Figure 2.12.36 16-nodded rectangular element having cubic polynomial shape function.

1(–1,–1) 2(1,–1)

4(–1,1) 3(1,1)

Figure 2.12.37 Four-nodded rectangular element.

We had shown earlier that for four node rectangular element

N1 = 1
4
(1 − ξ) (1 − η) ; N2 = 1

4
(1 + ξ) (1 − η) ; N3 = 1

4
(1 + ξ) (1 + η) ;

N4 = 1
4
(1 − ξ) (1 + η)

Looking at above it will observed that the above formula can be generalized as

Ni = 1
4
(1 + ξξi) (1 + η ηi) (2.12.128)

where i is the node considered and (ξi, ηi) is the co-ordinate value corresponding to
node i in natural coordinate.

For eight node rectangular elements (Figure 2.12.38) having quadratic shape
function the generic formulation is given as

Ni = 1
4
(1 + ξξ i)

(
1 + ηηi

) (
ξξ i + ηηi − 1

)
for corner nodes

Ni = 1
2
(1 − ξ2)(1 + ηηi) for mid side nodes where ξi = 0 (2.12.129)

Ni = 1
2
(1 − η2) (1 + ξξ i) for mid side nodes where ηi = 0
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4(-1,1) 7(0,1) 3(1,1)

8(-1,0) 6(1,0)

1(-1,-1) 5(0,-1) 2(1,-1)

Figure 2.12.38 Eight-nodded rectangular element.

Thus for eight node rectangular element we have

N1 = (1 − ξ)(1 − η) (1 + ξ + η)/4; N2 = (1 + ξ)(1 − η) (ξ − η − 1) /4;

N3 = (1 + ξ)(1 + η) (1 + ξ + η)/4; N4 = (1 − ξ)(1 + η) (η − ξ − 1) /4;

N5 = (1 − ξ2)(1 − η)/2; N6 = (1 + ξ)(1 − η2)/2;

N7 = (1 − ξ2)(1 + η)/2; N8 = (1 − ξ)(1 − η2)/2 (2.12.130)

For cubic function similarly the general equation for deriving the shape function is
given by

Ni = 1
32
(1 + ξξi)(1 + ηηi)[−10 + 9(ξ2 + η2)], for corner nodes

Ni = 9
32
(1 + ξξ i)(1 − η2)[1 + 9ηηi]; for ξi = ±1 and ηi = ±1/3;

and Ni = 9
32
(1 + ηηi)(1 − ξ2)[1 + 9ξξ i], for ξi = ±1/3 and ηi = ±1.

(2.12.131)

You will observe here that the formula for 4 node rectangle was furnished without
any formal mathematical derivations and as such they were actually presented based on
mere observation. While that for the higher order were actually derived based more on
intuition-almostachancediscovery. Itwas for thisZienkieiwicznamedthemasSerendip
Elements after the princes of Serendip who were famous for their chance discoveries60.

Havingestablishedthebasisofderivationof formulationforelementsbelonging to the
Serendipidity family we present hereafter the element stiffness matrix derivation for an
8-node quadrilateral which is by far the most popular of all elements of Serendip group.

60 The place Serendip is actually the country known as Sri Lanka today. There lived three princes from
Serendip who went on a journey to redeem their father’s Kingdom from a dragon, and in their journey
each one of them chanced upon treasures they neither sought or anticipated. We perceive the word
Serendip is a actually an anglicized derivative of the Sanskrit word “Swarna Dweep” meaning Golden
Island. For that was how Sir Lanka was known as in ancient times.
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4(x4,y4) 3(x3,y3)7(x7,y7)

8(x8,y8)
6(x6,y6)

5(x5,y5) 2(x2,y2)

1(x1,y1)

Figure 2.12.39 Eight-nodded quadrilateral element.

2.12.28.1 Eight-nodded quadrilateral of Serendipidity family

Shown in Figure 2.12.39, is a generic quadrilateral element having 8 nodes with their
nodal coordinates.

To derive the [B] Matrix as a first step we tabulate the shape functions and their
derivative as shown below

1 N1 (1 − ξ)(1 − η) (1 + ξ + η)/4 ∂N1/∂ξ (1 − η)(2ξ + η)/4 ∂N1/∂η (1 − ξ)(2η + ξ)/4
2 N2 (1 + ξ)(1 − η) (ξ − η − 1)/4 ∂N2/∂ξ (1 − η)(2ξ − η)/4 ∂N2/∂η (1 + ξ)(2η − ξ)/4
3 N3 (1 + ξ)(1 + η) (1 + ξ + η)/4 ∂N3/∂ξ (1 + η)(2ξ + η)/4 ∂N3/∂η (1 + ξ)(2η + ξ)/4
4 N4 (1 − ξ)(1 + η) (η − ξ − 1)/4 ∂N4/∂ξ (1 + η)(2ξ − η)/4 ∂N4/∂η (1 − ξ)(2η − ξ)/4
5 N5 (1 − ξ2)(1 − η)/2 ∂N5/∂ξ −(1 − η)ξ ∂N5/∂η −(1 − ξ2)/2
6 N6 (1 + ξ)(1 − η2)/2 ∂N6/∂ξ −(1 − η2)/2 ∂N6/∂η −(1 + ξ)η

7 N7 (1 − ξ2)(1 + η)/2 ∂N7/∂ξ −(1 + η)ξ ∂N7/∂η (1 − ξ2)/2
8 N8 (1 − ξ)(1 − η2)/2 ∂N8/∂ξ −(1 − η2)ξ ∂N8/∂η −(1 − ξ)η

J11 = ∂

∂ξ

8∑
i=1

Nixi = (1 − η)(2ξ + η)

4
x1 + (1 − η)(2ξ − η)

4
x2

+ (1 + η)(2ξ + η)

4
x3 + (1 + η)(2ξ − η)

4
x4

− (1 − η)ξx5 − (1 − η2)

2
x6 − (1 + η)ξx7−(1−η2)ξx8

J12 = ∂

∂ξ

8∑
i=1

Niyi = (1 − η)(2ξ + η)

4
y1 + (1 − η)(2ξ − η)

4
y2

+ (1 + η)(2ξ + η)

4
y3 + (1 + η)(2ξ − η)

4
y4

− (1 − η)ξy5 − (1 − η2)

2
y6 − (1 + η)ξy7 − (1 − η2)ξy8

(2.12.132)
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J21 = ∂

∂η

8∑
i=1

Nixi = (1 − ξ)(2η + ξ)

4
x1 + (1 + ξ)(2η − ξ)

4
x2

+ (1 + ξ)(2η + ξ)

4
x3 + (1 − ξ)(2η − ξ)

4
x4 − (1 − ξ2)

2
x5

− (1 + ξ)ηx6 + (1 − ξ2)

2
x7 − (1 − ξ)ηx8

J22 = ∂

∂η

8∑
i=1

Niyi = (1 − ξ)(2η + ξ)

4
y1 + (1 + ξ)(2η − ξ)

4
y2

+ (1 + ξ)(2η + ξ)

4
y3 + (1 − ξ)(2η − ξ)

4
y4 − (1 − ξ2)

2
y5

− (1 + ξ)ηy6 + (1 − ξ2)

2
y7 − (1 − ξ)ηy8

Considering
∣∣J∣∣ = J11 × J22 − J12 × J21 we have the strain matrix as

⎧⎨
⎩
εx
εy
γxy

⎫⎬
⎭ = 1∣∣J∣∣

⎡
⎣ J22 −J12 0 0

0 0 −J21 J11
−J21 J11 J22 −J12

⎤
⎦〈∂u

∂ξ

∂u
∂η

∂v
∂ξ

∂v
∂η

〉T

The above can be expanded to

⎧⎨
⎩
εx
εy
γxy

⎫⎬
⎭ = 1∣∣J∣∣

⎡
⎢⎣

J22 −J12 0 0

0 0 −J21 J11

−J21 J11 J22 −J12

⎤
⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂N1

∂ξ
0

∂N2

∂ξ
0

∂N3

∂ξ
0

∂N4

∂ξ
0

∂N5

∂ξ
0

∂N6

∂ξ
0

∂N7

∂ξ
0

∂N8

∂ξ
0

∂N1

∂η
0

∂N2

∂η
0

∂N3

∂η
0

∂N4

∂η
0

∂N5

∂η
0

∂N6

∂η
0

∂N7

∂η
0

∂N8

∂η
0

0
∂N1

∂ξ
0

∂N2

∂ξ
0

∂N3

∂ξ
0

∂N4

∂ξ
0

∂N5

∂ξ
0

∂N6

∂ξ
0

∂N7

∂ξ
0

∂N8

∂ξ

0
∂N1

∂η
0

∂N2

∂η
0

∂N3

∂η
0

∂N4

∂η
0

∂N5

∂η
0

∂N6

∂η
0

∂N7

∂η
0

∂N8

∂η

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

× 〈u1 v1 u2 v2 u3 v3 u4 v4 u5 v5 u6 v6 u7 v7 u8 v8〉T

From which we get

[B] = 1∣∣J∣∣
⎡
⎣ J22 −J12 0 0

0 0 −J21 J11
−J21 J11 J22 −J12

⎤
⎦
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×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂N1

∂ξ
0

∂N2

∂ξ
0

∂N3

∂ξ
0

∂N4

∂ξ
0

∂N5

∂ξ
0

∂N6

∂ξ
0

∂N7

∂ξ
0

∂N8

∂ξ
0

∂N1

∂η
0

∂N2

∂η
0

∂N3

∂η
0

∂N4

∂η
0

∂N5

∂η
0

∂N6

∂η
0

∂N7

∂η
0

∂N8

∂η
0

0
∂N1

∂ξ
0

∂N2

∂ξ
0

∂N3

∂ξ
0

∂N4

∂ξ
0

∂N5

∂ξ
0

∂N6

∂ξ
0

∂N7

∂ξ
0

∂N8

∂ξ

0
∂N1

∂η
0

∂N2

∂η
0

∂N3

∂η
0

∂N4

∂η
0

∂N5

∂η
0

∂N6

∂η
0

∂N7

∂η
0

∂N8

∂η

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.12.133)

Here differential coefficients are as described in Table 2.11.1.
Thus the element stiffness matrix can now be obtained from the expression

[K]e = t

1∫
−1

1∫
−1

[B]T [D] [B]
∣∣J∣∣ dξdη (2.12.134)

Since the function is quadratic, two-point Gauss integration will give an accurate
value for this element.

2.12.28.2 Which to follow Lagrange or Serendip?

Having gone through the two methods you might wonder which is superior and which
formulation to follow in developing a higher order element?

Logically Lagrange would be a better choice (though not used very regularly) for the
polynomial is complete and would thus be more accurate than elements of Serendip
family. However the additional computation it incurs due to static condensation at
element level does not make it an automatic choice. Serendip family elements are
equally good and error accrued is not significant for practical engineering problems.

2.12.28.3 Other Interpolation Formulas

The Lagrange and Serendip family formulation are usually called C0 type formulation,
for in this case nodal displacements among adjacent elements are compatible while
there derivatives are not. There are cases where not only the displacements need to
be compatible at nodes there first and second derivatives also need to be compatible
too. Plates/Slabs under bending is a classical example of this. In such case we use a
different type of interpolation function called Hermite Polynomials (these are often
referred to as C1 and C2 type for the continuity of their derivatives). Other then this
Hierarchical and Heuristic type polynomial functions are also being used to develop
Various types of elements – for more information on this one may refer Reference 22
(Advanced topics) given at the end of this chapter.

2.12.29 Other type of higher order elements

A number of other type of higher order elements are possible like 6-node triangular
elements, 20 node brick element etc.
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Since, we are not writing this book on finite element only we have restricted our
discussion only to those elements which or often used for practical engineering work.
To know more about these elements reader may refer to the References cited at the
end of the chapter.

2.12.30 Plate element – the problem child of FEM family

Though this book is not a comprehensive treatment on FEM, yet any discussion on
FEM would possibly remain incomplete without some discussion on plates subjected
to bending.

From the very outset, plate element has remained a problem to the finite element
analysts, irrespective of whether he was a developer, assembler or a user.

Leaving aside the fact that basic equation of equilibrium of a plate element is bi-
harmonic (∇4) in nature, plate in bending creates far more complication than plane
stress case. Plates have their own unique properties that require special manipulation.
This has given the developers quite a rough time.

For assemblers, one of the major concerns was – since plates undergo bending
normal to its plane the stress is discontinuous at edges (as are the slopes) and has
created a lot of difficulty in terms of numerical computation as well as interpretations.
For some cases (unlike 2D plane stress/strain case) formulation has proved to be quite
difficult for neither the formulation were feasible based on hand computations (too
laborious and tedious) nor were a logical algorithm emerging which was conducive
to programming. Even if these were managed, many of them were failing important
patch test or were giving poor result for certain geometrical orientations.

In-spite of all these initial frustrations the developers kept trying to come up with a
complete and mathematically robust element – and the result is plethora of elements
available in the market (not all of them are unconditionally stable though).

Users are in no better condition, for when it came to selecting the element available,
numbers are confusingly high.

Clough and Felippa (1968), Veubeke (1967), Melosh (1963), Hughes and Taylor
(1977), Toucher (1962), Pian and Tong (1969), Adini and Clough (1960), Bogner et al.
(1965), LORA (Kardestuncer and Norrie 1987). . . , the list is almost unending.

We perceive one can write a complete book presenting different plate elements avail-
able in the market for engineering application. It is thus impossible for an average
engineer to know the strengths and weakness of every element he comes across before
he puts it to use. The list still complicates when we further break it down to thin plate
(Kirchoff type) and thick plate (Mindilin–Reissner type).

Since the literature is vast and it is not possible to cover all in such a short space
we will restrict our discussions only to a few key elements that are mostly used in the
industry and are generally considered reasonably stable.

To further concise the issue we will present in some cases only the final stiffness
matrix describing (not deriving) the basic steps involved in formulating them.

If you put them to use by developing your own software we suggest you to test
them before hand by running test samples for simple cases (like we did in our
FDM example) and compare the results with exact solution. Or else you can run
an eigen-value test to ensure the matrices are consistent and do not have any spurious
modes.
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Figure 2.12.40 A triangular thin plate element in bending.

2.12.31 Triangular plate element in bending – the
Catch-22 element

The element was found to be naturally non-conforming in bending mode. If you try to
make complete polynomials as per Pascal triangle, the plate becomes non-conforming.

On the other hand if you try to make the element conforming, the polynomial
function becomes skewed or incomplete!

To understand this problem further, let us consider the triangular element having
three degrees of freedom per node (one translation and two rotations, Figure 2.12.40)
having total nine degrees of freedom.

This means that when we formulate {f } = [M]{α} for triangular plate we must have
{α} = 〈α1 α2 α3 . . . α9〉T. Based on Pascal triangle we thus have

δ = α1 + α2x + α3y + α4x2 + α5xy + α6y2 + α7x3 + α8x2y + α9xy2 (2.12.135)

If you now check the Pascal triangle, you will see that the polynomial function is
incomplete. This is because the term y3 is missing (meaning thereby that the shape
function is now skewed towards the x axis).

To make the polynomial complete the correct shape function should be

δ = α1 + α2x + α3y + α4x2 + α5xy + α6y2 + α7x3 + α8x2y + α9xy2 + α10y3

(2.12.136)

The choice of polynomial is now correct but it violates the law “number of coef-
ficients must be equal to the number of degrees of freedom”, and has become
non-conforming.

For argument sake, to cater to α10, if we take another node then where do we take
this node which is most appropriate? The situation is indeed confusing and left the
developers somewhat confused for some time.

Toucher (1962) suggested considering the polynomial function as

δ = α1 + α2x + α3y + α4x2 + α5xy + α6y2 + α7x3 + α8(x2y + xy2)+ α9y3

(2.12.137)
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This makes the function consistent and complete61.
However, this did not mean the trouble was over. For it was found that for elements

having two of its sides parallel to global X and Y axes, when we perform the operation
{α} = [C]−1{δ}, the determinant of the matrix [C] becomes zero that is, the matrix
becomes singular.

In-spite of this fallibility the element has been in past used for a number of practical
engineering applications62, though its overall performance with respect to stress is not
deemed good unless sufficiently refined.

Irrespective of this short coming we will still proceed with this element to give a
you a first hand idea of how we derive the element stiffness matrix for plate bending
problem and the difficulties we face in the process, before we present more superior
elements that are used now a days.

Here let

δ = α1 + α2x + α3y + α4x2 + α5xy + α6y2 + α7x3 + α8(x2y + xy2)+ α9y3

(2.12.138)

where {δ}T = 〈w1 θx1 θy1 w2 θx2 θy2 w3 θx3 θy3
〉

and

θx = −∂w
∂y

and θy = −∂w
∂x

.

Thus

〈
w1, θx1, θy1, w2, θx2, θy2, w3, θx3, θy3

〉T =
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x1 y1 x2
1 x1y1 y2

1 x3
1 x2

1y1 + x1y2
1 y3

1

0 0 1 0 x1 2y1 0 x2
1 + 2x1y1 3y2

1

0 −1 0 −2x1 −y1 0 −3x2
1 −2x1y1 − y2

1 0

1 x2 y2 x2
2 x2y2 y2

2 x3
2 x2

2y2 + x2y2
2 y3

2

0 0 1 0 x2 2y2 0 x2
2 + 2x2y2 3y2

2

0 −1 0 −2x2 −y2 0 −3x2
2 −2x2y2 − y2

2 0

1 x3 y3 x2
3 x3y3 y2

3 x3
3 x2

3y3 + x3y2
3 y3

3

0 0 1 0 x3 2y3 0 x2
3 + 2x3y3 3y2

3

0 −1 0 −2x3 −y3 0 −3x2
3 −2x3y3 − y2

3 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1

α2

α3

α4

α5

α6

α7

α8
α9

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

i.e. {δ} = [C] {α} this would give

{α} = [C]−1 {δ} (2.12.139)

61 We feel this was done more out of intuition rather than any mathematical logic influencing the postula-
tion. We could be wrong though. We have however not come across any formal proof on this issue and
shall be grateful if somebody can furnish us with the same.

62 If you use this element just make sure that triangles chosen are not right angle triangles which circumvents
the singularity error.
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Observer here that it is not possible to find out the value of [C]−1 explicitly based
on algebraic expression and has to be evaluated numerically by a computer.

Here [M] matrix is given by

[M] =
⎡
⎣1 x y x2 xy y2 x3 x2y + xy2 y3

0 0 1 0 x 2y 0 x2 + 2xy 3y2

0 −1 0 −2x −y 0 −3x2 −2xy − y2 0

⎤
⎦

This gives shape function as

[N] = [M] [C]−1

The strain matrix is given by

{ε} =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−∂
2w
∂x2

−∂
2w
∂y2

−2∂2w
∂x∂y

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=
⎡
⎣0 0 0 −2 0 0 −6x −2y 0

0 0 0 0 0 −2 0 −2x −6y
0 0 0 0 −2 0 0 −4(x + y) 0

⎤
⎦ [C]−1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w1
θx1
θy1
w2
θx2
θy1
w3
θx3
θy3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

➔ {ε} = [X] [C]−1 {δ} (2.12.140)

where [X] =
⎡
⎣0 0 0 −2 0 0 −6x −2y 0

0 0 0 0 0 −2 0 −2x −6y
0 0 0 0 −2 0 0 −4(x + y) 0

⎤
⎦

Again since {ε} = [B] {δ} , we have [B] = [X] × [C]−1

Considering [K] =
∫∫∫

[B]T [D] [B] dv

we have, [K] = [C−1]T [C−1]
∫∫∫

[X]T [D] [X]dv (2.12.141)

The [D] matrix is given by [D] = Et3

12(1−ν2)

⎡
⎣1 ν 0
ν 1 0
0 0 1−ν

2

⎤
⎦, here t is the thickness of

the plate putting this value in the stiffness expression we have

[K] = Et3

12(1 − ν2)
[C−1]T [C−1]

∫∫
[X]T

⎡
⎢⎣

1 ν 0
ν 1 0

0 0
1 − ν

2

⎤
⎥⎦ [X] dx · dy (2.12.142)
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= Et3

12(1 − ν2)
[C−1]T [C−1]

×
∫∫

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 4 0 4ν 12x 4(νx + y) 12νy
0 0 0 0 2(1 − ν) 0 0 4(1 − ν)(x + y) 0
0 0 0 4ν 0 4 12νx 4(x + νy) 12y
0 0 0 12x 0 12νx 36x2 12x(νx + y) 36νxy

0 0 0 4(νx + y) 4(1 − ν)(x + y) 4(x + νy) 12x(νx + y) (12 − 8ν)(x + y)2

−8xy(1 − ν)
12(x + νy)y

0 0 0 12νy 0 12y 36νxy 12(x + νy)y 36y2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

× dx · dy

This gives the complete stiffness matrix for the triangular plate in bending mode.
The integration parameters for the above matrix are as given hereafter:

Sl. No. Integral Values

1
∫∫

dydx
1
2

x3y2

2
∫∫

xdydx
1
6

x2
3y2

3
∫∫

x2dydx
1
12

x2
3y2

4
∫∫

ydydx
1
6

x3y2(y2 + y3)

5
∫∫

y2dydx
1
12

x3y2
(
y2
2 + y2y3 + y2

3

)
6

∫∫
xydydx

1
24

x2
3y2(y2 + 2y3)

It should be noted that to simplify the calculation here co-ordinate axes is made
to coincide with edge 1–2 i.e. one has to convert (x1, y1) to (0, 0) and then make
corresponding adjustments to (x2, y2) and (x3, y3) to carry out the integration of
the stiffness matrix.

2.12.32 DKT Plate element

The finite element club does have its own language and jargons. Rummaging through
literature on the topic, you will find a number of abbreviations as mentioned above
like ACM element (named after Adini, Clough and Melosh), PLATE8 (means higher
order plate element of serendipidity family with 8 nodes) etc.
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3(x3,y3)

X
1(0,0) 2(x2,0)

Z

Figure 2.12.41 Triangular plate bending element-with nodal coordinates for DKT element.

Here the word DKT stands for Discrete Kirchoff Theory named after the famous
German Mathematician Gustav R. Kirchoff, who was the first to formulate the theory
of equilibrium for thin plate63.

Developed by Batoz et. al. (1980) it is one of the best element available in the market
and mathematically considered quite robust. DKT plate element is actually formulated
based on thick plate theory of Mindilin and Reissner and converted into a thin plate
by taking the transverse shear strain as zero at the specific points. Like the previous
triangular element it has nine degrees of freedom and the stiffness matrix is derived in
natural coordinate as shown in Figure 2.12.41.

In this case we will not derive the stiffness matrix as in the previous case but will
give the final explicit expression as furnished by Batoz (1982).

Considering [K] =
∫∫∫

[B]T [D] [B] dv, Batoz expressed this as

= 1
2A

[�]T [D̂] [�] (2.12.143)

in which

[D̂] = 1
24

⎡
⎣ DR νDR 0
νDR DR 0

0 0 0

⎤
⎦, [R] =

⎡
⎣2 1 1

1 2 1
1 1 2

⎤
⎦ and D = Et3

12(1 − ν2)

63 The Bi-harmonic equation of plate was actually first proposed by Sophie Germain (1776–1831) a lady
mathematician who presented her papers under pseudonym La Blanc. In 1813 she correctly formulated
the equation of vibration of plate albeit with some open ended issues and won a prize and citation on
this. She can surely be given the credit of being the Mother of Plate Equation.
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where [�] =
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y3p6 0 −4y3 −y3p6 0 |
−y3p6 0 2y3 y3p6 0 |
y3p5 −y3q5 y3(2 − r5) y3p4 y3q4 |
−x2t5 (x2 − x3)+ x2r5 −x2q5 0 x3 |

0 x2 − x3 0 x2t4 x3 + x2r4 |
(x2 − x3)t5 (x2 − x3)(1 − r5) (x2 − x3)q5 −x3t4 x3(1 − r4) |

[−x3p6 −4(x2 − x3) |
−x2p5] x2q5 + y3 +x2r5 x3p6 −y3 |

[(x2 − x3)p5+ −(x2 − x3)q5+ [(2 − r5)(x2 − x3) [(r4 − 1)y3 |
y3t5] (1 − r5)y3] +y3q5] −x3p4 + y3t4 −x3q4] |

| −2y3 0 0 0
| 4y3 0 0 0
| y3(r4 − 2) −y3(p4 + p5) y3(q4 − q5) y3(r4 − r5)

| 0 x2t5 x2(r5 − 1) −x2q5
| −x2q4 −x2t4 x2(r4 − 1) −x2q4
| 2x3 −x2p5 x2q5 (r5 − 2)x2
| −4x3 + x2r4 −x2p4 x2q4 (r4 − 2)x2
| [−(x2 − x3)p5 [−(x2 − x3)q5 −(x2 − x3)r5
| [(2 − r4)x3 +x3p4− −x3q4+ −x3r4 + 4x2
| −x3q4] (t4 + t5)y3] (r4 − r5)y3] +(q5 − q4)y3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The parameters p, q, r and t etc. are as given hereafter

p4 = −6(x2 − x3)

(x2 − x3)2 + (y2 − y3)2
, p5 = −6x3

x2
3 + y2

3

, p6 = 6x2

x2
2 + y2

2

t4 = −6(y2 − y3)

(x2 − x3)2 + (y2 − y3)2
, t5 = −6y3

x2
3 + y2

3

, q4 = 3(x2 − x3)(y2 − y3)

(x2 − x3)2 + (y2 − y3)2
,

q5 = 3x3y3

x2
3 + y2

3

, r4 = 3(y2 − y3)
2

(x2 − x3)2 + (y2 − y3)2
, r5 = 3y2

3

x2
3 + y2

3

. (2.12.144)

2.12.33 Rectangular plate element in bending mode

Like triangular bending element rectangular element is also a naturally non-
conforming element. Before we go to a generic 4 node quadrilateral under bending,
we derive herein the stiffness matrix for a rectangular element which is quite similar
to the stiffness matrix of triangular element derived previously.

As shown in Figure 2.12.42, is a rectangular plate element of length a and width b
and thickness t having three degrees of freedom (one translation and two rotation).
The total degrees of freedom for the plate is thus 12. So, as per law of polynomial as
explained earlier the displacement function is expressed as
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Z w

a x

yY 

b

X

Figure 2.12.42 A rectangular plate element with three-degrees of freedom per node.

w(z) = α1 + α2x + α3y + α4x2 + α5xy + α6y2

+ α7x3 + α8x2y + α9xy2 + α10y3 + α11x3y + α12xy3 (2.12.145)

If you study the Pascal triangle, you will observe that the above is an incomplete
fourth order polynomial in x and y where the terms x4, x2, y2 and y4 terms are missing.

In plate element, slopes normal to the surface are not compatible and as slope
discontinuity occurs at adjacent edges this element is only C0 compatible.

The stiffness matrix of the element we intend to derive herein was originally
developed by Melosh, Zienkeiwicz and Chueng and is often termed as MCZ-element.

The explicit form of the stiffness matrix was derived by Adini, Clough and Melosh
and is also sometimes addressed as ACM element.

Though the element is non-conforming, yet it has been found to produce reasonable
good results in practice.

The reason for the same can be attributed to the following

• The presence of the terms, 1, x, y, x2, xy, y2 ensure rigid body motion and constant
curvature states of deformation.

• The fourth order term x3y and xy3 ensures that the governing differential equation
of plate is satisfied at lim a → 0, and lim b → 0

Considering {δ} = [C] {α} , we have

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1
θx1

θy1

w2

θx2

θy2

w3

θx3

θy3

w4

θx4

θy4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x1 y1 x2
1 x1y1 y2

1 x3
1 x2

1y1 x1y2
1 y3

1 x3
1y1 x1y3

1

0 −1 0 −2x1 −y1 0 −3x2
1 −2x1y1 −y2

1 0 −3x2
1y1 −y3

1

0 0 1 0 x1 2y1 0 x2
1 2x1y1 3y2

1 x3
1 3x1y2

1

1 x2 y2 x2
2 x2y2 y2

2 x3
2 x2

2y2
2 x2y2

2 y3
2 x3

2y2 x2y3
2

0 −1 0 −2x2 −y2 0 −3x2
2 −2x2y2 −y2

2 0 −3x2
2y2 −y3

2

0 0 1 0 x2 2y2 0 x2
2 2x2y2 3y2

2 x3
2 3x2y2

2

1 x3 y3 x2
3 x3y3 y2

3 x3
3 x2

3y2
3 x3y2

3 y3
3 x3

3y3 x3y3
3

0 −1 0 −2x3 −y3 0 −3x2
3 −2x3y3 −y2

3 0 −3x2
3y3 −y3

3

0 0 1 0 x3 2y3 0 x2
3 2x3y3 3y2

3 x3
3 3x3y2

3

1 x4 y4 x2
4 x4y4 y2

4 x3
4 x2

4y2
4 x4y2

4 y3
4 x3

4y4 x4y3
4

0 −1 0 −2x4 −y4 0 −3x2
4 −2x4y4 −y2

4 0 −3x2
4y4 −y3

4

0 0 1 0 x4 2y4 0 x2
4 2x4y4 3y2

4 x3
4 3x4y2

4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1

α2

α3

α4

α5

α6

α7

α8

α9

α10

α11

α12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦



256 Dynamics of Structure and Foundation: 1. Fundamentals

For, {α} = [C]−1 {δ}, it may again be noted that explicit expression for arriving at
[C]−1 is difficult, and is usually obtained numerically based on specific values of the
coordinates by a computer.

Here [M] matrix is given by

[M] =
⎡
⎣1 x y x2 xy y2 x3 x2y xy2 y3 x3y xy3

0 −1 0 −2x −y 0 −3x2 −2xy y2 0 3x2y −y3

0 0 1 0 x 2y 0 x2 2xy 3y2 x3 3xy2

⎤
⎦

This gives shape function as [N] = [M] [C]−1and the strain matrix is given by

{ε} =
〈
−∂

2w
∂x2 , −∂

2w
∂y2 , −2∂2w

∂x∂y

〉T

= [X] [C]−1 {δ}

=
⎡
⎣0 0 0 −2 0 0 −6x −2y 0 0 −6xy 0

0 0 0 0 0 −2 0 0 −2x −6y 0 −6xy
0 0 0 0 −2 0 0 −4xy −4y 0 −6x2 −6y2

⎤
⎦ [C]−1 [δ]

Considering {ε} = [X] [C]−1 {δ} = [B] {δ} we have

[X] =
⎡
⎣0 0 0 −2 0 0 −6x −2y 0 0 −6xy 0

0 0 0 0 0 −2 0 0 −2x −6y 0 −6xy
0 0 0 0 −2 0 0 −4xy −4y 0 −6x2 −6y2

⎤
⎦

Thus knowing [X] we have [K] = ∫∫∫
[B]T [D] [B] dv where [B] = [X][C]−1, the

stiffness reduces to

[K] = [C−1]T [C−1]
∫∫∫

[X]T [D][X] dv (2.12.146)

The [D] matrix is given by

[D] = Et3

12(1 − ν2)

⎡
⎢⎣

1 ν 0
ν 1 0

0 0
1 − ν

2

⎤
⎥⎦ ,

where t is the thickness of the plate putting this value in the stiffness expression
we have

[K] = Et3

12(1 − ν2)
[C−1]T [C−1]

∫∫
[X]T

⎡
⎢⎣

1 ν 0
ν 1 0

0 0
1 − ν

2

⎤
⎥⎦ [X] dx · dy (2.12.147)
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This expression has been explicitly derived by Adini and Clough (1960) as

[K] = Et3

180(1 − ν2)

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F
G R Symmetric

−H −Z V
L −M N F

−M T ψ G R
−N ψ X H Z V
O P Q I −J K F
−P U ψ J S ψ −G R
−Q ψ Y K ψ W H −Z V

I −J −K O P −Q L M −N F
J S ψ −P U ψ M T ψ −G R

−K ψ W Q ψ Y N ψ X −H Z V

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.12.148)

The values of matrix coefficients are as given as

Sl. No. Matrix coefficient Expressions

1 F

(
42 − 12ν + 60r2 + 60

r2

)
ab

2 G

(
30r + 3

r + 12ν
r

)
b

3 H

( 30
r + 3r + 12νr

)
a

4 I

(−42 + 12ν − 60r2 + 30
r2

)
ab

5 J
30r + 3(1−ν)

r

b

6 K
15
r − 3r − 12νr

a

7 L
−42 + 12ν − 60

r2 + 30r2

ab

8 M
−15r + 3

r + 12ν
r

b

9 N
30
r + 3(1 − ν)r

a

10 O
42 − 12ν − 30r2 − 30

r2

ab
(continued)
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Sl. No. Matrix coefficient Expressions

11 P
−15r + 3(1−ν)

r

b

12 Q
15
r − 3(1 − ν)r

a

13 R 20r + 4(1 − ν)

r

14 S 10r − (1 − ν)

r

15 T 10r − 4(1 − ν)

r

16 U 5r − (1 − ν)

r

17 V
20
r

− 4(1 − ν)r

18 W
10
r

− 4(1 − ν)r

19 X
10
r

− (1 − ν)r

20 Y
5
r

− (1 − ν)r

21 Z 15ν

22 ψ 0

23 r
a
b

(Aspect ratio)

2.12.34 Four-nodded quadrilateral plate element in bending

Having presented the classical finite elements plates of regular geometric shape, we
proceed hereafter to derive the stiffness matrix of a generalized quadrilateral element
under bending.

Frankly speaking, this kept us confused for quite some time as to which one to pick
and present, as we had a bewildering array of element to choose from. After much
debate we decided to present the Hughes et al. (1977) element for the following reasons

• The formulation is relatively simple.
• It is quite robust in terms of mathematical formulation.
• Though have two spurious zero energy modes yet pass patch test successfully.
• Its record of accomplishment in industry is quite good and has been adapted by

many commercial FEM software.
• The shape function is linear but still gives quite good result with reduced selective

integration.
• Can cater to shear strain deformation, an important issue if the plate is thick.
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• It can also cater to thin plate theory without shear locking.

Before getting involved in the direct derivation of the stiffness matrix, as a prelude,
to those who are not so conversant with the thick plate theory we present briefly what
makes it so special and different than thin plates64.

2.12.34.1 Difference between thin and thick plate

Leaving aside the fact that thin plates are those whose thickness is negligible compared
to its plan dimension (t < L/10) and thick plate have t > L/10, structurally speaking
the difference is analogous to behavioral difference between a prismatic and a deep
beam.

In a prismatic beam the flexural stiffness dominates. However, as the depth of the
beam increases the effect of shear strain energy becomes more dominant and affects
the element stiffness matrix.

For a plate element also, for thin plates while we can ignore shear effect, for thick
plate we cannot do so. This effect needs to be taken into cognizance in its mathematical
equation of equilibrium.

The explanation furnished herein is almost heuristic and is provided to give an
insight into the problem only.

In this case the plate undergoes additional deformation φy over and aboveψx = − ∂w
∂y

which constitute the total angular deformation θx and hence

− θx = ψx + φy

or − θx = −∂w
∂y

+ φy

similarly for other direction it can be proved that

θy = −∂w
∂x

+ φx,

this gives, φy = −θx + ∂w
∂y

and φx = θy + ∂w
∂x

(2.12.149)

The shear strain energy is given by

�s =
∫∫

1
2
αGAφ2dx · dy, for the present case =

∫∫
1
2
αGA2

[
φ2

x + φ2
y

]
dx · dy

(2.12.150)

Here α is a correction factor usually considered normally as 5/6. For plates restrained
fully against warping is considered as 1.0 and 2/3 for unrestrained against warping.

64 Those of you who are conversant with the plate theory can well skip this section.
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This is the additional strain energy term that needs to be considered other then
bending strain energy given by

�b = Et3

24(1 − ν2)

∫∫ [(
∂θx

∂x

)2

+ 2ν
(
∂θx

∂x

)(
∂θy

∂y

)
+
(
∂θy

∂y

)2

+ 1 − ν

2

{
∂θx

∂y
+ ∂θy

∂x

}2
]

dx · dy (2.12.151)

which is valid for thin plate.
Shown in Figure 2.12.44 is a generic thick plate quadrilateral element having node

coordinates are as shown above. Considering the effect of shear deformation the strain
matrix is given by

{ε}T =
〈
∂θy

∂x
− ∂θx

∂y

(
∂θy

∂y
− ∂θx

∂x

)
θy + ∂w

∂x
− θx + ∂w

∂y

〉
, (2.12.152)

Considering cx, cy, cxy as the curvature of the plate in respective axes we have

{ε}T = 〈cx cy cxy φx φy〉. (2.12.153)

The geometry of the element is given by

x =
4∑

i=1

Ni xi and y =
4∑

i=1

Ni yi, (2.12.154)

x y

t

Figure 2.12.43 Thick plate under bending in exaggerated deformed shape.
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4(x4,y4)

3(x3,y3)

1(x1,y1)

2(x2,y2)

Figure 2.12.44 A quadrilateral thick plate element under bending.

thus for iso-parametric formulation

w =
4∑

i=1

Niwi, θx =
4∑

i=1

Niθxi and θy =
4∑

i=1

Niθyi (2.12.155)

where Ni = 1
4
(1 + ξξi) (1 + ηηi)

The Jacobian matrix is given by

[J] =

⎡
⎢⎢⎣
∂N1

∂ξ

∂N2

∂ξ

∂N3

∂ξ

∂N4

∂ξ

∂N1

∂η

∂N2

∂η

∂N3

∂η

∂N4

∂η

⎤
⎥⎥⎦
⎡
⎢⎢⎣

x1 y1
x2 y2
x3 y3
x4 y4

⎤
⎥⎥⎦

Here J11 = ∂x
∂ξ

= ∂

∂ξ

4∑
i=1

Ni xi = ∂

∂ξ

[
(1 − ξ) (1 − η)

4
x1 + (1 + ξ) (1 − η)

4
x2

]

+ ∂

∂ξ

[
(1 + ξ) (1 + η)

4
x3 + (1 − ξ) (1 + η)

4
x4

]

or J11 = 1
4

[(η − 1) x1 + (1 − η) x2 + (1 + η) x3 − (1 + η) x4]

Similarly

J12 = 1
4

[(η − 1) y1 + (1 − η) y2 + (1 + η) y3 − (1 + η) y4]

J21 = 1
4

[(ξ − 1) x1 − (1 + ξ) x2 + (1 + ξ) x3 + (1 − ξ) x4]

J22 = 1
4

[(ξ − 1) y1 − (1 + ξ) y2 + (1 + ξ) y3 + (1 − ξ) y4]

Here [J] =
[
J11 J12
J21 J22

]
and [J]−1 = 1∣∣J∣∣

[
J22 −J12

−J21 J11

]
.
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This displacement relation in terms of Jacobian matrix can now be expressed as⎡
⎢⎢⎣
∂N1

∂x
∂N2

∂x
∂N3

∂x
∂N4

∂x
∂N1

∂y
∂N2

∂y
∂N3

∂y
∂N4

∂y

⎤
⎥⎥⎦ = [J]−1

⎡
⎢⎢⎣
∂N1

∂ξ

∂N2

∂ξ

∂N3

∂ξ

∂N4

∂ξ

∂N1

∂η

∂N2

∂η

∂N3

∂η

∂N4

∂η

⎤
⎥⎥⎦

The above can be further expressed as

⎡
⎢⎢⎣
∂N1

∂x
∂N2

∂x
∂N3

∂x
∂N4

∂x
∂N1

∂y
∂N2

∂y
∂N3

∂y
∂N4

∂y

⎤
⎥⎥⎦ = 1∣∣J∣∣

[
J22 −J12

−J21 J11

] ⎡⎢⎢⎣
∂N1

∂ξ

∂N2

∂ξ

∂N3

∂ξ

∂N4

∂ξ

∂N1

∂η

∂N2

∂η

∂N3

∂η

∂N4

∂η

⎤
⎥⎥⎦

= 1∣∣J∣∣ ×
⎡
⎢⎣ J22

∂N1

∂ξ
− J12

∂N1

∂η
J22

∂N2

∂ξ
− J12

∂N2

∂η
J22

∂N3

∂ξ
− J12

∂N3

∂η
J22

∂N4

∂ξ
− J12

∂N4

∂η

−J21
∂N1

∂ξ
+ J11

∂N1

∂η
−J21

∂N2

∂ξ
+ J11

∂N2

∂η
−J21

∂N3

∂ξ
+ J11

∂N3

∂η
−J21

∂N4

∂ξ
+ J11

∂N4

∂η

⎤
⎥⎦

Thus we have been equating term by term

∂N1

∂x
= 1∣∣J∣∣

[
J22
∂N1

∂ξ
− J12

∂N1

∂η

]

∂N2

∂x
= 1∣∣J∣∣

[
J22
∂N2

∂ξ
− J12

∂N2

∂η

]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∂N4

∂y
= 1∣∣J∣∣

[
−J21

∂N4

∂ξ
+ J11

∂N4

∂η

]

The strain matrix {ε}T =
〈(
∂θy

∂x

)(
−∂θx
∂y

)(
∂θy

∂y
− ∂θx

∂x

)(
θy + ∂w

∂x

)(
−θx + ∂w

∂y

)〉

And this can be expanded to

{ε} =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
∂N1

∂x
0 0

∂N2

∂x
0 0

∂N3

∂x
0 0

∂N4

∂x

0 − ∂N1

∂y
0 0 − ∂N2

∂y
0 0 − ∂N3

∂y
0 0 − ∂N4

∂y
0

0 − ∂N1

∂x
∂N1

∂y
0 − ∂N2

∂x
∂N2

∂y
0 − ∂N3

∂x
∂N3

∂y
0 − ∂N4

∂x
∂N4

∂y
∂N1

∂x
0 N1

∂N2

∂x
0 N2

∂N3

∂x
0 N3

∂N4

∂x
0 N4

∂N1

∂y
−N1 0

∂N2

∂y
−N2 0

∂N3

∂y
−N3 0

∂N4

∂y
−N4 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

× 〈w1 θx1 θy1 w2 θx2 θy2 w3 θx3 θy3 w4 θx4 θy4
〉T

➔ {ε} = [B] {δ} (2.12.156)
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or [B] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
∂N1

∂x
0 0

∂N2

∂x
0 0

∂N3

∂x
0 0

∂N4

∂x

0 − ∂N1

∂y
0 0 − ∂N2

∂y
0 0 − ∂N3

∂y
0 0 − ∂N4

∂y
0

0 − ∂N1

∂x
∂N1

∂y
0 − ∂N2

∂x
∂N2

∂y
0 − ∂N3

∂x
∂N3

∂y
0 − ∂N4

∂x
∂N4

∂y
∂N1

∂x
0 N1

∂N2

∂x
0 N2

∂N3

∂x
0 N3

∂N4

∂x
0 N4

∂N1

∂y
−N1 0

∂N2

∂y
−N2 0

∂N3

∂y
−N3 0

∂N4

∂y
−N4 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The stiffness matrix as usual is given by [K] = ∫∫∫ [B]T [D] [B] dv, however in this
case is broken up into two parts.

• The bending part which is valid for thin plate element
• The shear deformation part that needs to be added to above if the plate is

considered thick.

Thus [K] = t
∫∫

[B]T [D]b [B]
∣∣J∣∣ dξdη + t

∫∫
[B]T [D]s [B]

∣∣J∣∣ dξdη (2.12.157)

Here [D]b = Et3

12
(
1 − ν2

)
⎡
⎢⎢⎢⎢⎢⎣

1 ν 0 0 0
ν 1 0 0 0

0 0
1 − ν

2
0 0

0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

and [D]s = E
2 (1 + ν)

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 α 0
0 0 0 0 α

⎤
⎥⎥⎥⎥⎦

Here α = 5/6, 2/3, 1 etc. the shear correction coefficient as discussed earlier. The
developers suggest (Hughes et al.) that for numerical integration for the bending part,
two point Gauss integration and for the shear deformation part one point Gauss
integration at the centroid of the element suffice to give an accurate answer.

The beauty of the element is its simple approach and capability to handle both thick
and thin element under one unified formula.

2.12.35 Three Dimensional Hexahedral
Element – One last to bore you

We do not want to end this section in an incompatible mode as such we cajole you to
go through this one last element and understand its derivation. The selection of this
element is not without its reason and this will be unraveled subsequently.



264 Dynamics of Structure and Foundation: 1. Fundamentals

8

8(-1,-1,1)
7(1,1,1)

7

5

5(-1,-1,1) 6(1,-1,1)

6

4
4(-1,1,-1)

3(1,1,-1)
3

1(-1,-1,-1) 2(1,-1,-1)
1 2

Parent eight-nodded brick element Generic eight-nodded hexahedral element

Figure 2.12.45 Iso-parametric representation of 3 dimensional eight node hexahedral element.

Shown Figure 2.12.45 is a eight nodded hexahedral element having three degrees
of freedom at each node u, v and w. Thus in generalized co-ordinate the polynomial
representation is given by

u = α1 + α2x + α3y + α4z + α5xy + α6yz + α7xz + α8xyz;

v = α9 + α10x + α11y + α12z + α13xy + α14yz + α15xz + α16xyz and

w = α17 + α18x + α19y + α20z + α21xy + α22yz + α23xz + α24xyz.

(2.12.158)

In natural coordinate the shape function based on Serendip family is given as

Ni = 1
8
(1 + ξξi) (1 + ηηi) (1 + ζ ζi) where i = 1, 2, 3. . . . . .8

The geometry of the element is given by x = ∑8
i=1 Nixi, y = ∑8

i=1 Niyi and
z = ∑8

i=1 Nizi, for iso-parametric formulation u = ∑8
i=1 Niui, v = ∑8

i=1 Nivi and
w = ∑8

i=1 Niwi where the relation between global and natural coordinate is
given by⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂u
∂ξ

∂u
∂η

∂u
∂ζ

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= [J]

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂u
∂x
∂u
∂y
∂u
∂z

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

which gives →

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂u
∂x
∂u
∂y
∂u
∂z

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= [J]−1

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂u
∂ξ

∂u
∂η

∂u
∂ζ

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

Here [J] =
⎡
⎣J11 J12 J13

J21 J22 J23

J31 J32 J33

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ

⎤
⎥⎥⎥⎥⎥⎥⎦

where



Theory of elasticity and numerical methods in engineering 265

J11 = 1
8

[
(η − 1) (1 − ζ ) x1 + (1 − η) (1 − ζ ) x2 + (1 + η) (1 − ζ ) x3 + (1 + η) (ζ − 1) x4

+ (η − 1) (1 + ζ )x5 + (1 − η) (1 − ζ ) x6 + (1 + η)(1 + ζ )x7 − (1 + η)(1 + ζ )x8

]

J12 = 1
8

[
(η − 1) (1 − ζ ) y1 + (1 − η) (1 − ζ ) y2 + (1 + η) (1 − ζ ) y3 + (1 + η) (ζ − 1) y4

+ (η − 1) (1 + ζ )y5 + (1 − η) (1 − ζ ) y6 + (1 + η)(1 + ζ )y7 − (1 + η)(1 + ζ )y8

]

J13 = 1
8

[
(η − 1) (1 − ζ ) z1 + (1 − η) (1 − ζ ) z2 + (1 + η) (1 − ζ ) z3 + (1 + η) (ζ − 1) z4

+ (η − 1) (1 + ζ )z5 + (1 − η) (1 − ζ ) z6 + (1 + η)(1 + ζ )z7 − (1 + η)(1 + ζ )z8

]

J21 = 1
8

[
(ξ − 1) (1 − ζ ) x1 + (1 + ξ) (ζ − 1) x2 + (1 + ξ) (1 − ζ ) x3 + (1 − ξ) (1 − ζ ) x4

+ (ξ − 1) (1 + ζ )x5 + (1 + ξ) (ζ − 1) x6 + (1 + ξ)(1 + ζ )x7 + (1 − ξ)(1 + ζ )x8

]

J22 = 1
8

[
(ξ − 1) (1 − ζ ) y1 + (1 + ξ) (ζ − 1) y2 + (1 + ξ) (1 − ζ ) y3 + (1 − ξ) (1 − ζ ) y4

+ (ξ − 1) (1 + ζ )y5 + (1 + ξ) (ζ − 1) y6 + (1 + ξ)(1 + ζ )y7 + (1 − ξ)(1 + ζ )y8

]

J23 = 1
8

[
(ξ − 1) (1 − ζ ) z1 + (1 + ξ) (ζ − 1) z2 + (1 + ξ) (1 − ζ ) z3 + (1 − ξ) (1 − ζ ) z4

+ (ξ − 1) (1 + ζ )z5 + (1 + ξ) (ζ − 1) z6 + (1 + ξ)(1 + ζ )z7 + (1 − ξ)(1 + ζ )z8

]

J31 = 1
8

[
(ξ − 1) (1 − η) x1 + (1 + ξ) (η − 1) x2 − (1 + ξ) (1 + η) x3 + (ξ − 1) (1 + η) x4

+ (1 − ξ) (1 − η)x5 + (1 + ξ) (1 − η) x6 + (1 + ξ)(1 + η)x7 + (1 − ξ)(1 + η)x8

]

J32 = 1
8

[
(ξ − 1) (1 − η) y1 + (1 + ξ) (η − 1) y2 − (1 + ξ) (1 + η) y3 + (ξ − 1) (1 + η) y4

+ (1 − ξ) (1 − η)y5 + (1 + ξ) (1 − η) y6 + (1 + ξ)(1 + η)y7 + (1 − ξ)(1 + η)y8

]

J33 = 1
8

[
(ξ − 1) (1 − η) z1 + (1 + ξ) (η − 1) z2 − (1 + ξ) (1 + η) z3 + (ξ − 1) (1 + η) z4

+ (1 − ξ) (1 − η)z5 + (1 + ξ) (1 − η) z6 + (1 + ξ)(1 + η)z7 + (1 − ξ)(1 + η)z8

]

Let the inverse of [J] matrix be considered as

[J]−1 =
⎡
⎣j11 j12 j13

j21 j22 j23
j31 j32 j33

⎤
⎦ (2.12.159)

The strain matrix is given by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

εx
εy
εz
γxy
γyz
γzx

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂x
∂v
∂y
∂w
∂z

∂u
∂y

+ ∂v
∂x

∂v
∂z

+ ∂w
∂y

∂u
∂z

+ ∂w
∂x

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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Now considering {ε} = [B]{δ}, the [ε] matrix in terms of shape function can be
expressed as

{ε} =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂N1

∂x
0 0

∂N2

∂x
0 0

∂N3

∂x
0 0

∂N4

∂x
0 | 0

0
∂N1

∂y
0 0

∂N2

∂y
0 0

∂N3

∂y
0 0

∂N4

∂y
| 0

0 0
∂N1

∂z
0 0

∂N2

∂z
0 0

∂N3

∂z
0 0 | ∂N4

∂z
∂N1

∂y
∂N1

∂x
0

∂N2

∂y
∂N2

∂x
0

∂N3

∂y
∂N3

∂x
0

∂N4

∂y
∂N4

∂x
| 0

0
∂N1

∂z
∂N1

∂y
0

∂N2

∂z
∂N2

∂y
0

∂N3

∂z
∂N3

∂y
0

∂N4

∂z
| ∂N4

∂y
∂N1

∂z
0

∂N1

∂x
∂N2

∂z
0

∂N2

∂x
∂N3

∂z
0

∂N3

∂x
∂N4

∂z
0 | ∂N4

∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1
v1
w1
u2
v2
w2
u3
v3
w3
u4
v4
w4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

| ∂N5

∂x
0 0

∂N6

∂x
0 0

∂N7

∂x
0 0

∂N8

∂x
0 0

| 0
∂N5

∂y
0 0

∂N6

∂y
0 0

∂N7

∂y
0 0

∂N8

∂y
0

| 0 0
∂N5

∂z
0 0

∂N6

∂z
0 0

∂N7

∂z
0 0

∂N8

∂z

| ∂N5

∂y
∂N5

∂x
0

∂N6

∂y
∂N6

∂x
0

∂N7

∂y
∂N7

∂x
0

∂N8

∂y
∂N8

∂x
0

| 0
∂N5

∂z
∂N5

∂y
0

∂N6

∂z
∂N6

∂y
0

∂N7

∂z
∂N7

∂y
0

∂N8

∂z
∂N8

∂y

| ∂N5

∂z
0

∂N5

∂x
∂N6

∂z
0

∂N6

∂x
∂N7

∂z
0

∂N7

∂x
∂N8

∂z
0

∂N8

∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u5
v5
w5
u6
v6
w6
u7
v7
w7
u8
v8
w8

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.12.160)

From above it can be easily deduced that

[B] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂N1

∂x
0 0

∂N2

∂x
0 0

∂N3

∂x
0 0

∂N4

∂x
0 0

0
∂N1

∂y
0 0

∂N2

∂y
0 0

∂N3

∂y
0 0

∂N4

∂y
0

0 0
∂N1

∂z
0 0

∂N2

∂z
0 0

∂N3

∂z
0 0

∂N4

∂z
∂N1

∂y
∂N1

∂x
0

∂N2

∂y
∂N2

∂x
0

∂N3

∂y
∂N3

∂x
0

∂N4

∂y
∂N4

∂x
0

0
∂N1

∂z
∂N1

∂y
0

∂N2

∂z
∂N2

∂y
0

∂N3

∂z
∂N3

∂y
0

∂N4

∂z
∂N4

∂y
∂N1

∂z
0

∂N1

∂x
∂N2

∂z
0

∂N2

∂x
∂N3

∂z
0

∂N3

∂x
∂N4

∂z
0

∂N4

∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1
v1
w1
u2
v2
w2
u3
v3
w3
u4
v4
w4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

|
|
|
|
|
|
|

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

| ∂N5

∂x
0 0

∂N6

∂x
0 0

∂N7

∂x
0 0

∂N8

∂x
0 0

| 0
∂N5

∂y
0 0

∂N6

∂y
0 0

∂N7

∂y
0 0

∂N8

∂y
0

| 0 0
∂N5

∂z
0 0

∂N6

∂z
0 0

∂N7

∂z
0 0

∂N8

∂z

| ∂N5

∂y
∂N5

∂x
0

∂N6

∂y
∂N6

∂x
0

∂N7

∂y
∂N7

∂x
0

∂N8

∂y
∂N8

∂x
0

| 0
∂N5

∂z
∂N5

∂y
0

∂N6

∂z
∂N6

∂y
0

∂N7

∂z
∂N7

∂y
0

∂N8

∂z
∂N8

∂y

| ∂N5

∂z
0

∂N5

∂x
∂N6

∂z
0

∂N6

∂x
∂N7

∂z
0

∂N7

∂x
∂N8

∂z
0

∂N8

∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u5
v5
w5
u6
v6
w6
u7
v7
w7
u8
v8
w8

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.12.161)
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The relationship between the natural and local cordinate is expressed as

⎧⎪⎨
⎪⎩
∂Ni/∂x

∂Ni/∂y

∂Ni/∂z

⎫⎪⎬
⎪⎭ = [J]−1

⎡
⎢⎢⎢⎢⎢⎢⎣

∂Ni
∂ξ

∂Ni
∂η

∂Ni
∂ζ

⎤
⎥⎥⎥⎥⎥⎥⎦

(2.12.162)

The stiffness matrix is thus given by

[K]e =
1∫

−1

1∫
−1

1∫
−1

[B]T [D] [B] dξ dη dζ (2.12.163)

The [D] matrix is expressed as

[D] = E
(1 + ν) (1 − 2ν)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − ν ν ν 0 0 0
ν 1 − ν ν 0 0 0
ν ν 1 − ν 0 0 0

0 0 0
1 − 2ν

2
0 0

0 0 0 0
1 − 2ν

2
0

0 0 0 0 0
1 − 2ν

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This element has a lot of application in rock mechanics where stresses induced in
rock due to external loads are often analyzed by modeling the rock mass in 3D as eight
node brick elements.

Mechanical engineers often use this element to determine stresses in thick walled
pressure vessels and heat exchangers subjected to internal pressure and thermal load-
ing. We have seen Geotechnical engineers use this element for pile analysis in three
dimensions, modeling the soil/elastic half space by this element.

We have also however observed gross misuse of this element in hands of rookies
generating significant amount of garbage results.

In their over enthusiasm to produce something sophisticated we have seen people
use this element at wrong places without understanding its limitations.
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The classic example of this is thick rafts or jetty decks modeled by this element
where the governing design force is flexural in nature.

For similar to 4 node quadrilateral element this element is quite stubborn under
flexure and unless we take additional terms (1 − ξ2), (1 − η2) and (1 − ζ 2) thus make
it a non conforming element and then apply Taylor’s correction (like we did with
4-nodded iso-parametric element) the moments and shears obtained would be highly
erroneous.

Finally stress output for this element is usually furnished in terms of
σxx, σyy, σzz, τxy, τyz, τzx, while this is fine for stress in rocks or pressure vessel, for
structural analysis in case of rafts or thick walls back calculating the Moments and
shear is extremely tedious from such outputs unless the software has post processor
to carry out this task.

It is possible to model such structural elements by 20 node higher order brick
elements which would surely give better results. However if the software in hand
does not have solid modeling post-processor and automatic band width minimization
option playing around with 20 node brick element can be quite an arduous task.

2.12.36 Twenty-nodded hexahedral element

A twenty-nodded hexahedral element is as shown in Figure 2.12.46. This is a higher
order quadratic element of Serendip family.

We will not derive the stiffness matrix for this but would present only the relevant
shape function in natural coordinate, from which one can derive the stiffness matrix
following the same steps as shown for the eight-nodded element.

Here,

for nodes 1 to 8: Ni = (1 + ξξi)(1 + ηηi)(1 + ζ ζi)(ξξi + ηηi + ζ ζi − 2)/8,

for nodes 10, 12, 14 and 16: Ni = (1 − ξ2)(1 + ηηi)(1 + ζ ζi)/4,

8
15

16
7

5 20 14

13
6

19

17 4 11

12 18
3

1 10

9
2

Figure 2.12.46 A 20-node generic hexahedral element.
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for nodes 9, 11, 13 and 15: Ni = (1 + ξξi)(1 − η2)(1 + ζ ζi)/4,

for nodes 17, 18, 19 and 20: Ni = (1 + ξξi)(1 + ηηi)(1 − ζ 2)/4. (2.12.164)

2.12.37 The patch and eigenvalue test – The performance
warranty certif icates

When we buy an electronic or a mechanical gadget we are normally provided with a
warranty certificate, which is nothing but a performance guarantee of the equipment.

In the finite element market though nobody furnishes a performance bond on the
element in hand like the gadgets we buy, yet patch and eigenvalue test remain an
important test to ensure that the element formulation is correct and the values indeed
converge to the exact result as the mesh gets progressively refined.

In other words these tests are carried out to ensure that the element in hand indeed
obeys the commandment of monotonic convergence.

Frankly speaking under the present scenario when a number of established com-
mercially available FEM packages are available, the assemblers who develop these
packages anyway carry out these tests on any new element rigorously to ensure their
validity- before implementing them in the software. Thus, as an end user you would
be rarely called upon to do this check, unless you become a developer yourself.

However, in case you get some unusual/doubtful results with any elements in hand
these tests may be conveniently carried to ensure that there is no bug in the source
code or a flaw in the formulation in the element in question.

2.12.37.1 Patch Test

Patch test was originally developed by Irons in an intuitive way by Irons & Razzaque
(1972) and many researchers (Strang and Fix 1973), have tried to develop a math-
ematical proof of this. But then acknowledging the fact that mathematical intuition
and capability of lesser mortals like us do not match with the geniuses of Strang and
Irons we try to explain the patch test in a slightly different way.

We show in Figure 2.12.47, two identical samples of element one made of rubber
and other of steel. Now if we apply a force of say P to each of them the stress induced
in any section on the body is always same i.e. σ = P/A, where A is cross sectional
area of the sample.

It is apparent that irrespective of what material it is made of, this is always true for
any body that obeys Hooke’s law.

Now we go back a bit to molecular or atomic physics. We know all elements are
made up atoms whose basic characteristics are same (i.e. Proton + Neutron + Electron)
and these atoms combine to make a molecule in a fixed pattern. The molecules in turn

A piece of rubber A piece of steel

P P

Figure 2.12.47 A patch of rubber and steel with load P.
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Figure 2.12.48 Arbitrary nodes within a body as a collection of molecules.

are bonded together in a particular structure that is unique for a particular element or
a compound. As this molecular bond patterns are unique for every element, rubber is
rubber and steel is steel.

Though the internal connectivity among the molecules within these two elements
are different yet when an external load is applied to the bodies the molecules in some
way65 adjust themselves to carry the load in such a fashion that for the external load
P, any arbitrary point within the body will always show same stress σ . If it does not,
we conclude that the body is something different and does not obey Hooke’s Law.
In other words, if the body obeys Hooke’s law, the stress strain relationship is invariant
of the geometric bonding or patterns of the molecules.

Now look at the above pictures carefully (Fig. 2.12.47), and imagine that the pat-
terns shown, represent the way the molecules are residing within the body (and are
interconnected) then we can argue that irrespective of the geometric pattern of the
molecules if the body obeys Hooke’s law, stress is the same and would remain true
irrespective of the size of the body whether big (say 2 m × 2 m) or a small patch (say
2 mm × 2 mm) of the same.

Now let us imagine that we collect all these small molecules (may be in thousands)
and form a node, and then connect all these nodes constituting the body together as
shown in Figure 2.12.48.

Now if the properties of molecules remain same as the original body we can argue
that the stress will remain same at each node irrespective of how we have placed these
nodes within the body since the stress distribution is independent of the location of
the molecules and connectivity between them.

Thus if we apply a stress say σ on one of the edges of the body all these nodes will
show a stress σ irrespective of whether the body is big, small or whatever pattern the
nodes are located within the body. This is in essence is the basic philosophy of patch
test though represented in slightly different way in terms of FEM.

The patch test is basically carried out to ensure that whether the body has rigid
body modes and also has a constant strain deformation capability especially for the
case when

65 We do not know how they manage this. Even classical physicists cannot explain this, possibly people
with quantum mechanics background can explain as to – why and how this happen. But that is how it
happen is indubitable.
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• The element is non-conforming.
• Reduced or Selective Integration is carried out over elements deliberately to get a

better stiffness value.

In this case consider a two dimensional element as shown in Figure 2.12.49, the
displacement for a two dimensional body is represented by

u = α1 + α2x + α3 y and v = α4 + α5x + α6 y (2.12.165)

and for this displacement induced at nodes, if the stresses developed matches the exact
stress value obtained analytically, then it is concluded that the element has passed the
patch test.

Now what does this really mean? To elucidate further let us consider the example
as shown hereafter.

We show a patch of element (plane stress) having co-ordinates as shown in Figure
2.12.50. While selecting such a patch it should be ensured that the internal node 8
should be at an arbitrary location making each of the elements a generic quadrilateral.
The reason for this being some element with regular geometry may pass the patch test
while the same element when made of quadrilaterals could fail.

We need to test that for a displacement function considered does it simulate the
constant strain relation or not.

To test this let us consider an example

u=0.001+0.0035x+0.005y and v=−0.001−0.0035x−0.005y

Here εx = ∂u
∂x

= 0.0035; εy = ∂v
∂y

= −0.005; and

γxy = ∂u
∂y

+ ∂v
∂x

= 0.005 − 0.0035 = 0.0015

For plane stress case

[
σxx
σyy
τxy

]
= E

1 − ν2

⎡
⎢⎣

1 ν 0
ν 1 0

0 0
1 − ν

2

⎤
⎥⎦
⎡
⎣εxx
εyy
γxy

⎤
⎦

8

4 7 3

6

1 5 2

Figure 2.12.49 An arbitrary patch of two dimensional element.
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6(1,2) 5(1.5,2) 4(2.5,2)

8(1.8,1.8)
7(1,1.54) 9(2.5,1.5)

1(1,1) 2(1.5,1) 3(2.5,1)

Figure 2.12.50 A two dimensional element with co-ordinates.

With E = 2 × 108 kN/m2 and ν = 0.25 we have

⎡
⎣σxx
σyy
τxy

⎤
⎦ =

⎡
⎣ 479.999999

−879.999999
120

⎤
⎦ N/mm2

Now based on the displacement function chosen the value of u and v at each node
is given by

Node X Y u v

1 1 1 0.00950 −0.00950
2 1.5 1 0.01125 −0.01125
3 2.5 1 0.01475 −0.01475
4 2.5 2 0.01975 −0.01975
5 1.5 2 0.01625 −0.01625
6 1 2 0.01450 −0.01450
7 1 1.54 0.01220 −0.01220
8 1.8 1.8 0.01630 −0.01630
9 2.5 1.5 0.01725 −0.01725

To carry out the patch test we prescribe the displacements as obtained above for
nodes 1 to 7 and 9 as given in the above table and carry out a simple static run in
computer. Note that we do not prescribe the displacement at the internal node 8.
Based on the computer output if we find that the nodal displacement at node 8 (value
marked in bold above) and the stress in the nodes of the elements or the average stress
at centroid of each of the element matches exactly to the values as calculated above
analytically (to the last decimal place), we conclude that the patch has passed the test
and the element formulation is correct. If not, something is wrong and we should
preferably avoid such element.
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Figure 2.12.51 Alternate form of patch for which test may be carried out.

It is not necessary that the patch as shown in Figure 2.12.50 with one node inside
can be the only geometry. The patch as shown in Figure 2.12.51 may also be used to
carry out the test.

In this case again the displacement may be prescribed at external nodes only. The
computer output should match the displacement at external and internal nodes as well
as the stress at the nodes based on analytical solution.

2.12.37.2 Eigen value test

We had stated earlier that when Gauss Integration is carried out on an element
exactly, the stiffness obtained is higher than actually what it should be. For this,
sometimes it is beneficial to undertake reduced or selective integration to arrive at a
more realistic result.

While deriving the Gauss integration scheme we mentioned that for the integration
to be accurate one has take Gauss points ∼= 2n−1, where n is the order of the shape
function chosen for the element.

Thus for an twelve node iso-parametric element of Serendip family whose shape
functions are cubic in nature we could carry out a three point Gauss integration for
exact integration. Now suppose to get a more flexible stiffness (thus more realistic) we
carry out a two point integration on this element, how correct will be the result? If two
point integration give better results then why not one point integration (ξ = η = 0)?,
this could perhaps converge to still better results. The quires as posed above we feel
are natural and quite pertinent. We try to answer them hereafter.

One of the major problems with reduced or selective integration is that it makes
the stiffness matrix rank deficient. Without getting into the details of what is a rank
of matrix in mathematical term (Ayres 1962), for this particular case the rank of the
stiffness matrix is obtained as total degrees of freedom for the element minus the total
number of rigid body modes.

Thus for a two dimensional quadrilateral the number of rigid body modes are three
(two translations and one rotation). Considering two degrees of freedom per node
total degrees of freedom is 8, hence rank of the matrix is 8 − 3 = 5.
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The correct order of Gauss integration in this case is 2. However to make it more
accurate if we try out one point integration it will be seen that the rank of the matrix
becomes 3 that is two more zero modes develop beyond the normal rigid body modes.
These are known as mechanism, zero energy or hour glass modes. The eigenvalue test
helps us to detect these spurious zero energy modes or absence of rigid body modes in
the element.

We had discussed at length on the mathematical and conceptual aspects of eigenvalue
in Chapter 5 (Vol. 1), however, they are explained there in terms of dynamic analysis.
For this particular test in context of FEM we explain the theory as follows.

We know that static equilibrium equation can be expressed as

[K] {δ} = {P} (2.12.166)

where [K] is the stiffness matrix {δ} is the displacement and {P} is the nodal load.
Now let us assume that the nodal load {P} is proportional to the displacement as

λ[δ]. Then equating this we have

[K] {δ} = λ [I] {δ} or [[K] − λ [I]] {δ} = 0 (2.12.167)

The above is the eigen value problem of the equation [K] {δ} = {P} and the values
λi are called the eigen values of [K]. The number of eigen values λi must be equal to
the number of degrees of freedom {δ}. For each value of λi there is a corresponding
value {δi}, these are called the eigen vectors of the problem. For the normalized eigen
vectors it can be shown66 that {δi}T{δi} = 1 and {δi}T [K] {δi} = λi.

From strain energy theorem for structural analysis it can be proved that strain energy
of a body can be expressed as

U = 1
2

{δ}T [K] {δ}, (2.12.168)

Based on the normalized eigen vectors, we can express this as

2Ui = {δi}T [K] {δi} = λi (2.12.169)

It is apparent that when the eigenvalue is zero the strain energy of the body is also
zero and this corresponds to the rigid body mode. From above we can also infer that
mechanism can also induce for λ = 0.

Considering the fact that stiffness matrix of an element is obtained by

∫
[B]T [D] [B] dv (2.12.170)

at the Gauss points, the zero energy mode induces no strain at the Gauss points.

66 Refer Chapter 5 (Vol. 1) where we have proved this.
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Thus in testing an element, we can compute the eigenvalues of [K] when the stiffness
matrix should have as many λi = 0 as there are legitimate rigid body modes. If there
are less, then it indicates that the element lacks the capability to undergo constant
strain deformation, if they are more, it proves it has some mechanism or zero energy
mode is prevalent in it.

It is not necessary that zero energy mode automatically qualify an element for rejec-
tion, for example the four-nodded plate element as developed by Hughes and Taylor
has two zero energy mode, but this does not affect its performance when assembled
in mesh, and pass the patch test quite well.

There are other ways and means by which the hour glass mode can be suppressed by
incorporation of correction to the stiffness matrix but these are much more advanced
topics and interested reader may refer to specialist literature (Hughes 2000) for
further information.

2.12.38 A retrospection on what we presented so far

We have completed our reconnaissance of the Developers Club. By this survey, one
should not have the impression that we have had a look at every nooks and corners of
the institution but has only given you an exposure to the most often used elements that
you would use in your day to day work in a design office or research work. We have
skipped a few specialized elements like shell, axis symmetric, higher order triangular
and tetrahedral elements for which one may refer to books totally dedicated to the
topic.

On this study of what the developers does one should not carry an impression that
considering the research carried out on this topic for last thirty odd years the show is
over and no further development is envisaged. There are number of new areas which
has emerged like finite volume, finite sphere and mesh less analysis which we hope in
future would further enrich this powerful topic.

2.12.39 The assemblers – the tailors who stitches
the pieces to give final shape

Having looked at what the developers do we would now enter the assemblers club to
see what they do and how it benefits us.

While developers67 develop the elements as discussed previously assemblers collect
these building blocks to shape the over all problem.

In lighter vein, the picture in Figure 2.12.52 conceptually represents what the assem-
blers do. When we try to model a structure and its foundation by finite element it is
rare when we will have same element considered over the whole system and neither
the boundary conditions will remain identical. It will invariably be a combination of
beams, plates, shells, boundary elements (springs), plane stress, plane strain elements
etc with boundary conditions like free, fixed, hinged, partially restrained etc. This is
otherwise, also called the overall problem where we assemble the elements to form the
global stiffness matrix that represent the overall system.

67 Many of them are members of the assemblers club too.
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ASSEMBLERS AT WORK

Figure 2.12.52 Gateway to assemblers’ club.

We now present the mathematical background of such assembly and also explain
a few techniques used in computer implementation of such assembly to optimize the
computer storage.

2.12.40 Formulation of the global stiffness matrix

Like what we did with element stiffness matrix, here also we start with beam element
to present the fundamental concepts of assembly before we graduate to the continuum.
As discussed previously though beam is a discrete element and not a Finite Element,
yet formulations applicable to beam are also applicable to continuum as will be seen
subsequently.

Shown in Figure 2.12.53 is a beam of span 2L, supported on spring of stiffness Ks
say at the center. The beam has two degrees of freedom at each node (on translation
and one rotation). The mathematical model of the beam can thus be expressed as given
in Figure 2.12.54. The above is actually an assembly of the following beam elements
and the spring shown in Figure 2.12.55.

The stiffness matrix of individual beam elements are given as

1 2 3 4

[K]1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12EI
L3

6EI
L2

−12EI
L3

6EI
L2

6EI
L2

4EI
L

−6EI
L2

2EI
L

−12EI
L3

−6EI
L2

12EI
L3

−6EI
L2

6EI
L2

2EI
L

−6EI
L2

4EI
L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and (2.12.171)
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2L

Figure 2.12.53 A propped cantilever beam supported on spring at mid span.

Y 

1 3 5

X

1 2 3
2 4 6

Figure 2.12.54 Mathematical model of the continuous beam.

1 3 5 7
1 2

+

2 4 6 8

Figure 2.12.55 Mathematical model of beams and spring.

5 6 7 8

[K]2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12EI
L3

6EI
L2

−12EI
L3

6EI
L2

6EI
L2

4EI
L

−6EI
L2

2EI
L

−12EI
L3

−6EI
L2

12EI
L3

−6EI
L2

6EI
L2

2EI
L

−6EI
L2

4EI
L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.12.172)

While that of the spring is only [Ks].
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Now when we combine the stiffness matrix in this case we simply add the stiffness
of individual stiffness of a particular node to their respective degrees of freedom as
shown hereafter

1 2 3 4 5 6

[K]G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12EI
L3

6EI
L2

−12EI
L3

6EI
L2 0 0

6EI
L2

4EI
L

−6EI
L2

2EI
L

0 0

−12EI
L3

−6EI
L2

12EI
L3 + 12EI

L3 + Ks
−6EI

L2 + 6EI
L2

−12EI
L3

6EI
L2

6EI
L2

2EI
L

−6EI
L2 + 6EI

L2

4EI
L

+ 4EI
L

−6EI
L2

2EI
L

0 0
−12EI

L3

−6EI
L2

12EI
L3

−6EI
L2

0 0
6EI
L2

2EI
L

−6EI
L2

4EI
L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.12.173)

1 2 3 4 5 6

or [K]G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12EI
L3

6EI
L2

−12EI
L3

6EI
L2 0 0

6EI
L2

4EI
L

−6EI
L2

2EI
L

0 0

−12EI
L3

−6EI
L2

24EI
L3 + Ks 0

−12EI
L3

6EI
L2

6EI
L2

2EI
L

0
8EI
L

−6EI
L2

2EI
L

0 0
−12EI

L3

−6EI
L2

12EI
L3

−6EI
L2

0 0
6EI
L2

2EI
L

−6EI
L2

4EI
L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.12.174)

The above matrix is singular as such cannot be inverted. So before the solution is
to be carried out the boundary conditions for the structure has to be implemented.

For the given structure displacements 1, 2 and 5 (Figure 2.12.54) are zero thus the
corresponding rows and columns from the above matrix are deleted when we are left
with

[K]G =

⎡
⎢⎢⎢⎢⎢⎢⎣

24EI
L3 + Ks 0

6EI
L2

0
8EI
L

2EI
L

6EI
L2

2EI
L

4EI
L

⎤
⎥⎥⎥⎥⎥⎥⎦

(2.12.175)
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Y
R5e

R4e

Ry R6e

R2e

Rx

R1e

R3e X

Figure 2.12.56 Beam Element inclined at an angle θ with the global axes.

In the above case the local and global co-ordinate of the structure matches. However,
in our real world of engineering, nothing is ideal and there could always be cases when
the beam could be at an angle say θ with global co-ordinate, we will now derive the
effect of such inclination subsequently.

As shown in Figure 2.12.56 is a beam element inclined at an angle θ with global axes.
The beam has three degrees of freedom per node as shown. In local co-ordinate axes
let the reactions be expressed as R1e, R2e, R3e be reactions at node 1 and R4e, R5e, R6e
be the reactions in node 2 in local axes and let this be Rx, Ry and Rθ in terms of global
axes respectively. Here the subscript e represents the word element. Breaking up the
forces in components it can be easily shown that

R1e = Rx cos θ + Ry sin θR2e = −Rx sin θ + Ry cos θ and R3e = Rθx
(2.12.176)

The above can be expressed in matrix form as

{
R1e
R2e
R3e

}
=
[

cos θ sin θ 0
− sin θ cos θ 0

0 0 1

]{
Rx
Ry
Rθ

}
(2.12.177)

Thus for the two nodes we have the complete expression as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

R1e
R2e
R3e
R4e
R5e
R6e

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

cos θ sin θ 0 0 0 0
− sin θ cos θ 0 0 0 0

0 0 1 0 0 0
0 0 0 cos θ sin θ 0
0 0 0 − sin θ cos θ 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

R1x
R1y
R1θ
R2x
R2y
R2θ

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.12.178)
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Here if (x1, y1) and (x2, y2) are the nodal coordinates of the node 1 and 2 then

cos θ = x2 − x1√
(x2 − x1)

2 + (y2 − y1)
2

and sin θ = y2 − y1√
(x2 − x1)

2 + (y2 − y1)
2

(2.12.179)

Now let the above expression be expressed as

[Re] = [T] [RG] (2.12.180)

where [T] is called the transformation matrix and is expressed as

[T] =

⎡
⎢⎢⎢⎢⎢⎣

cos θ sin θ 0 0 0 0
− sin θ cos θ 0 0 0 0

0 0 1 0 0 0
0 0 0 cos θ sin θ 0
0 0 0 − sin θ cos θ 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ (2.12.181)

and Re is the element reaction and RG is the global co-ordinate reaction.
One of the special property of the above matrix is [T]−1 = [T]T . That is inverse of

the matrix is equal to its transpose.
Proceeding in identical fashion it is elementary to show that displacements can also

be expressed as

{δe} = [T] {δG} (2.12.182)

The static equilibrium equation at element level can be expressed as

{Re} = [Ke] {δe} (2.12.183)

Transferring them in global co-ordinate we have

[T] {RG} = [Ke] [T] {δG}
[T] [KG] {δG} = [Ke] [T] {δG} ; �⇒ [KG] = [T]−1 [Ke] [T] (2.12.184)

Using the property as mentioned earlier that inverse is equal to the transpose,
we have

[KG] = [T]T [Ke] [T] and [RG] = [T]T [ Re] (2.12.185)
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Y

X

Z

Figure 2.12.57 A beam element in space at angle α,β , γ with global X , Y and Z axis.

2.12.41 Transformation in space for 3D analysis

Having derived the transformation matrix in 2D we present now how transformation
is carried out in 3D which is required for analysis of space frames.

Shown in Figure 2.12.57 is a beam element inclined at an angle α,β, and γ with
global X, Y and Z axis. We do not derive the transformation matrix in detail but
present the results only, which is anyway similar to what we have derived for the 2D
case (Meek 1971).

Transferring the beam to the x-axis, the transformation matrix is given by

[T]α =
⎡
⎣ cosα 0 sinα

0 1 0
− sinα 0 cosα

⎤
⎦ (2.12.186)

similarly transferring to the y-axis, we have

[T]β =
⎡
⎣ cosβ sin β 0

− sin β cosβ 0
0 0 1

⎤
⎦ (2.12.187)

and for the z-axis, we have

[T]γ =
⎡
⎣1 0 0

0 cos γ sin γ
0 − sin γ cos γ

⎤
⎦ . (2.12.188)

The transformation matrix is thus given by

[
T̄
] = [T]γ [T]β [T]α
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[T̄] =
[

Lx/L Ly/L Lz/L
(−LxLy cos γ − LLz sin γ )/R L cos γ (R/L) (−LyLz cos γ + LLx sin γ )/R L
(LyLx sin γ − LLz cos γ )/R L − sin γ (R/L) (LyLz sin γ + LLx cos γ )/R L

]

(2.12.189)

in which R =
√

L2
x + L2

z ; and for a beam of node i and j having nodal coordinates

(xi, yi) and (xj, yj), we have

Lx = xj − xi, Ly = yj − yi, Lz = zj − zi and

L =
√(

xj − xi
)2 + (yj − yi)2 + (zj − zi)2.

For a beam in space number of degrees of freedom per node is 6 which gives the
element stiffness matrix of order 12 × 12.

Thus the total transformation matrix for the beam element is thus given by

[T] =

⎡
⎢⎢⎣

[T̄] 0 0 0
0 [T̄] 0 0
0 0 [T̄] 0
0 0 0 [T̄]

⎤
⎥⎥⎦

12×12

(2.12.190)

You will notice that in the above transformation matrix, the angle γ is yet to be
clarified. This is computed as given hereunder.

Here a node k having coordinate (xk, yk, zk) is assumed on the x-y plane
(Figure 2.12.58) it may be anywhere in the x-y plane but not on the x axis.

Thus with respect to node i

xki = xk − xi, yki = yk − yi and zki = zk − zi (2.12.191)

Making transformation through α and β we have

〈
xk, yk, zk

〉T
αβ

= [T]β [T]α
〈
xki, yki, zki

〉T (2.12.192)

k

Y
X

j

i

Z

Figure 2.12.58 A beam element with k node on x-y plane.
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i.e. ⎧⎨
⎩

xk
yk
zk

⎫⎬
⎭
αβ

=
⎡
⎣ R/L Ly/L 0

−Ly/L R/L 0
0 0 1

⎤
⎦
⎡
⎣ Lx/R 0 Lz/R

0 1 0
−Lz/R 0 Lx/R

⎤
⎦
⎧⎨
⎩

xki
yki
zki

⎫⎬
⎭ (2.12.193)

in which R =
√

L2
x + L2

z

The above on simplification gives

⎧⎨
⎩

xk
yk
zk

⎫⎬
⎭
αβ

=

⎧⎪⎪⎨
⎪⎪⎩
(Lx/L)xki + (Ly/L)yki + (Lz/L)zki

−(LxLy/R)xki + ykiR − (LyLz/R)zki

−(Lz/R)xki + (Lx/R)zki

⎫⎪⎪⎬
⎪⎪⎭ (2.12.194)

Thus sin γ = (zk)αβ√(
y2

k

)
αβ

+ (z2
k

)
αβ

and cos γ = (yk)αβ√(
y2

k

)
αβ

+ (z2
k

)
αβ

(2.12.195)

2.12.42 Members vertical in space – a special case

For members that are vertical that is its axes parallel to global y axes the transformation
matrix [T̄] derived earlier converges to incorrect value.

In this case as Lx/L and Lz/L being zero the correct expression is

[
T̄
] =

⎡
⎣ 0 Ly/L 0

−(Ly cos γ )/L 0 sin γ
(Ly sin γ )/L 0 cos γ

⎤
⎦ (2.12.196)

where, using Z =
√

x2
k + z2

k, sin γ = zk/Z, cos γ = xk/Z for 0 ≤ γ ≤ π/2 and

sin γ = zk/Z, cos γ = −xk/Z for π/2 ≤ γ ≤ π .
The element stiffness matrix and the element load can now be transferred to global

axes by the expression

[KG] = [T]T [ Ke] [T] and [RG] = [T] T [Re] (2.12.197)

The global assembly technique then remains same as in the case of 2D element as
shown earlier.

Example 2.12.5

Shown in Figure 2.12.59 is a frame with loadings as shown. We solve this prob-
lem based on matrix method as described previously. The global axes are shown
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in the figure. The nodal coordinates are as shown hereafter. Consider E = 2×107

kN/m2. Beam and column size 300 × 400.

5 4 8 7

2 3
40 kN

6 9
2

Y
20 kN/m 3

3m

1

11

2 X 4 10

1 1 4m 12
3

7m

Figure 2.12.59 A 2D frame with udL and nodal load.

Node number X Coordinate (m) Y Coordinate (m)

1 0 0
2 3 3
3 7 3
4 7 0

The geometric properties are as given below

I = (0.3 × 0.43)/12 = 0.0016 m4; E = 2 × 107 kN/m2

➔ EI = 32000 kN · m2; A = 0.12. m2; AE = 2400000 kN.

For Member-1 the fixed end moments are as given in Figure 2.11.60.

20 kN/m

M1 M2
V1

4.242 m V2

Figure 2.12.60 Free body diagram of member 1.
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Here M1 = wL2

12
= 20 × 4.2422

12
= 29.99 kN · m

M2 = −wL2

12
= −20 × 4.2422

12
= −29.99 kN · m;

V1 = V2 = wL
2

= 20 × 4.242
2

= 42.42 kN

[K]beam =

⎡
⎢⎢⎢⎣

AE/L 0 0 −AE/L 0 0
0 12EI/L3 6EI/L2 0 −12EI/L3 6EI/L2

0 6EI/L2 4EI/L 0 −6EI/L2 2EI/L
−AE/L 0 0 AE/L 0 0

0 −12EI/L3 −6EI/L2 0 12EI/L3 −6EI/L2

0 6EI/L2 2EI/L 0 −6EI/L2 4EI/L

⎤
⎥⎥⎥⎦

For member 1, 2 and 3 element stiffness matrix is given by:

Member-1

614292 0 0 −614292 0 0
0 5460 11583 0 −5460 11583
0 11583 32762 0 −11583 16381
−614292 0 0 614292 0 0
0 −5460 −11583 0 5460 −11583
0 11583 16381 0 −11583 32762

Member-2

651555 0 0 −651555 0 0
0 6516 13031 0 −6516 13031
0 13031 34750 0 −13031 17375
−651555 0 0 651555 0 0
0 −6516 −13031 0 6516 −13031
0 13031 17375 0 −13031 34750

Member-3

868740 0 0 −868740 0 0
0 15444 23166 0 −15444 23166
0 23166 46333 0 −23166 23166
−868740 0 0 868740 0 0
0 −15444 −23166 0 15444 −23166
0 23166 23166 0 −23166 46333



286 Dynamics of Structure and Foundation: 1. Fundamentals

For element 1 the transformation matrix [T] is given (for α= 45◦) by

0.707107 −0.707107 0 0 0 0
0.70711 0.707107 0 0 0 0
0 0 1 0 0 0
0 0 0 0.707107 −0.707107 0
0 0 0 0.70711 0.707107 0
0 0 0 0 0 1

Now performing the operation [T]T [K] [T] for element 1 we have the stiffness
matrix in global co-ordinate as

309876.16 −304415.79 8190.56 −309876.16 304415.79 8190.56
−304415.79 309876.16 8190.56 304415.79 −309876.16 8190.56
8190.56 8190.56 32762.24 −8190.56 −8190.56 16381.12
−309876.16 304415.79 −8190.56 309876.16 −304415.79 −8190.56
304415.79 −309876.16 −8190.56 −304415.79 309876.16 −8190.56
8190.56 8190.56 16381.12 −8190.56 −8190.56 32762.24

Performing the operation [T]T [P]e for element 1 the load matrix on global
coordinate is given as⎡

⎢⎢⎢⎢⎢⎣

0.707107 0.707107 0 0 0 0
−0.707107 0.7070107 0 0 0 0

0 0 1 0 0 0
0 0 0 0.707107 0.707107 0
0 0 0 −0.707107 0.707107 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0
−42.42

−30
0

−42.42
30

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−30
−30
−30
−30
−30
30

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

For element 2, as the axes is parallel to the global axes no transformation is
required.

For element 3 which is vertical the transformation matrix (for α = 90◦) is
given by

0 1 0 0 0 0
−1 0 0 0 0 0

0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 −1 0 0
0 0 0 0 0 1
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Thus the operation [T]T [K] [T] gives the stiffness matrix in global coordi-
nate as

15444.27 0.00 −23166.40 −15444.27 0.00 −23166.40

0.00 868740.00 0.00 0.00 −868740.00 0.00

−23166.40 0.00 46332.80 23166.40 0.00 23166.40

−15444.27 0.00 23166.40 15444.27 0.00 23166.40

0.00 −868740.00 0.00 0.00 868740.00 0.00

−23166.40 0.00 23166.40 23166.40 0.00 46332.80

Thus we can now combine them to form the global stiffness matrix as given
hereafter

COLUMNS 1 2 3 4 5 6

309876 −304416 8191 −309876 304416 8191
−304416 309876 8191 304416 −309876 8191
8191 8191 32762 −8191 −8191 16381
−309876 304416 −8191 961431 −304416 −8191
304416 −309876 −8191 −304416 316392 4841
8191 8191 16381 −8191 4841 67512
0 0 0 −651555 0 0
0 0 0 0 −6516 −13031
0 0 0 0 13031 17375
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

COLUMNS 7 8 9 10 11 12

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−651555 0 0 0 0 0
0 −6516 13031 0 0 0
0 −13031 17375 0 0 0
666999 0 −23166 −15444 0 −23166
0 875256 −13031 0 −868740 0
−23166 −13031 81082 23166 0 23166
−15444 0 23166 15444 23166 23166
0 −868740 0 0 868740 0
−23166 0 23166 23166 0 46333
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Since node 1 and 4 are fixed we can eliminate 1, 2, 3 and 10, 11, 12th degree
of freedom. Thus deleting the corresponding rows and columns we have the
stiffness matrix imposing the boundary conditions as

961431.16 −304415.79 −8190.56 −651555.00 0.00 0.00

−304415.79 316391.71 4840.54 0.00 −6515.55 13031.10

−8190.56 4840.54 67511.84 0.00 −13031.10 17374.80

−651555.00 0.00 0.00 666999.27 0.00 −23166.40

0.00 −6515.55 −13031.10 0.00 875255.55 −13031.10

0.00 13031.10 17374.80 −23166.40 −13031.10 81082.40

Inverting the above matrix we have

[K]−1 =

3.2586E-05 3.11821E-05 7.43431E-07 3.19708E-05 3.02933E-07 4.01248E-06

3.11821E-05 3.30215E-05 6.12932E-07 3.05764E-05 3.0477E-07 3.34671E-06

7.43431E-07 6.12932E-07 1.57354E-05 6.12826E-07 1.9023E-07 −3.26471E-06

3.19708E-05 3.05764E-05 6.12826E-07 3.28825E-05 3.02221E-07 4.3982E-06

3.02933E-07 3.0477E-07 1.9023E-07 3.02221E-07 1.15033E-06 1.81478E-07

4.01248E-06 3.34671E-06 −3.26471E-06 4.3982E-06 1.81478E-07 1.37806E-05

Performing the operation {δ} = [K]−1 {P} where

{P} = 〈−30 −30 30 40 0 0〉T , we have

{δ} = 〈−0.00061−0.000680.000456−0.00054 − 4.3 × 10−7−0.00014〉T.

Thus member 1 displacements in global coordinate is

{δ}G
1 = 〈0 0 0 −0.0006116 −0.0006843 0.0004558

〉T
transferring it into local coordinate by operation {δ}L

1 = [T] {δ}G
1 we have

{δ}L
1 = 〈0 0 0 5.1447 × 10−5 −0.0009164 0.00045589

〉T
The element stress is obtained from the expression

{σ } = [K]e {δ}L
e + {P}f
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where, {σ } = stress vector which in this case is the shears and moments; [K]e =
element stiffness matrix; {δ}L

e = element defection matrix in local coordinate;
{P}f = fixed end moments and shears.

Thus for element 1 we have

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

P1
V1
M1
P2
V2
M2

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

614292 0 0 −614292 0 0
0 5460 11583 0 −5460 11583
0 11583 32762 0 −11583 16381

−614292 0 0 614292 0 0
0 −5460 −11583 0 −5460 −11583
0 11583 16381 0 −11583 32762

⎤
⎥⎥⎥⎥⎥⎥⎦

×

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0
0
0

5.1447 × 10−5

−0.0009164
0.0004558

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

+

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0
42.42

30
0

42.42
−30

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−31.604
52.704
48.083
31.604
32.134
−4.45

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

For element 2 we have [σ ] = [K]e {δ}L
e as there are no element force hence

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

P1
V1
M1
P2
V2
M2

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

651555 0 0 −651555 0 0
0 6516 13031 0 −6516 13031
0 13031 34750 0 −13031 17375

−651555 0 0 651555 0 0
0 −6516 −13031 0 6516 −13031
0 13031 17375 0 −13031 34750

⎤
⎥⎥⎥⎥⎥⎥⎦

×

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−0.0006116
0.000684
0.000456

−0.000542
−4.3256 × 10−7

−0.001427

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−45.0705
−0.3757

4.45
45.0705
0.3757
−5.952

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

For element 3 we have transferring the displacement from global to local
coordinate by the operation {δ}L

3 = [T] {δ}G
3

{δ}G = 〈−0.0005424 −4.3256 × 10−7 −0.0001427 0 0 0〉T

in global axes and

{δ}L = 〈4.3257 × 10−7 0.0005424 −0.00014275 0 0 0〉T
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in local axes after transformation

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

P1
V1
M1
P2
V2
M2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎣

868740 0 0 −868740 0 0
0 15444 23166 0 −15444 23166
0 23166 46333 0 −23166 23166

−868740 0 0 868740 0 0
0 −15444 −23166 0 15444 −23166
0 23166 231665 0 −23166 46333

⎤
⎥⎥⎥⎥⎥⎦

×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

4.3257 × 10−7

0.0005424
−0.00014275

0
0
0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−0.376
5.07
5.952
0.376
−5.07
9.26

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

Solution is given in Figure 2.12.61.

0.38

4.45 5.95

0.38

4.45                              
5.95

48.08

31.60

9.26
52.7                                                                     

5.07 

0.38

45.07 45.07

31.60 -0.38

32.14

5.07

Figure 2.12.61 Nodal forces acting at the nodes of the frame.
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2.12.43 Global stiffness matrix and transformation
of finite element continuum

Some of you might feel apprehensive on going through the transformation technique
for a beam element, on the complexity that could evolve for a continuum where element
stiffness matrices are far more intricate. The typical reaction could be – If this is what
happens with a simple beam in space! “God save us” – if I am handling a 20 node
hexahedral in space.

Our suggestion is just relax, handling transformation for Finite elements are much
simpler then a beam element in space. On the contrary in majority of cases you need
not carry out the transformation at all.

Let us take the case of CST element, since the stiffness is independent of the x and y
coordinate we need not undertake any transformation and just directly add the global
stiffness values to the respective degrees of freedom.

The most beautiful of them all is the iso-parametric element. Just go back and have
a re-look at the 4-nodded iso-parametric quadrilateral element.

What do you see? You will observe that though the stiffness matrix is derived based
on natural coordinate is ultimately transferred to the global axes by the Jacobian
matrix [J].

Thus when we finally derive [K]e = t
∫∫

[B] T [D] [B]
∣∣J∣∣ dξdη we have already

transferred the matrix back into global coordinate and no further transformation is
required. As such your apprehension with 20 node hexahedral element is uncalled for
as the job is already done at element stage.

For DKT and ACM plate element also as the local axes is taken parallel to the global
axes as such no axis transformation is required for these elements too.

The final global assemblage remains same as the beam element. For further clarifi-
cation you can have a re-look now into the quadrilateral element derived earlier as an
assemblage of 4 triangular elements to see the sanctity of the statement.

2.12.44 Implementing the boundary condition

For a structural or a soil foundation system as shown in Figs. 2.12.62 and 63 must
have a specific boundary and a specified displacement (could be zero or have prescribed
value). Without this being described it is not possible to have a solution as the global
matrix become singular.

Figure 2.12.62 Plane frame structure.
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Figure 2.12.63 Footing and soil as finite elements.

If you look at the continuous beam problem we showed earlier (supported on spring
at center) you will observe that since the left hand end was fixed the translation and
rotation was zero as such we deleted the corresponding rows and columns 1 and 2
while at the right hand the displacement being zero we eliminated the row and column 5
thus the final matrix obtained is solvable and non-singular.

This of course is OK when the matrix is small or we are doing a hand computation.
For solving a finite element problem when we are handling a matrix of order say
>1000 it is not possible to eliminate the rows and columns as done earlier.

The reason for the same is

• Book keeping for the matrix becomes complicated
• Bandwidth of the matrix can get affected

One of the practical ways to deal with this is to multiply the diagonal element Kii for
the degree of freedom for which it is prescribed as zero by a value of 1×1010. Thus for
the beam we derived earlier Figure 2.12.53 boundary conditions are implemented as

[K]G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12EI
L3 × 1010 6EI

L2

−12EI
L3

6EI
L2 0 0

6EI
L2

4EI
L

× 1010 −6EI
L2

2EI
L

0 0

−12EI
L3

−6EI
L2

12EI
L3 + 12EI

L3 + Ks
−6EI

L2 + 6EI
L2

−12EI
L3

6EI
L2

6EI
L2

2EI
L

−6EI
L2 + 6EI

L2

4EI
L

+ 4EI
L

−6EI
L2

2EI
L

0 0
−12EI

L3

−6EI
L2

12EI
L3 × 1010 −6EI

L2

0 0
6EI
L2

2EI
L

−6EI
L2

4EI
L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.12.198)

Now the question is how and why does it work? We can formulate the equation of
equilibrium as
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12EI
L3 × 1010 6EI

L2

−12EI
L3

6EI
L2 0 0

6EI
L2

4EI
L

× 1010 −6EI
L2

2EI
L

0 0

−12EI
L3

−6EI
L2

24EI
L3 + Ks 0

−12EI
L3

6EI
L2

6EI
L2

2EI
L

0
8EI
L

−6EI
L2

2EI
L

0 0
−12EI

L3

−6EI
L2

12EI
L3 1 × 1010 −6EI

L2

0 0
6EI
L2

2EI
L

−6EI
L2

4EI
L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

δ1
θ1
δ2
θ2
δ3
θ3

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

P1
M1
P2
M2
P3
M3

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.12.199)

Now if we take first equation we have

12EI
L3 × 1010δ1 + 6EI

L2 θ1 − 12EI
L3 δ2 + 6EI

L2 θ2 = P1 (2.12.200)

Dividing each term by the factor 12EI
L3 × 1010 we have

δ1 + L
2

× 10−10θ1 − 1 × 10−10δ2 + L
2

× 10−10θ2 = P1L3

12EI
× 10−10 (2.12.201)

Observe here that except δ1 each term has a common coefficient of 10−10 that makes
it exceedingly small and for all practical purpose can be considered as zero.

Thus

δ1 + 0 × θ1 − 0 × δ2 + 0 × θ2 = 0 ➔ δ1 = 0 (2.12.202)

You can now check with other equations and you will see that you can arrive at
similar results.

2.12.45 Formulating specified support displacement

This often occurs when structures undergo settlement due to differential settlement of
foundation.
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L L

Figure 2.12.64 Beam on compliant foundation.

As shown in Figure 2.12.64, let the vertical displacement at the mid span be δF.
Under no displacement condition the matrix is expressed as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12EI
L3 × 1010 6EI

L2

−12EI
L3

6EI
L2 0 0

6EI
L2

4EI
L

× 1010 −6EI
L2

2EI
L

0 0

−12EI
L3

−6EI
L2

24EI
L3 0

−12EI
L3

6EI
L2

6EI
L2

2EI
L

0
8EI
L

−6EI
L2

2EI
L

0 0
−12EI

L3

−6EI
L2

12EI
L3 1 × 1010 −6EI

L2

0 0
6EI
L2

2EI
L

−6EI
L2

4EI
L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

δ1
θ1
δ2
θ2
δ3
θ3

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

P1
M1
P2
M2
P3
M3

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.12.203)

To simulate the displacement we modify the matrix as hereafter

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12EI
L3 × 1010 6EI

L2

−12EI
L3

6EI
L2 0 0

6EI
L2

4EI
L

× 1010 −6EI
L2

2EI
L

0 0

−12EI
L3

−6EI
L2

24EI
L3 × 1010 0

−12EI
L3

6EI
L2

6EI
L2

2EI
L

0
8EI
L

−6EI
L2

2EI
L

0 0
−12EI

L3

−6EI
L2

12EI
L3 1 × 1010 −6EI

L2

0 0
6EI
L2

2EI
L

−6EI
L2

4EI
L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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×

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

δ1
θ1
δ2
θ2
δ3
θ3

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

P1
M1

24EI
L3 × 1010δF

M2
P3
M3

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.12.204)

Now expanding the third equation we have

− 12EI
L3 δ1 − 6EI

L2 θ1 + 24EI
L3 × 1010δ2 + 0 · θ2 + 12EI

L3 δ3 + 6EI
L2 θ3

= 24EI
L3 × 1010δF (2.12.205)

Now Equation (2.12.205), we have

−δ1
2

× 10−10 − L
4
θ1 × 10−10 + δ2 + δ3

2
× 10−10 + L

4
θ3 × 10−10 = δF ⇒ δ2 ∼= δF.

2.12.46 Calculation of element stress
and displacements

Having imposed the boundary conditions we have now made the stiffness matrix of
the system non singular (i.e. solvable) and are now ready to obtain the displacements
and stress induced in the system.

Shown in Figure 2.12.65 is a structure assembled out of four triangular elements
The structure is restrained at node 1 and 4.

Let [K]G be the assembled stiffness matrix after imposition of boundary conditions
(u1 = v1 = u4 = v4 = 0) so that it is non-singular.

Then considering [K]G {δ} = {P} we can solve to have the displacements as

{δ} = [K]−1
G {P} (2.12.206)

where {δ}T = 〈0 0 u2 v2 u3 v3 0 0 u5 v5〉

4 3

3

4 5 2

1
P11 2

P2

Figure 2.12.65 An assembly of finite element with nodal forces.
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While deriving the stiffness matrix we have seen that the strain relationship may be
expressed as

{ε}e = [B] {δ}e (2.12.207)

It is now possible to find out the strain in every element since while deriving the
stiffness matrix we had derived the [B] matrix for each individual element.

Thus for element 1 and 2 we have {ε}1 = [B]1 〈0 0 u2 v2 u5 v5〉T and {ε}2 =
[B]2 〈u2 v2 u3 v3 u5 v5〉T etc.

The stress is thus expressed as {σ }e = [D] [B] {δ}e (2.12.208)

Thus,

{σ }1 = [D] [B]1 〈0 0 u2 v2 u5 v5〉T and

{σ }2 = [D] [B]2 〈u2 v2 u3 v3 u5 v5〉T and so on . . .

Example 2.12.6

Shown in Figure 2.12.66 is a wall 4 m × 3 m × 0.25 m subjected to load of
500 kN in X and Y direction. We determine the stress and deflection based on
finite element analysis. The Elastic Modulus of the wall is E = 2.8 × 108 kN/m2

and consider ν = 0.25
Also, shown in Figure 2.12.66 is the finite element assembly with global

degrees of freedom as marked at each node (1 thru 10).

Y
7

5
500 kN

6
8

4 (0,3) 3 (4,3)

1 (0,0) 2 (4,0)

500 kN
3

9

3m (2,2.5) 5 104 5

1
1

2 4 X
3

4m

Figure 2.12.66 Finite element model of the wall.
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The nodal coordinates of the assemblage is shown hereafter

Node No. X Y

1 0 0
2 4 0
3 4 3
4 0 3
5 2 2.5

Thus each element is defined by the nodal values as

Element No. Node-i Node-j Node-k

1 1 2 5
2 2 3 5
3 3 4 5
4 1 4 5

We had already shown previously how to derive element stiffness matrix for
individual triangular elements based on iso-parametric formulation. Based on
this the [K] and [B] for each element are as shown hereafter.

For element 1:

[K] =

1 2 3 4 9 10

1 2.89 × 10+07 1.17 × 10+07 −1.77 × 10+07 −2.33 × 10+06 −1.12 × 10+07 −9.33 × 10+06

2 1.17 × 10+07 2.37 × 10+07 2.33 × 10+06 6.18 × 10+06 −1.40 × 10+07 −2.99 × 10+07

3 −1.77 × 10+07 2.33 × 10+06 2.89 × 10+07 −1.17 × 10+07 −1.12 × 10+07 9.33 × 10+06

4 −2.33 × 10+06 6.18 × 10+06 −1.17 × 10+07 2.37 × 10+07 1.40 × 10+07 −2.99 × 10+07

9 −1.12 × 10+07 −1.40 × 10+07 −1.12 × 10+07 1.40 × 10+07 2.24 × 10+07 0.00 × 10+00

10 −9.33 × 10+06 −2.99 × 10+07 9.33 × 10+06 −2.99 × 10+07 0.00 × 10+00 5.97 × 10+07

In the above table the first row and column depicts the global degrees of
freedom for each element.

The [B] matrix is given by

−0.25 0 0.25 0 0 0
0 −0.2 0 −0.2 0 0.4

−0.2 −0.25 −0.2 0.25 0.4 0
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For element 2
[K] =

3 4 5 6 9 10

3 1.09 × 10+07 −3.89 × 10+06 −1.56 × 10+06 −1.01 × 10+07 −9.33 × 10+06 1.40 × 10+07

4 −3.89 × 10+06 2.55 × 10+07 −5.44 × 10+06 −2.20 × 10+07 9.33 × 10+06 −3.50 × 10+06

5 −1.56 × 10+06 −5.44 × 10+06 4.82 × 10+07 1.94 × 10+07 −4.67 × 10+07 −1.40 × 10+07

6 −1.01 × 10+07 −2.20 × 10+07 1.94 × 10+07 3.95 × 10+07 −9.33 × 10+06 −1.75 × 10+07

9 −9.33 × 10+06 9.33 × 10+06 −4.67 × 10+07 −9.33 × 10+06 5.60 × 10+07 0.00 × 10+00

10 1.40 × 10+07 −3.50 × 10+06 −1.40 × 10+07 −1.75 × 10+07 0.00 × 10+00 2.10 × 10+07

The [B] matrix is given by

0.0833333 0 0.4166667 0 −0.5 0
0 −0.333333333 0 0.333333 0 0

−0.333333 0.083333333 0.3333333 0.416667 0 −0.5

For element 3
[K] =

5 6 7 8 9 10

5 3.27 × 10+07 1.17 × 10+07 2.33 × 10+07 −2.33 × 10+06 −5.60 × 10+07 −9.33 × 10+06

6 1.17 × 10+07 7.64 × 10+07 2.33 × 10+06 7.29 × 10+07 −1.40 × 10+07 −1.49 × 10+08

7 2.33 × 10+07 2.33 × 10+06 3.27 × 10+07 −1.17 × 10+07 −5.60 × 10+07 9.33 × 10+06

8 −2.33 × 10+06 7.29 × 10+07 −1.17 × 10+07 7.64 × 10+07 1.40 × 10+07 −1.49 × 10+08

9 −5.60 × 10+07 −1.40 × 10+07 −5.60 × 10+07 1.40 × 10+07 1.12 × 10+08 0.00 × 10+00

10 −9.33 × 10+06 −1.49 × 10+08 9.33 × 10+06 −1.49 × 10+08 0.00 × 10+00 2.99 × 10+08

[B]=
0.25 0 −0.25 0 0 0
0 1 0 1 0 −2
1 0.25 1 −0.25 −2 0

For element 4
[K] =

1 2 7 8 9 10

1 4.82 × 10+07 −1.94 × 10+07 −1.56 × 10+06 5.44 × 10+06 −4.67 × 10+07 1.40 × 10+07

2 −1.94 × 10+07 3.95 × 10+07 1.01 × 10+07 −2.20 × 10+07 9.33 × 10+06 −1.75 × 10+07

7 −1.56 × 10+06 1.01 × 10+07 1.09 × 10+07 3.89 × 10+06 −9.33 × 10+06 −1.40 × 10+07

8 5.44 × 10+06 −2.20 × 10+07 3.89 × 10+06 2.55 × 10+07 −9.33 × 10+06 −3.50 × 10+06

9 −4.67 × 10+07 9.33 × 10+06 −9.33 × 10+06 −9.33 × 10+06 5.60 × 10+07 0.00 × 10+00

10 1.40 × 10+07 −1.75 × 10+07 −1.40 × 10+07 −3.50 × 10+06 0.00 × 10+00 2.10 × 10+07

[B] =
−0.416667 0 −0.083333 0 0.5 0

0 0.333333333 0 −0.333333 0 0
0.3333333 −0.416666667 −0.333333 −0.083333 0 0.5
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On global assemblage the unconstrained matrix (i.e. without any boundary
condition) is given by

[K]G =
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7.72 × 10+07 −7.78 × 10+06 −1.77 × 10+07 −2.33 × 10+06 0.00 × 10+00 |
−7.78 × 10+06 6.32 × 10+07 2.33 × 10+06 6.18 × 10+06 0.00 × 10+00 |
−1.77 × 10+07 2.33 × 10+06 3.98 × 10+07 −1.56 × 10+07 −1.56 × 10+06 |
−2.33 × 10+06 6.18 × 10+06 −1.56 × 10+07 4.92 × 10+07 −5.44 × 10+06 |

0.00 × 10+00 0.00 × 10+00 −1.56 × 10+06 −5.44 × 10+06 8.09 × 10+07 |
0.00 × 10+00 0.00 × 10+00 −1.01 × 10+07 −2.20 × 10+07 3.11 × 10+07 |

−1.56 × 10+06 1.01 × 10+07 0.00 × 10+00 0.00 × 10+00 2.33 × 10+07 |
5.44 × 10+06 −2.20 × 10+07 0.00 × 10+00 0.00 × 10+00 −2.33 × 10+06 |

−5.79 × 10+07 −4.67 × 10+06 −2.05 × 10+07 2.33 × 10+07 −1.03 × 10+08 |
4.67 × 10+06 −4.74 × 10+07 2.33 × 10+07 −3.34 × 10+07 −2.33 × 10+07 |

| 0.00 × 10+00 −1.56 × 10+06 5.44 × 10+06 −5.79 × 10+07 4.67 × 10+06

| 0.00 × 10+00 1.01 × 10+07 −2.20 × 10+07 −4.67 × 10+06 −4.74 × 10+07

| −1.01 × 10+07 0.00 × 10+00 0.00 × 10+00 −2.05 × 10+07 2.33 × 10+07

| −2.20 × 10+07 0.00 × 10+00 0.00 × 10+00 2.33 × 10+07 −3.34 × 10+07

| 3.11 × 10+07 2.33 × 10+07 −2.33 × 10+06 −1.03 × 10+08 −2.33 × 10+07

| 1.16 × 10+08 2.33 × 10+06 7.29 × 10+07 −2.33 × 10+07 −1.67 × 10+08

| 2.33 × 10+06 4.36 × 10+07 −7.78 × 10+06 −6.53 × 10+07 −4.67 × 10+06

| 7.29 × 10+07 −7.78 × 10+06 1.02 × 10+08 4.67 × 10+06 −1.53 × 10+08

| −2.33 × 10+07 −6.53 × 10+07 4.67 × 10+06 2.46 × 10+08 0.00 × 10+00

| −1.67 × 10+08 −4.67 × 10+06 −1.53 × 10+08 0.00 × 10+00 4.00 × 10+08

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Since node 1 and 4 are fixed we impose this boundary condition by multiplying
the kii element of the matrix of 1, 2, 7 and 8th degree of freedom by 1010 which
gives

[K]G =
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7.72 × 10+17 −7.78 × 10+06 −1.77 × 10+07 −2.33 × 10+06 0.00 × 10+00 |
−7.78 × 10+06 6.32 × 10+17 2.33 × 10+06 6.18 × 10+06 0.00 × 10+00 |
−1.77 × 10+07 2.33 × 10+06 3.98 × 10+07 −1.56 × 10+07 −1.56 × 10+06 |
−2.33 × 10+06 6.18 × 10+06 −1.56 × 10+07 4.92 × 10+07 −5.44 × 10+06 |

0.00 × 10+00 0.00 × 10+00 −1.56 × 10+06 −5.44 × 10+06 8.09 × 10+07 |
0.00 × 10+00 0.00 × 10+00 −1.01 × 10+07 −2.20 × 10+07 3.11 × 10+07 |

−1.56 × 10+06 1.01 × 10+07 0.00 × 10+00 0.00 × 10+00 2.33 × 10+07 |
5.44 × 10+06 −2.20 × 10+07 0.00 × 10+00 0.00 × 10+00 −2.33 × 10+06 |

−5.79 × 10+07 −4.67 × 10+06 −2.05 × 10+07 2.33 × 10+07 −1.03 × 10+08 |
4.67 × 10+06 −4.74 × 10+07 2.33 × 10+07 −3.34 × 10+07 −2.33 × 10+07 |

| 0.00 × 10+00 −1.56 × 10+06 5.44 × 10+06 −5.79 × 10+07 4.67 × 10+06

| 0.00 × 10+00 1.01 × 10+07 −2.20 × 10+07 −4.67 × 10+06 −4.74 × 10+07

| −1.01 × 10+07 0.00 × 10+00 0.00 × 10+00 −2.05 × 10+07 2.33 × 10+07

| −2.20 × 10+07 0.00 × 10+00 0.00 × 10+00 2.33 × 10+07 −3.34 × 10+07

| 3.11 × 10+07 2.33 × 10+07 −2.33 × 10+06 −1.03 × 10+08 −2.33 × 10+07

| 1.16 × 10+08 2.33 × 10+06 7.29 × 10+07 −2.33 × 10+07 −1.67 × 10+08

| 2.33 × 10+06 4.36 × 10+17 −7.78 × 10+06 −6.53 × 10+07 −4.67 × 10+06

| 7.29 × 10+07 −7.78 × 10+06 1.02 × 10+18 4.67 × 10+06 −1.53 × 10+08

| −2.33 × 10+07 −6.53 × 10+07 4.67 × 10+06 2.46 × 10+08 0.00 × 10+00

| −1.67 × 10+08 −4.67 × 10+06 −1.53 × 10+08 0.00 × 10+00 4.00 × 10+08

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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The global force matrix is given by

{P}T = 〈0 0 0 0 −500 −500 0 0 0 0〉

Now performing the operation {δ} = [K]−1
G {P}, we have

Node numbers Displacement (meters)

U1 −5.11433 × 10−16

V1 −8.08933 × 10−16

U2 −1.12903 × 10−05

V2 −2.57193 × 10−05

U3 −5.07978 × 10−06

V3 −3.01804 × 10−05

U4 −2.41992 × 10−16

V4 1.0684 × 10−17

U5 −3.47989 × 10−06

V5 −1.43565 × 10−05

Observe here that at node 1 and 4 the displacements u1, v1, u4 and v4 are of the
order 10−16 and 10−17 which means that the displacements are practically zero.

Thus for element 1 we have the displacements as

U1 −5.11433 × 10−16

V1 −8.08933 × 10−16

U2 −1.12903 × 10−05

V2 −2.57193 × 10−05

U5 −3.47989 × 10−06

V5 −1.43565 × 10−05

Now performing the operation {σ } = [D] [B] {δ}, we have

Stress type Stress values (kN/m2)

σyy −887.717876
σxx −389.5798805
τxy −623.1369766

Here the matrix [D] is given by

[D] =
⎡
⎣2.99 × 108 7.47 × 107 0

7.47 × 107 2.99 × 108 0
0 0 1.12 × 108

⎤
⎦

Proceeding in identical fashion we find out the stresses in element 2, 3, 4 when
we finally get



Theory of elasticity and numerical methods in engineering 301

Stress type Element 1 Element 2 Element 3 Element 4

σyy −887.717876 −504.5225795 −619.4772176 −519.6633413
σxx −389.5798805 −542.5015936 683.3827532 −129.9158354
τxy −623.1369766 −612.6410133 −1205.162941 −803.9665098

All stresses have unit of kN/m2.

Whatever we have explained till now in this section is what the assemblers do generi-
cally in developing a FEM package that usually consists of various types of elements in
its library like truss, beam, 2D plane strain and stress, plates, shells, boundary elements
(springs) 3D hexahedral elements etc. You may feel that compared to developers they
have a relatively easy time, but is surely not the case.

For one of the major constraint within which the assemblers operate is the limitation
in computer storage and speed. Thus the major challenge is to overcome the limitation
of the system (computer) and come up with an optimal solution that is efficient and also
present the output in a manner with enough diagnostic flags making the results easily
interpretable by the user, especially when he would not have access to the source code.
Trying to interpret an ill conceived output can become a nightmare job for the user
who could get easily lost in maze of numbers and get totally confused with the outcome
of the analysis. Recent developments in computer graphics with colored contours of
stress and displacement plots have however made things relatively easier.

In a practical finite element analysis the size of the problem is normally not very
modest. People do not blink in surprise in design office to hear a problem size having
say 2,000 nodes. Thus a major focus of the assemblers has been how to form the
global stiffness matrix in a most efficient manner and arrive at solution which uses the
computer in-core storage most efficiently.

We should remember here that unlike today with Pentium chips incorporated in
personal computers when speed and storage problem has reduced considerably, in the
early 60 and 70s when engineers and scientists started the coding of FEM this was a
serious bottleneck they had to circumvent. Considerable time and effort were given to
devise techniques to overcome these limitations.

We describe here briefly some of the techniques used for efficient coding of FEM.
You must have noticed by this time that stiffness matrix obtained for an element as
well as the assembled global stiffness matrix is symmetrical. Thus storing the upper
or the lower triangular matrix for the stiffness only would suffice.

Also observe that in the upper triangular matrix shown in Figure 2.12.67, not all
the elements are non zero. These two properties are effectively used in storing the
data in computer which greatly optimizes the data storage. The dotted line shown in
the above matrix is called a skyline, which is a fictitious boundary chosen where all
elements above this line are zero.

The computer only stores the upper matrix (including the zeros within the skyline)
and all zeros above the skyline are ignored. There is a special implementation technique
(Bathe and Wilson 1976) based on which this matrix is stored in a single array A[K]
where the address of each element are stored in another array called MAXA[J].

If you are interested to learn more about this technique, you may refer to Bathe
(1984) that works out this implementation in quite detail.
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[K] =

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

k88
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0000k140k12k11

Skyline

Figure 2.12.67 The upper triangle of a symmetric stiffness matrix.

Though skyline technique is a very effective technique for economic storage of
global stiffness matrix it computes the overall stiffness matrix anyway. Thus for very
large problems (say>80,000 equations) we have seen this can still sometimes produce
problems in solution and data management.

Thus commercial FEM software which uses skyline method of assembly many of
them give a limitation to the node for problem like say Maximum node to be used
may be 50,000 with 6 degrees of freedom meaning the computer for the problem can
handle maximum 300,000 simultaneous equations.

There is an alternate way of developing the matrix and solving for the same.
This is known as frontal wave solution. Here rather then developing the full
matrix for all the elements, the solution is sought sequentially at element level. Once
the solution is obtained, its effect is carried over to the next element and the particular
degree of freedom for which the solution has already been sought is eliminated. This
sequence of steps is carried over for all the elements till all unknowns for all elements
are solved.

One of the major advantages with this method is that the global assembly of the stiff-
ness matrix is not required at any stage and goes on to save significant space and time.
Originally developed by Melosh but later popularized by Irons and Ahmad (1980),
the technique is also adapted by many General purpose Finite Element Software. With
use of this technique, one can usually do away with the maximum nodal restriction
and number of nodes and elements chosen can well be without any limits. We will
have a brief look at the technique in the next section where we show how we solve
large number of linear equations.

2.12.47 Solution of equilibrium equation

While solving the equation [K] {δ} = {P} you must have noticed that it is neces-
sary to invert the matrix [K] to find out the solution of {δ}. Now a days where in
many object oriented languages and special purpose software like MATLAB inversion
of matrix is a built in function which has significantly eased the problem however,
in the early days of coding with FORTRAN IV inversion of a matrix especially if
the order was high was something that all programmers dreaded, for it ate away
significant memory and time and was something to be avoided by all means if
practicable.



Theory of elasticity and numerical methods in engineering 303

So naturally techniques were devised to avoid such inversion yet arrive at a solution
of {δ} that was accurate.

We discuss herein a few techniques that are in practice for solution of such linear
simultaneous equations.

2.12.48 Gaussian elimination – The technique of back
substitution

Let us consider the equation [K] {δ} = {P} which we intend to solve. For ease of our
understanding let us assume that order of the matrices is 3. Then we have

⎡
⎣k11 k12 k13

k21 k22 k23
k31 k32 k33

⎤
⎦
⎧⎨
⎩
δ1
δ2
δ3

⎫⎬
⎭ =

⎧⎨
⎩

P1
P2
P3

⎫⎬
⎭ (2.12.209)

Now by some mathematical operation if we can convert the above into a form

⎡
⎣a11 a12 a13

0 a22 a23
0 0 a33

⎤
⎦
⎧⎨
⎩
δ1
δ2
δ3

⎫⎬
⎭ =

⎧⎨
⎩

Q1
Q2
Q3

⎫⎬
⎭ (2.12.210)

The solution becomes easy for then we have

δ3 = Q3

a33
, δ2 = Q2

a22
− a23

a22

Q3

a33
, δ1 = Q1

a11
− a12

a11

[
Q2

a22
− a23

a22

Q3

a33

]
− a13

a11

Q3

a33

(2.12.211)

Example 2.12.7

Let us consider the matrix

⎡
⎣10 −5 2

−5 12 3
2 3 18

⎤
⎦
⎧⎨
⎩

u1
u2
u3

⎫⎬
⎭ =

⎧⎨
⎩

10
15
0

⎫⎬
⎭

Multiplying row 2 by 2 and row 3 by 5 we have

⎡
⎣ 10 −5 2

−10 24 6
10 15 90

⎤
⎦
⎧⎨
⎩

u1
u2
u3

⎫⎬
⎭ =

⎧⎨
⎩

10
30
0

⎫⎬
⎭
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Adding row 1 to row 2 and subtracting row 1 from row 3 we have

⎡
⎣10 −5 2

0 19 8
0 20 88

⎤
⎦
⎧⎨
⎩

u1
u2
u3

⎫⎬
⎭ =

⎧⎨
⎩

10
40

−10

⎫⎬
⎭

Multiplying row 2 by 20 and row 3 by 19 we have

⎡
⎣10 −5 2

0 380 160
0 380 1672

⎤
⎦
⎧⎨
⎩

u1
u2
u3

⎫⎬
⎭ =

⎧⎨
⎩

10
800

−190

⎫⎬
⎭

Subtracting row 2 from row 3 we have

⎡
⎣10 −5 2

0 380 160
0 0 1512

⎤
⎦
⎧⎨
⎩

u1
u2
u3

⎫⎬
⎭ =

⎧⎨
⎩

10
800

−990

⎫⎬
⎭

From above we can directly get u3 = −990
1512

= −0.65476

Now considering the equation

380u2 + 160u3 = 800

Substituting the value of u3 = −0.65476 above, we have u2 = 2.380952
On subsequent back substitution in equation

10u1 − 5u2 + 2u3 = 10 ➔ u1 = 2.321429

We will not go into the details of the computer logic or implementation of
Gauss elimination technique for there are numbers of books in Numerical Anal-
ysis available (Krishnamurthy and Sen 1989), which has provided with the source
code both in BASIC and FORTRAN and one can simply adapt them for solution.

Gauss elimination method is usually considered more efficient than solving
equations by matrix inversion. Using looping functions (DO loop) and data
stored in arrays it is a considered a superior technique than matrix inversion
method. Moreover if one exploits the symmetric property of the Finite elements
the program logic also gets quite simplified.

2.12.49 The LDLT decomposition technique

For a Finite Element analysis where the number of equations is large, a special tech-
nique is used to solve the equations which is actually an extension of Choklesky’s
scheme and is as explained hereunder.



Theory of elasticity and numerical methods in engineering 305

Let us consider the equation, [K] {δ} = {P}. Now let us assume that the stiffness
matrix [K] is made up of a product of an upper triangular matrix and lower triangular
matrix. Now since for finite element formulation the matrix [K] is positive definite
and symmetric we can say that the upper and lower triangular matrix should also have
the same property.

Thus we can write

[K] = [L] [L]T (2.12.212)

where, [L] = is the upper triangular matrix and [L]T = lower triangular matrix.
The equilibrium equation can now be expressed as

[L] [L]T {δ} = {P} (2.12.213)

Considering [L] {δ} = {f } we can write the equation of equilibrium as

[L]T {f } = {P} (2.12.214)

Now since [L] is a upper triangular matrix the above becomes a straight forward
case of Gauss elimination where the values of {f } can obtained from successive back
substitution provided we know the coefficients of the matrix [L]. The value of matrix
can obtained as shown below.

⎡
⎢⎢⎢⎢⎢⎢⎣

l11 l12 l13 . . l1n
l22 l23 . . l2n

l33 . . l3n
. . .
. . .

lnn

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

l11
l21 l22
l31 l32 l33
.
.

ln1 . . . lnn

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

k11 k12 . k1n
k21 k22 . . k2n

. . . .

. .

.
kn1 . . . knn

⎤
⎥⎥⎥⎥⎥⎥⎦

(2.12.215)

Multiplying the LHS of the above equation and equating it to the [K] matrix term
by term it can be shown that

lii =
√

kii −
∑p=i−1

p=1
l2ip and lij = kii −∑p=j−1

p=1 lipljp

ljj
for i > j (2.12.216)
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Thus knowing the coefficients of the matrix [L] we can now say that

⎡
⎢⎢⎢⎢⎢⎢⎣

l11
l21 l22
l31 l32 l33
.
.

ln1 . . . lnn

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f1
f2
f3
.
.
fn

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

P1
P2
P3
.
.

Pn

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.12.217)

From above we have

f1 = P1

l11
; f2 = P2 − f1l21

l22
; f3 = P3 − f1l31 − f2l32

l33
; . . . . . .

fn = Pn − f1ln1 − f2ln2 − · · · · · · fn−1lnn−1

lnn
(2.12.218)

Thus knowing the values of {f }, we can write

⎡
⎢⎢⎢⎢⎢⎢⎣

l11 l12 l13 . . l1n
l22 l23 . . l2n

l33 . . l3n
. . .
. . .

lnn

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

δ1
δ2
δ3
.
.
δn

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f1
f2
f3
.
.
fn

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.12.219)

This gives,

δn = fn

lnn
, δn−1 = fn−1lnn−1δn

ln−1n−1
and so on . . . . (2.12.220)

The solution in this case is in reverse order.
The Global stiffness matrix coefficients of [K] in a Finite Element Method at times

have values whose order vary a lot especially for coupled analysis like soil structure or
fluid structure interaction problems. This can at times result in numerical difficulty. To
overcome this the [K] matrix is pre- and post-multiplied by a diagonal matrix [D]−

1
2

where Dii = 1
Kii

leading to all diagonal terms of the matrix to be unity and reduces the
equilibrium equation to

[[D]
−1
2 [K] [D]

−1
2 ] [D]

1
2 [δ] = [D]

−1
2 [P] (2.12.221)

This can be expressed as [Ks] {�} = {P} where

[Ks] = [[D]
−1
2 [K] [D]

−1
2 ] ➔ {�} = [D]

1
2 {δ} and {PS} = [D]−

1
2 {P}

(2.12.222)
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On solution of {�} it is pre-multiplied by the term [D]−
1
2 to obtain the values of

the displacement {δ}. Though the matrix [D]−
1
2 is a square matrix practically no extra

storage is required as the terms can well be stored in a single array.

2.12.50 Frontal wave solution – Iron’s technique
ref lecting present consumer market

The trend in today’s consumer market is simply “use and throw”. In line with this
trend we get a number of commodities that are simply disposable after use, like saucers,
cups, glass, ball pens, cigarette lighters, the list is simply huge. The reason for this trend
is simple, “save space”.

Say, you have a party in your house that would be catering to 100 people. You
would normally not store 100 plates and glasses in your house considering the fact
that a party of such magnitude would be a once in a blue moon affair. So, either you
hire 100 plates and glasses with a risk that a few of them could get damaged during
handling and you would compensate the lender in such case else, you go to the market
and buy one gross of disposable plates and glasses for the party. You serve your food
to your guests in them and once the party is over you throw them off in the garbage
can. No storage requirement, no maintenance, and no hassle. Frontal wave technique
is very much synonymous to this. The reason for its evolution is also – “save space”.

We had stated earlier while explaining the global assemblage of stiffness matrix
that in skyline technique irrespective of however economy we achieve in data storage
we ultimately form the global stiffness matrix of the whole system. Thus, in some
cases if the problem is very large can create computational difficulties. Increasing the
MTOT array68 may still run the problem but can reduce the speed of the computer
considerably.

In such case the frontal methodology as proposed by Irons (1970) is of great advan-
tage and is discussed herein to give you some idea on how it functions. The algorithm
is simply marvelous, though the coding is not easy, since it requires significant man-
agement of array addresses which, if you are not an experienced programmer or a
programmer with bad coding habits can put you in a lot of difficulties.

In skyline technique, the key issue on which the solution pivots is the nodal number
or the bandwidth while in case of frontal solution it is the element number or the
sequence of element that holds the key to the solution.

The biggest advantage as mentioned briefly earlier is that at no stage it is necessary to
form the full stiffness matrix and solution is only sought at element level sequentially.
To clarify it further, let us have a look at Figure 2.12.68.

We show above in a plane stress element assemblage where node and element num-
bers (marked inside the circles) are shown. Every node has 2 degrees of freedom (u, v)
thus in solution for the displacements the first equation that needs to be considered
would be that related to node 1, 2, 8 and 7 of element-1. To eliminate the nodal
degrees of freedom of node 1 we need to only assemble the element stiffness matrix
related to node-1. Now the question is why do we want to eliminate the nodal degree
of freedom of node 1?

68 Total data storage allocation array.
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19 20 21 22 23 24
11 12 13 14 15

13 14 15 16 17 18
6 7 8 9 10

7 8 9 10 11 12

1 2 3 4 5

1 2 3 4 5 6

Figure 2.12.68 A finite element mesh with element and node number.

We should remember here that while solving the simultaneous equation to solve the
displacement based on Gauss elimination we are eliminating the degrees of freedom
sequentially from each equation until we arrive at an upper triangular matrix where
from the last row we can directly derive the displacement. In this case after the element
matrix is formed we simply perform a static condensation to eliminate the degree of
freedom of the related node. Once this is done the original element stiffness matrix has
no use and can be discarded and only the condensed matrix is retained. Next, the nodal
degrees of freedom for node 2 must be eliminated. For this, element stiffness matrix
for element 2 must be assembled and added to previously calculated condensed matrix
(from which we have eliminated node 1) and then, we again condense it to eliminate
the degrees of freedom of node 2. This is carried out successively over all the elements
till we have the last equation from which we get the unknown displacement (in above
case it is node 24). Once this is done rest of the displacements can by obtained by
sequential back substitution.

It is obvious from above that due to this use and throw away logic adapted here
at no stage the full matrix is assembled. The solution is simply carried out at element
level which saves significant computer storage and does not impose any limit to the
size of the problem.

However, as we have pointed out earlier the programming for the same is quite
complex and requires significant skill in computer coding.

As the sequential elimination propagates through the element like a dispersive wave,
the technique is termed as Frontal wave solution.

To further enhance your understanding we present herein a conceptual problem to
give you at least an idea as to how it operates and what is the basic philosophy.

Example 2.12.8

Shown in Figure 2.12.69 is a three truss assembly having nodal force as shown.
The individual stiffness matrix for the elements are shown hereafter. Find the
displacements at node 2, 3 and 4 based on frontal solution and direct method.

1 1 2 2 3 3 4

10 25 50

Figure 2.12.69 An assembly of truss elements.
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Here K1 =
[

2 −2
−2 2

]
, K2 =

[
3 −3

−3 3

]
, K3 =

[
5 −5

−5 5

]

While solving by direct method we assemble the global stiffness matrix as
shown hereafter

KG =

⎡
⎢⎢⎣

2 −2 0 0
−2 2 + 3 −3 0
0 −3 3 + 5 −5
0 0 −5 5

⎤
⎥⎥⎦ ,

since node 1 is fixed we eliminate the first row and column to impose this
boundary condition to get the equation of equilibrium as⎡

⎣ 5 −3 0
−3 8 −5
0 −5 5

⎤
⎦
⎧⎨
⎩

u2
u3
u4

⎫⎬
⎭ =

⎧⎨
⎩

10
25
50

⎫⎬
⎭ ➔ [K] {δ} = {P}

Solving the above by any of the previously mentioned method like Gauss
elimination, Choklesky or even direct inversion one gets⎧⎨

⎩
u2
u3
u4

⎫⎬
⎭ =

⎧⎨
⎩

42.5
67.5
77.5

⎫⎬
⎭

We now solve it by Frontal technique.
We consider the element stiffness matrix of element 1 and its equilibrium

equation.
This gives[

2 −2
−2 2

]{
u1
u2

}
=
{

0
10

}

Since u1 = 0 we eliminate the 1st row and column to have, 2u2 = 10.
We throw away the element stiffness matrix of element 1 and only retain the

condensed form 2.
We add this to the element stiffness matrix of element 2 to get[

5 −3
−3 3

]{
u2
u3

}
=
{

10
25

}

We eliminate the u2 degree of freedom by static condensation when the
condensed stiffness and load matrix is expressed as

[Kc] = [K22 − K21K−1
11 K12] and {Pc} = {P3 − K21K−1

11 P2}

here K22 = 3, K21 = K12 = −3; K11 = 5, P2 = 10 and P3 = 25
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Substituting above we have

[Kc] = 3 − (−3)(−3)
5

= 1.2 and {Pc} = 25 − (−3)(10)
5

= 31

We now add this to the third element when we have[
6.2 −5
−5 5

]{
u3
u4

}
=
{

31
50

}

Again applying the expression

[Kc] = [K22 − K21K−1
11 K12] and {Pc} = 〈P4 − K21K−1

11 P3〉T

we have, [Kc] = 5 − (−5)(−5)
6.2 = 0.967742 and {Pc} = 50 − (−5)(31)

6.2 = 75
This being last equation it gives 0.967742u4 = 75 ⇒ u4 = 77.5
Now back substituting this in second equation of element 3 we have −5u3 +

5u4 = 50, this results in u3 = 67.5
Back substituting this in first or second equation of element 2 (we have taken

the first) we get

5u2 − 3u3 = 10 ⇒ u2 = 42.5.

Comparing the results with direct method, we find that the values are exactly match-
ing. You should however note here that we have never bothered to assemble the overall
stiffness matrix, but have just assembled the stiffness matrix of the elements only and
arrived at the exact solution.

2.12.51 The World of Boris Galerkin69 – A look at f inite
element beyond stress analysis

Till now we have discussed FEM in terms of displacement and stress. In this section, we
will have a generalized look at FEM (though briefly) to see how this can be extended
to other areas of technology not related to stress. In this process of digression, we
start with stress though as our fundamental vehicle, for as civil engineers this is what
we understand best. We recall here the fourth order beam equation we posed while
presenting the Weighted Residual Method.

69 Boris G Galerkin (1871–1945) was a Russian Engineer who published his first technical paper on
the buckling of Bars while imprisoned in 1906 by the Tzar in pre-Bolshevik Russia. In CSI countries
Galerkin’s Finite Element Method is also known as the Bubonov-Galerkin Method. He published a
paper using this idea in 1915. Thus, we feel Russians knew the mathematics of FEM earlier-though by
a different name.
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The equation was of the form

EI
d4u
dx4 + q = 0 (2.12.223)

The solution of u may be obtained by solving this fourth order linear differential
equation analytically by putting the appropriate boundary condition.

Now suppose we do not want to solve the differential equation analytically, we
had shown earlier that we can use a suitable shape function (that satisfy the boundary
condition of the equation) and come to a solution, but since the analysis is not exact,
we will have an error residue.

In Galerkin’s method this error is set to zero by multiplying the residue by the shape
function itself and integrating the same over the full domain of the problem.

Thus considering an assumed shape function w, we have as per Galerkin’s method

R =
x2∫

x1

EI

[
d2

dx2

{
d2u
dx2

}
+ q

]
wdx = 0 (2.12.224)

where, R = residual error; EI = flexural stiffness of the beam; u = displacement of
the beam @ N1u1 + N2u2 + N3u3 + N4u4 = Niui, where i = 1, 2, 3, 4; q = load on
the beam and w is the assumed shape function having same basis as u.

or

x2∫
x1

EI

[
w

d2

dx2

{
d2u
dx2

}]
dx +

x2∫
x1

wqdx = 0 (2.12.225)

Integrating the above by parts, we have

EI

⎡
⎣{w

d3u
dx3

}x2

x1

−
x2∫

x1

{
dw
dx

d
dx

(
d2u
dx2

)}
dx

⎤
⎦+

x2∫
x1

wqdx = 0

or EI

⎡
⎣{w

d3u
dx3

}x2

x1

−
{

dw
dx

d2u
dx2

}x2

x1

+
x2∫

x1

d2w
dx2

d2u
dx2

⎤
⎦+

x2∫
x1

wqdx = 0 (2.12.226)

or EI

x2∫
x1

d2w
dx2

d2u
dx2 dx = −wV + dw

dx
M − q

x2∫
x1

wdx (2.12.227)

Here as w has the same basis as u we can write wj =∑4
j=1 Njwj and ui =∑4

i=1 Niui

thus the above expression can now be expressed as

EI

x2∫
x1

d2Ni

dx2

d2Nj

dx2 dxui = −wV + dw
dx

M − q

x2∫
x1

wdx (2.12.228)
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The above can be further expressed as

[K] {u} = {P} (2.12.229)

where
[
Kij
] = EI

∫ x2

x1

d2Ni
dx2

d2Nj

dx2 dx is the stiffness matrix of the beam.

For the shape functions we had already derived them earlier while deriving the
stiffness matrix of beam based on displacement method. Using,

N1 = 1 − 3x2

L2 + 2x3

L3 , N2 = x − 2x2

L
+ x3

L2 , N3 = 3x2

L2 − 2x3

L3 ,

N4 = −x2

L
+ x3

L2 ,

the stiffness matrix can be obtained as

[
Kij
] = EI

L∫
0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d2N1

dx2

d2N1

dx2

d2N1

dx2

d2N2

dx2

d2N1

dx2

d2N3

dx2

d2N1

dx2

d2N4

dx2

d2N2

dx2

d2N1

dx2

d2N2

dx2

d2N2

dx2

d2N2

dx2

d2N3

dx2

d2N2

dx2

d2N4

dx2

d2N3

dx2

d2N1

dx2

d2N3

dx2

d2N2

dx2

d2N3

dx2

d2N3

dx2

d2N3

dx2

d2N4

dx2

d2N4

dx2

d2N1

dx2

d2N4

dx2

d2N2

dx2

d2N4

dx2

d2N3

dx2

d2N4

dx2

d2N4

dx2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

dx

(2.12.230)

This gives

[K] = EI

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12
L3

6
L2 −12

L3

6
L2

6
L2

4
L

− 6
L2

2
L

−12
L3 − 6

L2

12
L3 − 6

L2

6
L2

2
L

− 6
L2

4
L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

the element stiffness matrix for the beam.

(2.12.231)

2.12.52 Thermal analysis of composite wall
in one dimension

Thermal analysis par-se is not the forte of a civil engineer. Mechanical and Chemical
Engineers are usually far more adept in handling them. However there are certain
situations where a civil /structural engineer is faced with the problem related to thermal
analysis. A typical example shown in Figure 2.12.70 is chimney wall with brick lining
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k

1, h2

2 k3 k4

                L               L

2

θ2 θ3 θ4
θ5

3 4 5

Figure 2.12.70 Composite wall and its Finite Element Model by line element.

where there exists a temperature gradient between inside and outside of chimney and
unless one estimates this temperature gradient cannot assess the thermal stress. We try
to explain this based on FEM principle.

Just to re-capitulate in case the physics of the problem has got rusted a bit, the
thermal conductivity of a material is given by

Q = kA(θi − θf )t

L
(2.12.232)

where Q = Total quantity of heat flowing; k = thermal conductivity of the wall; A =
area of the wall exposed to the heat; θi and θf = Initial and final temperature of the
body; t = time in seconds and L = thickness of the body.

Under steady state condition,

Q = kA(θi − θf )

L
(2.12.233)

For the given wall

Let Q1 be the heat energy inside the wall (where temperature is θ1), then

Q1 = h2A2 (θ1 − θ2)

Here, in thermodynamic term, h is known as heat transfer coefficient for the wall
surface, W/m2 C.



314 Dynamics of Structure and Foundation: 1. Fundamentals

Q2 = k2A2

L2
(θ2 − θ3) ; Q3 = k3A3

L3
(θ3 − θ4) ;

Q4 = k4A4

L4
(θ4 − θ5) and Q5 = q5A5,

where q = Surface heat flux in W/m2.
Under steady state condition we have, Q1 = Q2; Q2 = Q3; Q3 = Q4 and Q4 = Q5

and this gives

k2A2

L2
(θ2 − θ3) = h2A2 (θ1 − θ2)

k2A2

L2
(θ2 − θ3) = k3A3

L3
(θ3 − θ4)

k3A3

L3
(θ3 − θ4) = k4A4

L4
(θ4 − θ5)

k4A4

L4
(θ4 − θ5) = q5A5

(2.12.234)

Expanding and writing the above equations in matrix form we have

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k2A2

L2
+ h2A2 −k2A2

L2
0 0

−k2A2

L2

[
k2A2

L2
+ k3A3

L3

]
−k3A3

L3
0

0 −k3A3

L3

[
k3A3

L3
+ k4A4

L4

]
−k4A4

L4

0 0 −k4A4

L4

k4A4

L4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
θ2
θ3
θ4
θ5

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

h2A2θ1

0

0

q5A5

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

➔ [K] {θ} = {Q} (2.12.235)

One should observe a couple of things here.

1 The matrix is positive definite and symmetric, and
2 The nature of matrix is banded

We had not used Galerkin’s technique above, but used an identical technique of
assembling truss elements (refer example cited in the Frontal Solution example) in
this case.
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dz

Qx Qx+ dx

dy

dx

Qx

x

Figure 2.12.71 Propagation of heat through an elemental volume.

2.12.52.1 Thermal analysis of walls in three dimensions

The problem cited previously was of course elementary. Things do complicate a bit
when we attempt a three or two dimensional analysis of this wall under temperature.
For some very critical structures70 this is sometimes mandatory.

We present such a case herein where we show how Galerkin’s technique is adapted
for FEM solution for the problem.

Since as civil engineers we are mainly focused on stress thus as a prelude to the FEM
derivation we derive the equilibrium equation of heat flow in three dimension.

Let us consider an elemental volume of dimension dx, dy and dz shown Figure
2.12.71. Let kx, ky and kz are the thermal conductivity of this element in x, y and z
direction. If the increment in temperature is dθ then amount of heat absorbed (Qx) in
x direction

Qx = kxdy · dz
(
∂θ

∂x

)
(2.12.236)

Now, looking at the above element it is evident that net heat absorbed by the body
is given by

�Q = Qx + ∂Qx

∂x
dx − Qx = ∂Qx

∂x
dx = ∂

∂x

[
kx

(
∂θ

∂x

)]
dxdydz

This will raise the temperature of the body, given by the calorimetric principle as

�Q = m × s × dθ = ρdxdydz × s × dθ

where, ρ = mass density of the material; s = specific heat of the body.

70 For instance, the concrete wall that protects the core of the reactor in Reactor Building of a Nuclear
Power Plant.
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Thus combining all such heat balance equation in x, y and z direction we have

∂

∂x

[
kx
∂θ

∂x

]
+ ∂

∂y

[
ky
∂θ

∂y

]
+ ∂

∂z

[
kz
∂θ

∂z

]
+ Hv = ρs

∂θ

∂t
(2.12.237)

in which, Hv = rate of heat generated per unit volume.
For isotropic body when kx = ky = kz i.e. the thermal conductivity is same in all

direction we have

∂2θ

∂x2 + ∂2θ

∂y2 + ∂2θ

∂z2 + Hv

k
= ρs

k
∂θ

∂t
(2.12.238)

If the body is without any source or sink, the above equation reduces to

∂2θ

∂x2 + ∂2θ

∂y2 + ∂2θ

∂z2 = ρs
k
∂θ

∂t
(2.12.239)

For steady state case the equation is expressed as

∂2θ

∂x2 + ∂2θ

∂y2 + ∂2θ

∂z2 + Hv

k
= 0 (2.12.240)

The boundary condition for this problem is given as θ(x, y, t) = θ0, for t > 0 on
surface-A1:

kx
∂θ

∂x
l + ky

∂θ

∂y
m + kz

∂θ

∂z
n + q = 0 on surface A2 for t > 0

and kx
∂θ

∂x
l + ky

∂θ

∂y
m + kz

∂θ

∂z
n + h (θ − θs) = 0 on surface A3 for t > 0

(2.12.241)

where, q = surface heat flux W/m2; h = convection heat transfer coefficient W/m2 K;
θs = surrounding temperature in degree centigrade; l, m, n = direction cosine of
outward normal to the surfaces A1, A2, A3; A1 = area on which temperature is
specified; A2 = area on which heat flux is defined; A3 = area on which convective
heat loss h(θ − θs) is defined.

For finite element formulation let us assume

θ =
p∑

i=1

Niθ ii (2.12.242)

Let the assumed shape function having the same basis as
∑p

j=1 Nj.
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Applying Galerkin’s technique under steady state condition we then have

∫∫∫
V

Nj

[
∂

∂x

(
kx
∂θ

∂x

)
+ ∂

∂y

(
ky
∂θ

∂y

)
+ ∂

∂z

(
kz
∂θ

∂z

)
+ Hv

]
dxdydz = 0

(2.12.243)

Considering the first term of the integral we have∫∫∫
V

Nj

[
∂

∂x

(
kx
∂θ

∂x

)]
dxdydz =

∫∫
Njkx

∂θ

∂x
dydz −

∫∫∫
V

[
∂Nj

∂x
kx
∂θ

∂x

]
dxdydz

=
∫∫

S

Njkx
∂θ

∂x
l · ds −

∫∫∫
V

[
kx
∂Nj

∂x
∂Ni

∂x

]
{θi} dxdydz

Adding all the terms we thus have

∫∫
S

Nj

[
kx
∂θ

∂x
l + ky

∂θ

∂y
m + kz

∂θ

∂z
n
]
ds

−
∫∫∫

V

[
kx
∂Ni

∂x

∂Nj

∂x
+ ky

∂Ni

∂y

∂Nj

∂y
+ kz

∂Ni

∂z

∂Nj

∂z

]
{θ}

× dxdydz +
∫∫∫

V

Hvdxdydz = 0 (2.12.244)

Now since from the boundary condition is given by

kx
∂θ

∂x
l + ky

∂θ

∂y
m + kz

∂θ

∂z
n = q − h (θ − θs) , we have

∫∫∫
V

[
kx
∂Ni

∂x

∂Nj

∂x
+ ky

∂Ni

∂y

∂Nj

∂y
+ kz

∂Ni

∂z

∂Nj

∂z

]
{θ}dxdydz +

∫∫
S

hNiNj {θ}ds

=
∫∫∫

V

Hvdxdydz +
∫∫

S

qNjds +
∫∫

S

hθsds

or
∫∫∫

V

[
kx
∂Ni

∂x

∂Nj

∂x
+ ky

∂Ni

∂y

∂Nj

∂y
+ kz

∂Ni

∂z

∂Nj

∂z

]
{θ} dxdydz

=
∫∫∫

V

Hvdxdydz +
∫∫

S

qNjds +
∫∫

S

hθsds −
∫∫

S

hNiNjds. (2.12.245)

The above can thus be expressed as

[K] {θ} = {Q} (2.12.246)
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The stiffness matrix may be expressed as

[K] =
∫∫∫

V

[B]T [D] [B] dv (2.12.247)

where,

[B] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂Ni

∂x

∂Nj

∂x
.. .. ..

∂Np

∂x

∂Ni

∂y

∂Nj

∂y
.. .. ..

∂Np

∂x

∂Ni

∂z

∂Nj

∂z
.. .. ..

∂Np

∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and [D] =

⎡
⎢⎢⎣

kx 0 0

0 ky 0

0 0 kz

⎤
⎥⎥⎦

2.12.52.2 Formulation of triangular element under heat f low

The formulation you will find is relatively easy, compared to stress analysis
Using triangular element shown in Figure 2.12.72 and based on iso-parametric

formulation, we have derived earlier

[B] = 1∣∣J∣∣
[

y2 − y3 y3 − y1 y1 − y2
x3 − x2 x1 − x3 x2 − x1

]

Now considering, [K] = ∫∫∫
V

[B]T [D] [B] dv, we had derived

[Ke] = �t

⎡
⎣y2 − y3 x3 − x2

y3 − y1 x1 − x3
y1 − y2 x2 − x1

⎤
⎦ [D]

[
y2 − y3 y3 − y1 y1 − y2
x3 − x2 x1 − x3 x2 − x1

]

where, � = area of the triangle; t = thickness of the element.

3(x3,y3)

1(x1,y1) 2(x2,y2)

Figure 2.12.72 Triangular Element under heat flow.
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For heat flow case, this reduces to

[Ke] = �t

⎡
⎣y2 − y3 x3 − x2

y3 − y1 x1 − x3
y1 − y2 x2 − x1

⎤
⎦ [kx 0

0 ky

] [
y2 − y3 y3 − y1 y1 − y2
x3 − x2 x1 − x3 x2 − x1

]

(2.12.248)

It should be noted that the steady state heat equation and seepage of water through
soil are same, as such the same stiffness matrix may be used for seepage problems also
where kx and ky stands for permeability of the two dimensional soil element.

2.12.53 The user domain-rookies, fakes, control freaks
and clever Ivans71

Unlike the Developers and Assemblers club, where the association is elite (and mem-
bership restricted) the user domain is a spectacularly huge global market. In every
country where engineering is practiced, we would invariably have users who would
be using this technique today, one way or other.

While one should feel happy with its popularity is not without its danger. For it is
a powerful tool and in an inexperienced hand can be as dangerous as a child being let
out in Trafalgar square in peak hours with a Magnum 44 in his hand 72!!

Improper interpretation and modeling carried out based on half digested theoretical
knowledge the outcome can be as disastrous as an aftermath of a hurricane in Florida.

We seriously hope we would not see such spate of recurring accidents so that a
day may come when companies using this tool would stop the usage and go back to
traditional analysis based on hand computation. However (God forbid) if this ever be
the case we feel, it is the companies and educational institutions who use this tool or
offer it as a course work are to be completely blamed for this tragic decision.

For industry, simply buying a general purpose FEM package and letting the software
company taking a weeks training session73 with few young engineers for a few hours –
if it is felt is sufficient, then we need not have any ESP to predict that the organization
itself is the biggest perpetrator of its own trouble.

The most important thing we believe is to imbibe the right culture. To start with,
train or educate first the discipline managers in this topic before any other guy, for
this is where we have seen major communication gap exists.

Many of these so called bosses of today (especially in Indian Industry), had graduated
in late 70’s and early 80’s when FEM was just a name in many Indian engineering
colleges – just heard as a passing remark, and not surprisingly very few of them have
a very clear idea as to what has gone into this.

71 In Russian Folklore you will find invariably in family of clever brothers – the youngest called Ivan who
is considered not so smart by the other brothers but in reality – he is the cleverest and would invariably
win the princess’s heart at the end of the story.

72 It is heaviest handgun manufactured ever – see the movie Dirty Harry starring Clint Eastwood.
73 Where they mostly tell you how to run the software and would never get into any theoretical discussions

on the FEM library in the software or tell you what the software CANNOT handle.



320 Dynamics of Structure and Foundation: 1. Fundamentals

Out of sheer necessity (could be promotion or just not being perceived as old
fashioned) a few of them have superficially gone through a book and has accumulated
a half baked knowledge but poses they know it quite well (the fakers).

We assure you this is the most dangerous breed that can seriously damage a design
office culture. They enforce their half witted knowledge on juniors to follow and
when problem rears its head are completely out of their wits and conveniently leaves
the engineer on whom he has imposed his so called wisdom to handle it or at worst take
the blame – the net result, a serious erosion of talented manpower. People usually do
not change jobs but change bosses especially one who are fakes, yet are big enforcers
and not ready to learn or upgrade themselves.

While there are others who are at least honest enough to say they are not so con-
versant with it but would avoid it to their best of ability. For digressing into the
twilight zone they feel the work would go out of their control (the control freaks).
So, nip it in the bud. They would leave no stones unturned to discourage young
engineers working under them (having some theoretical background) trying to solve
a problem applying FEM – the reason is simple his own ignorance and fear of
loosing control on the job standing in the way and stone walling the issue. The
result is a big communication gap, after six months the frustrated young engineer
seek jobs elsewhere the company looses a good talented engineer – but the biggest
loser is the company itself for the design culture or the technology of the company
does not improve and remains stagnant. Thus from application side we seriously
believe first educate the design heads thoroughly before implementing this technology
in-house.

For this is surely not an area where as a manager you can manage it without knowing
it well74, and neither pushing your subordinates and reminding him of his deliverable
date for umpteen time75 would do any good. If this is what you believe in and yet
want to implement the FEM culture, its time you either take a voluntary retirement,
or do something else than engineering design or go and seek a job in another industry
trying to be as far as possible from this madding crowd.

Finite element as a coursework also needs to have a serious re-look. We firmly
believe that derivation of the integral

∫∫∫
V [B]T [D] [B] dv or merely deriving a few

fundamental element stiffness matrix (and that too in a short cut way) on the black-
board is surely not the ultimate. Making students believe (on taking such coursework)
that he knows what needs to know on FEM based on this sessions – this is not
only unethical but we would go to the extent of attributing it as a criminal offence
and unlike the Non conforming element formulation, cannot be pardoned for such
wrongs. Students are innocent and should be clearly stated that it is only the tip
of the iceberg and not the end. Same goes for computer coding. We believe, too
much focus (in India) is being given on computer coding. While software develop-
ment is a part and parcel of FEM education it is a means and not the end. The
most important thing is the end results its interpretation and modeling the prob-
lem in hand which is an art – and this is where many educators themselves lack
experience for they have never digressed beyond stiffness derivations on blackboard

74 Your soft skill will surely not tide you over this . . .
75 Without bothering to know what difficulties he is facing – for the boss can’t help him anyway.
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or trying their hand out with a cantilever beam with maximum 10 elements to
solve.

It is not so important whether a student can derive the stiffness matrix of iso-
parametric 4-nodded finite element correctly in examination hall or not. He is worth
an Ex+ if he in a project assignment can properly model a problem in a commercially
available FEM package. If the results obtained based on his model are not encouraging
can write an effective report on why there is error in his results and what were the
deficiencies in the model either in terms of boundary condition, mesh refinement or
bad selection of an inappropriate element. The results correct to six place of decimal, is
not important but the interpretation is. The correctness of solution will automatically
come provided he is trained to develop the error diagnostic skills and the intuition
of what works and what does not work based on his theoretical background being
taught in his coursework.

Sadly, we lack in all these issues and need some serious retrospection. But on the
other hand we do have a few clever Ivans, who are either lucky to get a knowledgeable
teacher (who can look far beyond the blackboard) or a manger (who knows what is
in hand) or at least a flexible boss who encourages him to take the dive and provide
support. Years of honing his skill, makes him the real expert who knows the subject’s
strength and weaknesses clearly. It is these few individuals whose constant efforts push
a company to the frontline of technology.

Enough sermonizing, and would like to change the subject for we do not want to
face a hostile manager or an equally hostile academic counsel for giving it bluntly
(without any sugar coating) as to where we believe we stand on this issue.

But seriously speaking educator and the industry, both has a collective responsibility
in successful implementation of this otherwise an extremely powerful technology.

In this section, we show you some practical example of application of FEM
pertaining to civil engineering applications.

But before we digress into this would like to share a story with you. Though we say
it is a story it is not a conjured one but a real life fact76.

In a particular industrial project of great economic importance the total quantity of
concrete work involved was about 20,000 m3. After about 30% of the project was
implemented, the client felt since the project was important it was essential to check
and ensure that quality of concrete work was being maintained. To audit this, they
flew in a concrete expert as a consultant to the site for checking the concrete work.
The man came in and took a look at the site of what work has been executed. Next
day he walked into the Construction manager’s office and after preliminary exchange
of pleasantries asked the manager how much cubic meter of concrete work has been
executed? To this the manager stated it was 6,500 m3 to be precise. To this the
expert asked and how many cubic meter of that has been broken and re-cast? The
construction manager smiled proudly and said they have broken none, all concrete
caste was adhering strictly to the technical specification. To this answer the expert
quipped that if this be the case then he can simply conclude that quality assurance for
concrete work in this site is absolutely nil!

76 We are indebted to Mr P.K. Som, Technical Specialist of Petrofac International for sharing this story
with us.
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The story might look irrelevant but is NOT and has a big moral, especially pertaining
to Finite Element Analysis. For we have seen innumerable analysis outputs where the
result is just a one pass affair. If you have an analysis output, that is an outcome of
a one shot analysis, be rest assured all you are holding in your hand is a big bunch
of garbage and nothing else. For by this time we hope you have realized it needs a
few number of trials to arrive at the most optimized mesh and tinker around with a
number of elements before coming to the right model.

We will not discuss the intricacies of modeling here, for we have talked on this issue
on a number of places in the whole book in different chapters. But having applying
this technology for last two decades to a number of problems we believe we do have
developed some knowledge in this subject to give you some useful tips here which
would stand you in good stead in your work or research.

• Never use an element whose stiffness matrix you cannot derive yourself or do
not understand as to how it has been derived. Do not bother what your soft-
ware dealer’s sales engineer says regarding how good and robust this particular
element is.

• If on reading the theoretical manual you find an element stiffness derivation or
explanation vague you are completely within your rights to ask the dealer to
provide you with the theoretical paper from which this element has been imple-
mented – he is morally, as well as commercially bound to provide you with this
support.

• When you have FEM software in your hand and that you intend to use, it is more
important to know what it CANNOT DO rather then what it can do. So quiz the
support company as much as possible on this to have a clear picture.

• Always run a prototype model of the actual problem before you take up the actual
job with lesser elements or a typical problem that can be solved analytically or
by other methods (like moment distribution say) to check that the results are
consistent.

• Run a small problem with similar aspect ratio of the actual structure (especially
if it is a continuum) to test what order of meshing gives consistent result. On
progressive refinement of mesh when average stress and displacement gives almost
same result with two successive runs you can conclude the results have more or
less converged. Use the same meshing size proportionally for the actual problem.

• Do not try to over-sophisticate a model by using higher order elements when lower
order elements suffice.

• The basic behavior of the system should be clear to you in terms of displacement
and where maximum stress could be-as far as practicable from the outset.

• If analytical or any other method exists or possible for a particular problem do
NOT jump into a FEM solution unless it is an absolute necessity.

2.12.54 Finite element model of table top centrifugal
compressor with dynamic soil-structure interaction

We present a practical problem of a table top centrifugal compressor resting on a
frame of height is 13.6 meter above ground level. The foundation which is a raft of
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size 10 m × 8 × 1.25 meter is resting 2.25 meter below G.L. The plinth beams are of
size 1 m × 1 m the deck beams are 1.25 m × 1m and Column sections are 1.25 m ×
1.25 m. The total compressor weight is 155 kN having operating RPM of 12,300.
The bearing capacity of soil is 195 kN/m2 having dynamic shear wave modulus as 194
N/mm2.

The frame is modeled by beam element while the slab is modeled as plate element
supported on equivalent soil springs obtained based on Richart’s formulation.

The FEM Model is as shown in Figure 2.12.73.
The total model has 742 nodes the frame is broken up into 3D beam elements

and the raft as 3D thick plate elements. The model after node numbering is shown
Figure 2.12.74.

The analysis consists of three parts

• Eigen solution of the system
• Response of the system under transient condition
• Psuedo Static analysis for shears and Bending Moments

We carried out the analysis in GTSTRUDL. Eigen solutions were carried out for first
thirty modes – of which 15 of them are presented. Then checking the % of modal mass
participation the mode for which transient load will induce excitation is calculated.
Finally a combined static and dynamic load run is carried out to determine the Bending
and shear force in the frame and the raft considering the elastic deformation soil
modeled here as spring elements.

The eigen solution of the frame with the foundation and soil for first fifteen modes
are as shown hereafter.

X

Y

Z

Figure 2.12.73 Computer model for framed type foundation for turbo expander/recompressor.
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Figure 2.12.74 Member numbers for computer model of framed type foundation for turbo
expander/recompressor.

Mode number Frequency (rad/sec)

1 4.12
2 4.25
3 6.912
4 12.44
5 13.02
6 13.20
7 20.18
8 20.40
9 20.78
10 31.49
11 34.07
12 34.61
13 35.91
14 37.32
15 38.04

In Z direction maximum modal participation is 55.1% in 2nd mode having fre-
quency of 4.25 rad/sec. The transient displacement under this condition is given as
shown in Figure 2.12.75.

Similarly in the X direction, the transient displacement is given in Figs. 2.12.76
and 77.

The Bending Moment and shear force under the equipment load and combination
of static and dynamic load are as given in Figs. 2.12.78 and 79.
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X

Y

Z time 23.050
step # 462

Transient Displacements
LoadTR-01
M KN CYC SEC

xx
9 1

X -3.050E-06
Y -1.736E-07
Z -1.420E-09

xx
9 4

X -3.051E-06
Y -1.735E-07
Z -1.466E-09

xx
10 4

X -3.053E-06
Y -1.719E-09
Z8.027E-11

xx
55 9

X -2.228E-06
Y -1.608E-07
Z -1.304E-09 xx

55 7

X -2.229E-06
Y -1.607E-07
Z -1.200E-09

xx
10 3

X -3.051E-06
Y -1.699E-09
Z 8.188E-11

xx
1 0 0

X -3.050E-06
Y 1.731E-07
Z 1.613E-09

xx
56 0

X -2.228E-06
Y 1.604E-07
Z 1.431E-09

Figure 2.12.75a Maximum displacement of structure due to transient load at frequency 4.25 Hz.

X

Y

Z
time 1.3500

step # 28

Transient Displacements
Load     TR-03
M       KN      CYC     SEC

xx
91

X 2.149E-06
Y 2.344E-07
Z 2.061E-12

xx
103 X 2.152E-06

Y 1.297E-07
Z 8.309E-12

xx
100

X 2.151E-06
Y -2.985E-08
Z 5.715E-12

xx
560

X 1.449E-06
Y -2.696E-08
Z -6.519E-11

xx
558

X 1.449E-06
Y -2.696E-08
Z 2.550E-11

xx
557

X 1.452E-06
Y 2.135E-07
Z -4.569E-12

xx
559

X 1.452E-06
Y 2.136E-07
Z 4.238E-11

xx
104

X 2.152E-06
Y 1.297E-07
Z -9.693E-12

xx
94X 2.149E-06

Y 2.344E-07
Z 3.760E-11

xx
99

X 2.151E-06
Y -2.985E-08
Z -5.218E-11

Figure 2.12.76a Maximum displacement of structure due to transient load at frequency 20.18 Hz.

We show below another problem of practical interest, “A Pedestrian tunnel below
a city area”.

As shown in the Figure 2.12.80 is the tunnel with loads coming on it from the
surface. We would Like to know the bending moment, shear and displacement of the
tunnel as well as the stress and strain induced in the soil.
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X

Y

Z
time 0.0348

step # 166

Transient Displacements
Load     SS-07
M       KN      CYC     SEC

xx
91

X -3.865E-08
Y -1.931E-08
Z -8.818E-12

xx
94

X -3.865E-08
Y -1.931E-08
Z 1.371E-11

xx
104

X -3.995E-08
Y -5.898E-08
Z 4.263E-12 xx

559

X -1.789E-09
Y -8.979E-09
Z -2.697E-12

xx
557

X -1.788E-09
Y -8.942E-09
Z 5.788E-12

xx
103

X -3.995E-08
Y -5.892E-08
Z -8.121E-12

xx
100

X -4.083E-08
Y -1.826E-08
Z -1.275E-11

xx
560

X 2.232E-09
Y -8.744E-09
Z -4.623E-12

xx
558 X 2.231E-09

Y -8.694E-09
Z 7.165E-12

Figure 2.12.77 Maximum displacement of structure due to steady state load at frequency 236.78 Hz
(operating speed of machine).

X

Y

Z

Moment Z
Load    3001
M-KN

VAL 1.692E+02
LOC 1.440E+00

VAL 1.685E+02
LOC 0.000E+00

VAL 2.270E+02
LOC 5.175E+00

VAL -2.051E+02
LOC 5.175E+00

Figure 2.12.78 Bending moment diagram of structure.
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X

Y

Z

Force Y
Load    3001
KN

VAL 1.440E+02
LOC 8.750E-01

VAL -1.365E+02
LOC 0.000E+00

VAL 1.440E+02
LOC 8.750E-01

VAL -1.365E+02
LOC 0.000E+00

Figure 2.12.79 Shear force diagram of structure.

2.12.55 Static soil-structure interaction analysis
of a pedestrian subway below ground

We solve this problem through an example as given below.

Example 2.12.9

The problem is as shown in Figure 2.12.80.

250 kN 250 kN Building
12 m 2 m 6 m 2 m 8 m 2 m

Road

4 m

7.5 m

13.5 m 7.5 m 19 m

Figure 2.12.80 A box culvert below ground with road and building.
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The RCC box culvert wall and base thickness is 750 mm
Esoil=11,0000 kN/m2

ν = 0.35. Consider the soil as plane strain.
Density of soil-200 kN/m3 – ignore ground water.
For the building consider a surface pressure @ 150 kn/m2.
The maximum traffic load on surface is two wheel loads @ 250 kN.

Solution:

The finite element model of the problem is as shown in Figure 2.12.81.

X

Y

Z
L OAD 1

-250.

o

-250.

o

-150.-150. -150.-150. -150.-150. -150.-150. -150.-150. -150 .-150.

SUPPORT F X
F IXE D JOINT

Figure 2.12.81 Geometry, element division and loading.

Here the model consists of three type of elements

1 Beam element of 1 meter width used to define the box culvert.
2 The soil modeled as iso-parametric quadrilaterals with meshes getting pro-

gressively cruder when taken away from the culvert to the boundary. The
iso-parametric elements are non conforming in nature.

3 CST plane strain element are used at places to change the shape of the
element or to match them. Observe here that CSTs are taken at places well
away from the area where stress could be critical.

The boundary of the soil are taken as rollers at vertical edges and pinned at
base. The loads induced due to wheel load and the building, are shown in the
above figure. The self weight of soil is auto generated by the computer.
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The problem was run on GTSTRUDL for static analysis and the displacement
for the overall system is shown in Figure 2.12.82.

Observe here that the soil settles locally below the building inducing a rotation
in the system.

This induces some pressure relief on the wall of the culvert as will be seen
subsequently. The displacement scale is made big to make tangible for review.

The vertical and horizontal stress in the soil is as shown Figs. 2.12.83 and 84.
The Bending Moment and Shear force for the box culvert is as shown in Figure

2.12.85 and 86. We plot a colored stress contour which shows the distribution
of vertical stress in the soil in Figure 2.12.87 which show the distribution of
vertical stress in the soil. A Colored plot of displacement in the soil is shown in
Figure 2.12.88.

X

Y

Z

xx
238

X 4.815E-04
Y -1.841E-02
Z 0.000E+00

xx
145

X -3.763E-04
Y -6.720E-03
Z 0.000E+00

LOAD 1              
SUPPORT FX              
FIXED JOINT             

Figure 2.12.82 Displacement of the finite element model-under given load.

X

Y

Z

min -420 .
   -414.

   -378.

   -342.

   -306.
   -261.

   -225.

   -189.

   -153.
   -108.

    -72.

    -36.

      0.
max      36 .

S                
FIXED JOINT              
LOAD  1               

UPPORT FX

Figure 2.12.83 Contour for vertical stress.
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X

Y

Z

min    -244.
   -240.

   -215.

   -195.

   -170.
   -145.

   -120.

    -95.

    -70.
    -45.

    -20.

      5.

     25.
max     49.

Figure 2.12.84 Contour of horizontal stress.

X

Y

Z

VA L 1 .323E +02
LO C 1.500 E -01

VA L -1 .41 9E +02
LOC 4.25 0E -0 1

VA L 2 .716E +02
LO C 3.750 E -01

Figure 2.12.85 Bending moment diagram of the box culvert.
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X

Y

Z

VA L  - 1.683 E +02

LOC 0. 0 0 0E + 00

VA L  7. 04 1E + 01
LOC 5.0 0 0 E - 01

V AL - 1.5 8 7 E +0 2

LOC 2. 2 50E-0 1

Figure 2.12.86 Shear force diagram of the box culvert.

X

Y

Z

-420 .

-246 .

-228 .

-192 .

-183 .

-147 .

-111 .

-75 .

-36 .

3 .

36.

Figure 2.12.87 Vertical stress distribution in soil medium.
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X

Y

Z

xx
28 0

X 2 .123 E-04

Y -1 .91 8E-02
Z 0 .000 E+00

xx
28 6

X 1 .13 3E-03
Y -1 .070 E-02

Z 0 .00 0E+00

xx
35 6

X -1 .608 E-03
Y -6 .725 E-03

Z 0 .000 E+00

xx
29 8

X 1 .076E-03
Y -8 .416 E-03

Z 0 .000E+00 -250 .

o

-250 .

o

-150 .-150 . -150 .-150 . -150 .-150 . -150 .-150 . -150 .-150 . -150 .-150 .

SU PP ORT F X
I ED JOINTXF

LOAD 1

Figure 2.12.88 Colored plot of displacement.

The above analysis gives a comprehensive solution of the system under static
load for the soil structure system.

SUGGESTED FURTHER READING

There are a number of excellent books and literatures available, totally dedicated to
this topic. We acknowledge that we have not gone through all of them (not possible
too) and many of them indeed could be an excellent reference. The reference of papers
on topics that we have covered, are already mentioned in the footnotes in the chapter.

For further reading, we mention herein only books those that we have personally
read and feel would benefit you. The reference are broken up in two categories 1) The
Beginners 2) Advanced Theories
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Element Analysis, Third Edition, John Wiley and Sons, NY.
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Chapter 3

Basics of lumped parameter
vibration

3.1 INTRODUCTION

The title of this chapter may intrigue you a bit!, however, to our perception the topic
is of great importance for this is the first stepping stone towards the study of structural
and soil dynamics.

Theory of vibration and mathematical modeling of bodies as discrete lumped mass
and spring was studied by mechanical engineers much before dynamic forces became
a major design consideration for civil engineers. As such, when civil engineers started
to develop their own theories for design a structures subjected to dynamic loads1

they drew heavily from many of these established theories that mechanical engineers
were already using to suite their purpose. Thus theory of vibration also known as
theory of mechanical vibration is the corner stone on which dynamics of structures
and foundations are based upon, at least to start with.

In this chapter we present some of the conceptual and mathematical background
that we would use later in Chapters 5 (Vol. 1) and 2 (Vol. 2) to develop the theories
of structural and soil dynamics.

John and his son Daniel Bernouli did a pioneering study on the dynamics of a
line of connected masses. It was shown that a system of n-masses has exactly n
independent modes of vibration in one dimension. Daniel Bernoulli in 1753 enun-
ciated that the general motion of a vibrating system can be written as a superposition
of its normal modes. Normally a physical system that we think of is a contin-
uous system (continuum). It is a fact that the discrete system and a continuous
system represent mathematical models of identical physical systems. Whereas a dis-
crete system has a finite number of degrees of freedom, a continuous system has an
infinite number of degrees of freedom. However there is no such thing as a truly
continuous medium. Again, discrete systems are governed by ordinary differential
equations whereas continuous systems are by partial differential equations. However
they represent similar dynamical behaviour. It may be noticed that concepts that we
shall introduce in the following sections have their counterparts in the continuum
model.

1 Popularly known as “Structural dynamics”, which we are going to study in detail in Chapter 5 (Vol. 1).
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3.2 SINGLE-DEGREE-OF FREEDOM

In many cases structural bodies like a beam, shaft etc can be effectively idealized as an
equivalent spring and lumped mass. Analogous quantities of mechanical and electrical
systems are shown in Table 3.2.1. We study hereafter how this model behaves under
a time dependent load and its vibration characteristics.

3.2.1 Free vibration: Undamped case

Consider a spring-mass system shown in Figure 3.2.1.
From the free-body diagram shown in Figure 3.2.1, the force balance can be

written as:

Table 3.2.1 Analogous quantities of mechanical and electrical systems.

Mechanical systems Electrical systems

Displacement x Charge q
Driving force F Driving voltage V
Mass m Inductance L
Viscous force constant c Resistance R
Spring constant k Reciprocal capacitance 1/C
Resonant frequency

√
k/m Resonant frequency 1/

√
LC

Resonance width γ = c/m Resonance width γ = R/L
Potential energy 1/2 kx2 Energy of static charge 1/2q2/C
Kinetic energy 1/2 m(dx/dt)2 = 1/2 mv2 Electromagnetic energy of moving

charge 1/2L(dq/dt)2 = 1/2Li2

Power absorbed at resonance F2
0/2c Power absorbed at resonance V2

0/2R

Free length of spring k

m

Static
deflection,

st

k

m

st

m

mg

k[ x + st ]

x

Free-Body Diagram

x

k st = mg

m(x +  )
st

Figure 3.2.1 A single-degree-of-freedom system.
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mẍ + kx = 0 ➔ ẍ + ω2
nx = 0 (3.2.1)

where ωn = √
k/m = √

gk/W rad/sec.
Defining, fn = 1

2π

√
gk/W = 1

2π
√

g/δst = natural frequency in cps or Hz, where
δstat = W/k = static deflection and we can conclude the following:

δst(mm): 0.0254 0.254 2.54 25.4
fn (cps or Hz): 99 31.3 9.9 3.13

⇒ stiffer the system, larger is the natural frequency.
To solve Equation (3.2.1), the initial conditions to be imposed are at, t = 0 : x =

x0; ẋ = ẋ0,

The solution is x = x0 cosωnt + ẋ0

ωn
sin ωnt (3.2.2)

Solution in Equation (3.2.2) is the sum of the two responses shown in Figure 3.2.2.

x0 sin tn
n

x0

n

x0 cos nt

x0 t

X

Figure 3.2.2 Response of a single-degree-of-freedom system.

3.2.1.1 Examples of single degree-of-freedom systems

Different cases of single-degree-of-freedom system are given in Figure 3.2.3.

Example 3.2.1

A RCC cantilever beam of span 3.0 m of size 500 × 800 supporting an electric
motor of weight 25 kN at its unsupported end. Determine the natural frequency
of the beam. Consider Econc = 2.85 × 107 kN/m2. Unit weight of concrete =
25 kN/m3.

Solution:

Moment of inertia of the beam = (1/12)× 500 × 8003 = 2.133 × 1010 mm4 =
0.02133 m4
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Self weight of beam (w) = 500 × 800 × 25 × 10−6 = 10 kN/m
Displacement due to beam self weight δ1 = wL4/8EI
Here L = 3.0 m and EI = 607905 kN · m2.

Thus δ1 = 10 × 34

8 × 607905
= 1.665 × 10−4 m

Displacement due to the motor (considered as a lumped mass) resting on
beam = δ2 = WL3/3EI

δ2 = 25 × 33

3 × 607905
= 3.701 × 10−4 m

Thus total static displacement is given by δstat = δ1 + δ2 = 5.366 × 10−4 m.
Considering fn = 1

2π
√

g/δst we have

fn = 1
2π

√
9.81

5.366 × 10−4 = 21.5 Hz

1. Mass-spring system 2. Torsional pendulum  

3. Cantilever beam  4. Spring-mass connected over a pulley 

5. Simple pendulum  

mg

m

No slippage

Radius, r

k
x

kt = torsional spring constant

r

0
dm(dr)2 = mass-moment of inertiaJ ∫=

k

m

= mgJ

Figure 3.2.3 Different cases of single-degree-of-freedom system.
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3.2.1.2 Energy methods

In any conservative system, sum of the kinetic and potential energy is constant. For
free vibration of an undamped system, the energy is partly potential and partly kinetic.
That is

T + U = constant ⇒ d
dt
(T + U) = 0 (3.2.3)

The kinetic energy = T = 1
2

mẋ2

The potential energy can be obtained for the mass-spring system (Figure 3.2.4) as:
The change in potential energy of the system, for a displacement x(t), is equal to the
strain energy in the spring minus the potential energy change of the mass due to the
difference in elevation. Hence, the potential energy is

U =
x∫

0

(total spring force)dx −
x∫

0

mg dx =
x∫

0

(mg + kx)dx − mgx = 1
2

kx2

Thus d
dt

[1
2mẋ2 + 1

2kx2
] = 0 ⇒ ẋ[mẍ + kx] = 0, since ẋ �= 0 : mẍ + kx = 0: same

as Equation (3.2.1).

Potential 
energy of
spring

Spring
deformation 

xst

mg

Sp
ri

ng
 fo

rc
e

m

x

st

Free spring 
length 

k

m

st Position
of static 
equilibrium 

Figure 3.2.4 A single-degree-of-freedom (mass-spring) system.
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This is a very useful technique for obtaining the natural frequency of a physical
system. We would see a number of applications of this method latter while deriving
response of various types of structures and foundations.

Example 3.2.2

Consider the vibration of a simple pendulum shown in Figure 3.2.5. Obtain the
natural frequency of vibration of the system.

L(1-cosθ)

L 
co

sθ Lθ

 mg

Figure 3.2.5 Vibration of a simple pendulum.

Solution:

Consider a pendulum shown in Figure 3.2.5.

Total energy = T + U = 1
2

mL2(θ̇)2 + (1 − cos θ)Lmg

Hence,
d
dt
(T + U) = 1

2
mL2 · 2

(
dθ
dt

)
· d2θ

dt2 + Lmg sin θ
dθ
dt

= 0;

∵ dθ
dt

�= 0 ⇒ mL2 d2θ

dt2 + mgL sin θ = 0

That is, θ̈ + g
L
θ = 0 ∵ θ is small ⇒ θ = sin θ

∴ ωn =
√

g
L

: fn = 1
2π

√
g
L

.
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Example 3.2.3

Shown in Figure 3.2.6, is a cylinder of mass m and radius r rolling without
slipping on a curved surface of radium R. Obtain the equation of motion of the
system and obtain the natural frequency of vibration of the system.

Translational velocity of the cylinder-centre = (R1 − R)θ̇ . Rotational velocity
of the cylinder-center = (θ̇b − θ̇ ). As the cylinder rolls without slippage, the arc
(a − b) = arc(a1 − b), i.e. R1θ = Rθb.

Thus, the angular velocity can be written as
(

R1
R − 1

)
θ̇ and total kinetic

energy is

T = 1
2

m[(R1 − R)θ̇ ]2 + 1
2

m
R2

2

[(
R1

R
− 1

)
θ̇

]2

in which mR2

2 is the mass moment of inertia of the cylinder about its longitudinal
axis. Potential energy can be written as: U = mg(R1 − R)(1 − cos θ)

Using
d(T + U)

dt
=
[

3
2

m(R1 − R)2θ̈ + mg(R1 − R) sin θ
]
θ̇ = 0

That is

θ̈ + 2g
3(R1 − R)

θ = 0 and this results in ωn =
√

2g
3(R1 − R)

.

Cylinder

R1

(R1–R)

b

a1

a

O1

center, O
radius, R

mg
b

Center-line

Figure 3.2.6 Oscillation of a cylinder on a curved surface.
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Example 3.2.4

Using the energy method find out the natural period of oscillation of the fluid
in a U -tube manometer shown in Figure 3.2.7.

Solution:

Although the motion is two-dimensional, it can be completely described in terms
of the vertical displacement x of the fluid surface from equilibrium. If a = cross
sectional area; � = length of fluid column; g = acceleration due to gravity, the
total mass of the fluid is ρ a�. Every part of the fluid can be assumed to move
with the same speed, ẋ. The potential energy corresponds to taking a column of
fluid of length x from the left-hand tube by raising it through the distance x and
placing it on the top of the right-hand column.

Thus, U = (ρgax)x and T = 1
2
ρ a� ẋ2

x
x

x

Figure 3.2.7 Oscillation in a U-tube.

Now Total energy = T + U, and
d(T + U)

dt
= d

dt

[
1
2
ρ a�ẋ2 + aρ gx2

]
= 0

➔ ẍ + 2g
�

x = 0 : ωn =
√

2g
�

.

3.2.1.3 Effect of weight of the spring

Let ρ = mass density of the spring [mass per unit length]. Now, if the free-end of the
spring as shown in Figure 3.2.8, has a displacement Z(t) and it is assumed that an
intermediate point of the spring at a distance x from the fixed end has a displacement
equal to (x/L) · Z(t), then Z(t) defines the configuration, and the system has but
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Z
m

k

dx

x

Static equil.
position

L

Figure 3.2.8 A single-degree-of-freedom system with spring having mass.

one-degree-of-freedom. This is possible because the mass per unit length of the spring
is constant.

For an element dx : dT = 1
2
(ρ dx)

[ x
L

˙Z(t)
]2

; Tspring =
L∫

0

1
2
ρ dx

x2

L2 Ż2 =1
2
ρ

L
3

Ż2

This may be the reason for having an ‘added mass’ to the footing-mass while com-
puting its natural frequency and dynamic response. However, it must be noted that if
we remove the mass m altogether, the natural frequency ωn is not equal to

√
3k/ρL.

The derivation above assumes the static extension of a uniform spring, an extension
proportional to the distance from the fixed end. But this holds only if the stretching
force is the same at all points along the spring. This condition will not be applica-
ble if there is a distributed mass along the spring. There must be a variation of the
stretching force with distance along the spring. The derivation, however, will be valid
if ρL << m, in which case the force along the spring is roughly constant (whereas, for
m = 0, the restoring force must fall to zero at the free-end, there being at this point
an acceleration but no attached mass).

3.2.1.4 Equivalent spring constants

Consider the case of a cantilever beam shown in Figure 3.2.9, subjected to an end-load
and the deflection of the beam-end be assumed to be only in the vertical direction.

xstatic = WL3

3EI
= mgL3

3EI
:: keq = W

xstatic
= 3EI

L3
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EI = constant 

L

W

Figure 3.2.9 Cantilever beam with end loads.

⇒

k

kb

m

*

EI = constant 

L

m

k

Figure 3.2.9a A single-degree-of-freedom system with equivalent springs.

Now, let a spring is suspended at the end of a cantilever, shown in Figure 3.2.9a:

xstatic = mg
kb

+ mg
k1

and keq = mg
xstatic

= mg
mg
kb

+ mg
k1

⇒ keq = 1
1
kb

+ 1
k1

(3.2.4)

Consider a solid pendulum shown in Fig. 3.2.10.

Mass moment of inertia, J =
2π∫
0

R∫
0

(rdθ dr)r2 = πR4

2
; Angle of twist = TL

GJ
;

T = π d4

32
G
L
θ = kt θ

where θ ’s are same in both the shafts.

Hence, T = T1 + T2 = (kt1 + kt2)θ : ωn =
√

keq

J
=
√

kt1 + kt2

J

=
√√√√ π

32J

[
d4

1G1

L1
+ d4

2G2

L2

]
(3.2.5)

Consider two springs connected as shown in Figure 3.2.11:
Equilibrium demands: ⇒ P1 + P2 = W
In this case xstatic is same for the whole block: W = k1 + k2 = xstatic(k1 + k2)

Hence keq = k1 + k2. (3.2.6)
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Figure 3.2.10 A single-degree-of-freedom system with equivalent spring.

P2P

W

k
k

W

Figure 3.2.11 A single-degree-of-freedom system with equivalent springs.

3.2.1.5 Springs connected in series

If we have n-springs in series, equivalent spring constant may be computed from

keq = 1
1
k1

+ 1
k2

+ · · · + 1
kn

. (3.2.7)

3.2.1.6 Springs connected parallely

If we have n-springs connected in parallel, equivalent spring constants may be obtained
from

keq = k1 + k2 + · · · + kn. (3.2.8)
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Example 3.2.5

Find the natural frequency of a single-degree-of-freedom system shown in Figure
3.2.12. The sketch reflects the same system with different orientation. Assume
that θ is small.

Case–1  

Case–3  

Case–2

Free-body

 M0 = 0k

L/2 L/2

mg
motion

F

mg

motion
mg

L/
2

L/
2

L/
2

L/
2

mL2

mL2

mg

motionk

L/2 L/2

mgL = FL/2  i.e. F = 2 mg.

mL2

Figure 3.2.12 Spring-connected pendulum with different orientations.

Solution:

We have mL2θ̈ = ∑
torques

Case-1:
∑

Mo = 0 : Assuming + +ve

mL2θ̈ + mgL sin θ + k
Lθ
2

L
2

cos θ = 0 ⇒ θ̈ +
(

g
L

+ k
4m

)
θ = 0

Hence, natural frequency, ωn =
√

g
L

+ k
4m

.

Case-2:
∑

Mo = 0 : Assuming + +ve
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mL2θ̈ − mgL sin θ + k
Lθ
2

L cos θ
2

= 0 ⇒ θ̈ +
(

k
4m

− g
L

)
θ = 0

Hence, natural frequency, ωn =
√

k
4m

− g
L

.

Case-3:
∑

Mo = 0 : Assuming + +ve

mL2θ̈ + k
Lθ
2

L cos θ
2

+ 2mg
L cos θ

2
− mgL cos θ = 0 ⇒ θ̈ + k

4m
θ = 0

Hence, natural frequency, ωn =
√

k
4m

.

3.2.1.7 Damped free vibration (SDOF)

The displacement x(t) of the mass m, shown in Figure 3.2.13, is measured from the
static equilibrium position and is considered positive in the downward direction, and
so are the velocity ẋ(t) and the acceleration ẍ(t).

Considering the motion in x-direction and using d’Alembert’s principle one can
write

−mẍ +
∑

forces in the (+Ve) x-direction = 0

Thus,

−m
d2

dt2 (x + δst)− k(x + δst)− c
d
dt
(x + δst)+ mg = 0 (3.2.9)

As, mg = kδst i.e. δst = W/k, Equation (3.2.13) reduces to

mẍ + cẋ + kx = 0 (3.2.10)

in which cẋ is the damping force and unit of c is (FTL−1) in SI unit it is (N-s/m).

Free-body diagram 

(x st)dt
dc

k(x + st)

mg x

(x st)dt2
d2

m
Static
equilibrium
position

m

x

kc

Figure 3.2.13 Damped free vibration (mass-spring-dashpot system).
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The damping force considered here is linearly proportional to velocity. When a
mass-spring system is set in motion with a little pull of the mass, the mass keeps on
oscillating indefinitely. This is under an ideal situation. But in reality the movement
of the mass attenuates with time due to air or other environmental resistance to the
motion. Taking queue from the motion of a solid body in a viscous fluid and keeping
in mind the Stoke’s viscous drag concept, the resisting motion, treated as a damping
force, is assumed to be linearly proportional to velocity of motion. This is treated
as viscous damping. For solving Equation (3.2.10), assume x = eβt, Auxiliary or
characteristic equation of (3.2.14) can be written as

mβ2 + cβ + k = 0 ⇒ β = −c ± √
c2 − 4mk

2m
(3.2.11)

Case (a): When c2 > 4mk;β is always −Ve.
Solution of Equation (3.2.11) is then, x = C1eβ1t + C2eβ2t, where β1 and β2 are the

roots of Equation (3.2.11) and both are negative.

x

t

Figure 3.2.14 Over-damped case.

x

t

When C1 and C2 have typical values
depending on b.c.s

Figure 3.2.15 Case of critical damping.
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The response, shown in Figure 3.2.14, is an exponentially decaying function and
produces a non-harmonic solution. This is the case of over-damping.

Case (b): c2 = 4mk, roots are β1, β2 = −c/2m: have equal roots.
Solution is, x = (C1 + C2t)eβt. → Again a non-periodic solution.

Undamped natural frequency

This is the case of critical damping. c = Cc : Cc = 2
√

km = 2
√
ω2

nm2 = 2mωn
Case (c): c2 < 4km: A very practical situation, results in harmonic solution.

Roots are β1,2 = 1
2m

[
−c ± i

√
4km − c2

]
.

Solution is x = C1eβ1t + C2eβ2t. This is shown in Figure 3.2.16. (3.2.12)

To simplify above, consider

c
2m

= c · 2ωn

2 · Cc
= c

Cc
ωn = Dωn : D = c

Cc
= Damping ratio.

and,
√

4k
4m − c2

4m2 =
√
ω2

n − c2.4ω2
n

4.C2
c

= √
ω2

n − D2ω2
n = ωn

√
1 − D2 = ωnd = Damped

natural frequency
Thus, the solution is

x = C1e(−Dωn+iωnd)t + C2e(−Dωn−iωnd)t

⇒ x = e−Dωnt [A cos ωndt + B sin ωndt]
(3.2.13)

= period

ωnd

2π

Exponentially decaying
function

timere
sp

o
ns

e

Figure 3.2.16 Damped free vibration.
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When D = 0.4,ωnd ≈ 90% of ωn; D = 0.8,ωnd ≈ 60% of ωn. It is for this reason
that in many practical problems where D varies between 5–10%, we usually consider
the natural frequency rather than damped natural frequency for it hardly makes any
significant difference.

Consider x = e−Dωnt [A cos ωndt + B sin ωndt];

In Figure 3.2.17, t2 = t1 + 2π
ωnd

x1 = e−Dωnt1 [A cosωndt1 + B sinωndt1] ;

x2 = e−Dωnt2

[
A cosωnd

(
t1 + 2π

ωnd

)
+ B sinωnd

(
t1 + 2π

ωnd

)]

Hence,
x1

x2
= eDωn(t2−t1) = e

Dωn
2π

ωn
√

1−D2 = e
2πD√
1−D2

Also, loge

(
x1

x2

)
= 2π D√

1 − D2
= δ = Logarithmic decrement. (3.2.14)

Hence δ = 1
n�n

x1
xn+1

in which n is the number of peak value recorded.
To obtain D, find out x1 and xn+1, say, from an oscilloscope record of any two

peak-amplitudes x1 and xn+1.
Equation (3.2.13) is solved using the initial condition: at t = 0 → x = x0 and

ẋ = ẋ0.

Exponential decay

x1

x2

t2t1

ωnd

2π
fnd

1T = =

TimeR
es

po
ns

e

Figure 3.2.17 Damped free vibration, logarithmic decrement.



Basics of lumped parameter vibration 351

Hence the complete solution may be written as

x = e−Dωnt [A cos ωndt + B sinωndt] or

(3.2.15)

x = e−Dωnt
√

[A2 + B2]sin(ωndt + φ)

in which A = x0; B = ẋ0 + Dx0ωn

ωn
√

1 − D2
; tan φ = B

A
= ẋ0 + Dx0ωn

x0 ωn
√

1 − D2
.

3.2.2 Forced vibration

The system is shown in Figure 3.2.18.
The governing equation for this case can be written as

mẍ + cẋ + kx = F0 sinωt (3.2.16)

General solution of Equation (3.2.16) is

x(t) = xc + xp = Complementary solution (C.F.) + Particular integral (P.I.).

(3.2.17)

C.F. = xc = e−Dωnt [A cosωndt + B sinωndt] (3.2.18)

Since Equation (3.2.16) is a linear second order differential equation with constant
coefficients, one may expect the particular integral to have a combination of harmonic
functions. Again, the C.F. will die out after a few cycles, PI will be the only part of
solution which will remain as the response of the vibrating system. As forcing function
is sinusoidal, solution of the differential equation with constant coefficients will be of
the form of a combination of sinωt and cosωt.

Static
equilibrium
position

kc

dc

x

dt (x + st)

(x + st)

k(x + st)

mg x

d2
m

dt2

Figure 3.2.18 Single-degree-of-freedom, damped forced vibration.
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For particular integral: P.I. = xp = A1 sinωt + A2 cosωt (3.2.19)

On differentiating Equation (3.2.19), we have

ẋ = ωA1 cosωt − ωA2 sinωt; ẍ = −ω2A1 sinωt − ω2A2 cosωt (3.2.20)

Substituting in Equation (3.2.16) and separating sine and cosine terms, we have

−mω2A1 − cωA2 + kA1 = F0 and − mω2A2 + cωA1 + kA2 = 0 (3.2.21)

Solving Equation (3.2.21) for A1 and A2 results in

A2 = −F0cω
(k − ω2m)2 + c2ω2 A1 = −(mω2 − k)F0

(k − ω2m)2 + c2ω2 (3.2.22)

Thus xp = F0

(k − ω2 m)2 + c2ω2 [−(mω2 − k) sinωt − cω cosωt] (3.2.23)

= F0√
(k − ω2m)2 + c2ω2

sin(ωt − φ) and tanφ = cω
k − mω2

= −F0√
(k − ω2m)2 + c2ω2

cos(ωt + φ) and tanφ = k − mω2

cω
(3.2.24)

The solution of xp and xc are shown in Figure 3.2.19.

x cx p

x = x c + x p

t

x

Figure 3.2.19 Response of SDOF damped system.
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3.2.2.1 Non-dimensionalisation

Substituting Equation (3.2.20) in l.h.s. of Equation (3.2.16) and considering the value
of A1 an A2 from Equations (3.2.21) and (3.2.22) we have

m2

[(
k
m

−ω2
)2

+ c2

m2ω
2

]
= m2ω4

n[(1 − r2)2 + (2Dr)2] and DCcω = 2Dωnωm

(3.2.25)

Equation (3.2.24) can thus be written as

xp = F0/k√
(1 − r2)2 + (2Dr)2

sin (ωnt − φ ) and tanφ = 2Dr
1 − r2

xp = −F0/k√
(1 − r2)2 + (2Dr)2

cos (ωnt + φ ) and tanφ = 1 − r2

2Dr

(3.2.26)

Following observations can be made from Equation (3.2.26), the particular integral:

1 The motion is harmonic and is of same frequency as the exciting force. For a given
harmonic excitation of constant amplitude and frequency, the amplitude of the
response is constant. Hence the motion is steady state response or is called steady
state vibration.

2 xp does not contain any arbitrary constants, the response is independent of the
initial conditions imposed on the system.

3 The amplitude of xp is a function of magnitude and frequency of the exciting force,
xstatic defined by F0/k is the response of the system to a static force defined by F0
and the ratio xmax/xstatic is the ratio of steady state response to the static response
of the system. This is defined as magnification factor.

4 At r = 1, the resonant frequency of an undamped system, the magnification factor
is limited by D.

5 Excitation and response do not attain their maximum values at the same time.
The phase angle ϕ is a measure of the time difference between them. For a given
D and r, the phase angle is a constant. Phase angle may vary from 0 to 180◦, at
r = 1, the phase angle is always 90◦. For an undamped system, the phase angle is
always either 0 or 180◦.

Magnification factor = M = xmax
xstatic

= xmax
F0/k

attains its maximum value Mmax depend-
ing upon the value of r for a particular D value. This is shown in Figure 3.2.20.

At r = 1 = Undamped natural frequency, M = 0.5/D.
Thus, for D = 0.2, M = 2.5, and D = 1/

√
2, M = 0.707 < 1 → amplitude less

than the statical value.
To obtain maximum M i.e. Mmax, we follow the following procedure

M = 1√
((1 − r2)2 + (2Dr)2)

(3.2.27)

To have a maximum M, denominator should be a minimum,
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Figure 3.2.21 Maximum values.

i.e.
d
dr

[(1 − r2)2 + (2D r)2] = 0

or 2(1 − r2)(−2dr)+ 2(4D2r) = 0; as r = 0 → gives only a trivial solution,

2(1 − r2) = 4D2 → r =
√

1 − 2D2

Thus

ω = ωn

√
1 − 2D2 : Mmax = 1

2D
√

1 − D2
; xmax = F0/k

2D
√

1 − D2
. (3.2.28)

Resonant frequencies are: Response curve for a particular run looks like the one
shown in Figure 3.2.21.
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fm = fn

√
1 − 2D2 : ωm =

√
k
m

×
√

1 − 2D2 : fm = 1
2π

×
√

k
m

×
√

1 − 2D2

(3.2.29)

One can have D and k provided m is known as F0, xmax and fm are known.

3.2.3 Steady-state analysis: Mechanical impedance method

If both the excitation and the steady-state response are harmonic and of the same
frequency, they can be represented by rotating vectors with the same angular velocity.
If the excitation force Fsin ωt be represented by F = Feiωt and if the response lags
the excitation force by a phase angle, ψ , the displacement vector can be written as
X = Xei(ωt−ψ). The velocity and acceleration vectors can be written as

Displacement X = Xei(ωt−ψ) (3.2.30)

Velocity
d
dt
(X) = iωX = iωXei(ωt+ π

2 −ψ) (3.2.31)

Acceleration
d2

dt2 (X) = (iω)2X = −ω2Xei(ωt+π−ψ) (3.2.32)

These relative vectors are shown in Figure 3.2.22.
The harmonic force in the system obtained by multiplying the displacement, velocity

and acceleration by appropriate constants as follows:

The spring force, kx(t) resist the displacement x(t), corresponding spring force
vector is −kX .
The damping force cẋ(t) resist the motion, corresponding damping force vector
is −icωX .
The inertia force mẍ(t) always resists the motion; corresponding force vector is
mω2X .

Im
ag

in
ar

y

Real

- X

X

F

t

2

Figure 3.2.22 Force, displacement, velocity and acceleration presented by rotating vectors.
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These force vectors are shown in Figure 3.2.22.
The impedance method can be deduced directly from the vector representation of

harmonic forces.
The equation of motion of one-degree-of-freedom is given by

mẍ + cẋ + kx = F sinωt (3.2.33)

Substitution of Eqns. (3.2.30)–(3.2.32) in Equation (3.2.33) results in

(−mω2 + icω + k)Xei(ωt−ψ) = Feiωt (3.2.34)

Factoring out eiωt and rearranging, it results in

X e−iψ = F
(k − mω2)+ icω

(3.2.35)

Hence X is the magnitude of displacement vector and can be written as

X =
∣∣∣∣ F
(k − mω2)+ icω

∣∣∣∣ = F√
(k − mω2)2 + (cω)2

; and

ψ = tan−1
[

cω
k − mω2

]
= tan−1

[
2Dr

1 − r2

]
(3.2.36)

Equation (3.2.33) can also be written as

ẍ + (c/m)ẋ + (k/m)x = (F0/m) sinωt; or ẍ + γ ẋ + ω2
nx = (F0/m) sinωt

(3.2.37)

3.2.4 Q-values and their interpretation

In vibration analysis it is customary to use Q-values, a pure number defined as (ωn/γ ).
Q is known as quality factor (Main, 1995). When damping is light Q is very high;
in a lightly damped case, Q > 1/2 and a very lightly damped case Q >> 1. Under
normal vibratory system Q is around 10. Q is numerically equal to (1/2D) and D is
the damping coefficient defined in Equation (3.2.13).

Properties of lightly damped case are generally expressed in terms of Q. After Q
cycles i.e. after a time Qt = 2πQ/ωf where ωf = ωn sqrt (1−[γ /2ωn]) the amplitude is
reduced by a factor, exp[−1/2(2πQ/ωf )] ≈ exp[−1/2γ (2πQ/ωn)] = e−π = 0.043.
Thus a Q for a lightly damped vibration system is to note how many cycles it takes
for the amplitude to fall to bout 4% of its initial value.

A vector diagram for Equation (3.2.37) is given Figure 3.2.23. In a steady state,
if we assume the displacement of the forced vibrating system as x = A sin(ωt + φ),
components of the diagram can be obtained as follows:

ẍ has amplitude ω2 A and is 90◦ behind ẋ. ẋ has amplitude ωA and is 90◦ ahead of
x. The values of A and φ are chosen so that a closed figure Figure 3.2.23 is formed
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B P

S

A

2A

F0/m

Figure 3.2.23 Vector diagram of Equation (3.2.37).

when we add the right hand side vector of Equation (3.2.37) As time progresses the
figure will rotate without changing its shape and we can match up the four vectors at
any time that we choose. Let us assume that the vector plot shown in Figure 3.2.23
defines the state at t = 0.

From Figure 3.2.23, it may be noticed that φ must lie between −π < φ ≤ 0. As we
assume forcing function as the standard, x, the displacement is the phase advance of φ
relative to the forcing function. Again, we have found thatφ always negative (clockwise
from the force), the displacement always lags the driving force. The magnitude of φ
can be obtained from the vector diagram as

tanφ = γ ω

ω2
n − −ω2 (3.2.38)

The phase lag just discussed depends on the frequency and not on the forcing
function. Considering triangle ABC of Figure 3.2.23, one can write

(ω2
n − ω2)A2 + γ 2ω2A2 = (F0/m)2 (3.2.39)

i.e. A = F0/m√
(ω2

n − ω2)2 + γ 2ω2
(3.2.40)

This can be expressed also in the form

A = (F0/k) X
1√

(1 − r2)2 + (r/Q)2
(3.2.41)

in which r = ω/ωn and A becomes infinite at ω = ωn and γ = 0.
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Figure 3.2.24 Resonant curves for various values of Q. [Note: Q = 5.0 = 1/2 D]
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We define in the following a non-dimensional expression R, known as Response
function, is given as follows

R(ω) = γ 2ω2

(ω2
n − ω2)2 + γ 2ω2 (3.2.42)

In terms of Q, it can also be expressed as

R(r) = (r/Q)2

(1 − r2)2 + (r/Q)2
(3.2.43)

The response function lies between 0 and 1, the latter value is reached when ω = ωn.
One can write displacement, velocity and acceleration in terms of R as

Displacement : A = (F0/cω)[R(ω)]1/2;

Velocity : ωA = (F0/c)[R(ω)]1/2 (3.2.44)

Acceleration: ω2A = (F0ω/c)[R(ω)]1/2

Three amplitudes are plotted against r, the frequency ratio, r for a system with
Q = 5. These curves are called response curves. The variation of phase angle with r
having Q = 5, are also shown in Figure 3.2.24. The damping used here is light. First
three plots shows resonance near r = 1. The frequency corresponding to this phe-
nomenon is called resonant frequency. Since the velocity amplitude ωA is proportional
to the square root of R(ω), it has its maximum value exactly at r = 1. The displacement
amplitude A has ω in the denominator, this pulls down the curve at high frequencies
more than at low frequency and so A peaks at a frequency slightly below the resonance
frequency. The acceleration amplitude contains ω in the numerator and therefore it
peaks slightly above the resonant frequency. At resonant frequency, the phase angle
is −π/2; then the displacement lags the forcing function by exactly π/2. For any har-
monic function displacement lags the velocity by π/2. Thus the velocity is in phase
with the forcing function at resonance.

At very low operating frequency where ω << ωn, φ ≈ 0; A ≈ F0/mω2
n = F0/k →

x ≈ (F0/k) sinωt: this response is independent of m and γ , and a low frequency
response is said to be stiffness controlled. The mass has very small acceleration which
requires only a small part of the driving force, most of the energy goes to balance the
spring force = −kx. Since the spring force is the restoring force, the driving force must
be nearly in phase with x.

At high operating frequency, where ω >> ωnφ ≈ −π/2; A ≈ F0/mω2
n → x ≈

(F0/mω2) sinωt: this response is independent of k, and at high frequency response is
mass controlled. The force is required to give the mass a large acceleration at these
frequencies. The existence of spring is not felt. Since the driving force provides almost
the entire return force, it is naturally almost anti-phase with the displacement.

At low frequencies, the acceleration is small but the displacement amplitude A is
never smaller than F0/k. At higher frequencies the acceleration amplitude is ω2A is
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never smaller than F0/m, but the displacement is small. This high frequency behaviour
can be fruitfully utilised to provide vibration isolation. To protect a system from
vibration of frequency ω taking place at the other end of a supporting mass, we should
choose a spring whose stiffness makes ωn << ω.

Resonance results in amplification in response. If vibrating the anchor point of the
spring at the resonance frequency with amplitude, F0/k causes the mass to vibrate,
at the same frequency but with the larger amplitude F0/mγωn. The quantity Q is the
amplification factor ωn/γ .

There is a similar amplifying effect on the acceleration, with the result that the force
acting at the point where the mass is attached to the spring has amplitude QF0 at
resonance, not merely F0: A potential source of danger in a careless engineered system
liable to resonance.

In each of the cases shown in Figure 3.2.11, the amplification factor is Q exactly
when ω = ωn exactly. Since the displacement and the acceleration have their maxima
at slightly different frequencies, they are amplified by a slightly larger factor at these
frequencies.

3.2.5 Power absorption

To maintain the steady state vibration the system requires a sustained supply of energy
through the driving force and it has to replenish the dissipation of energy through
the damping. When the mass of the system moves from x to x + x, the work done
against the damping force is −Fdx. If the movement takes place in timet, the rate at
which energy is dissipated is −Fd[x/t]. In the limit as t → 0 this becomes the
instantaneous power absorption, i.e.

Power, P = −Fdẋ = [cẋ]ẋ = cẋ2 (3.2.45)

Since the velocity varies harmonically and has an amplitude ωA, the average of P
over many cycles can be obtained over a complete cycle as

Average of ẋ2 = 1/2[F0/c]2R(ω) (3.2.46)

Thus the average power

P̄ = [F2
0/2c]R(ω) = F2

0

2mγ

[
γ 2ω2

(ω2
n − ω2)2 + γ 2ω2

]
= F2

0

2c

[
(r/Q)2(

1 − r2
)2 + (r/Q)2

]

(3.2.47)

This is the average power absorbed from the driving force when the system is driven
with an angular velocity ω; it is now plotted against the frequency ratio r and for
varying values of Q in Figure 3.2.25. The maximum value of the average power F2

0/2c,
is reached at the resonant frequency. It is inversely proportional to the resistance. The
absorbed power produces heat in the system. It can be noticed that when damping
is light, i.e. c is small the problem increases manyfold as average power increasingly
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becomes unbounded. The shape of the absorption curve is essentially the shape of
R(ω) with maximum value as 1. As ω decreases from the resonant value, R(ω) falls its
maximum value of 1.

At some frequency, say ω1, we have

R(ω1) = 1/2 → γ 2ω2
1 = (ω2

n − ω2
1)

2 → γω1 = ω2
n − ω2

1, for ω1 < ωn. (3.2.48)
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Figure 3.2.25 The average power absorption with varying Q values.
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Similarly as ω increases from resonance, R(ω) decreases again and at, say ω2, we
have

R(ω) = 1/2 → γω2 = ω2
n − ω2

2, for ω2 > ωn. (3.2.49)

From the above, we may write,

γ = (ω1 − ω2). (3.2.50)

Thus γ is the size of the angular frequency range within which the average power
is greater than half its maximum value. This is precisely the reason to call γ as ‘width’.

With Q increasing (low damping), the figure sharpens around r = 1, that is the
resonant frequency, free vibrations die out slowly and vice versa. Hence width of the
power absorption curve is identical with the energy decay constant for free vibration
of the same system. Thus measurement of the resonant curve can be used as a practical
way of obtaining the decay constant.

3.2.6 Heavy damping

Free vibration cannot occur when the damping is heavy, i.e. Q > 1/2 and γ > 2ωn.
The system in this case returns asymptotically to x = 0. However forced vibra-
tions are possible. Figure 3.2.24(a) can be obtained for all degrees of damping. The
corresponding plot is shown in Figure 3.2.26.

For heavy damping we can obtain an approximate expression for the response func-
tion R(ω) from which we obtain other responses like velocity and acceleration. For
heavy damping we expect appreciable movement only at the lowest frequencies, hence
we may put ω << ωn in the exact formula of R(ω), i.e.

R(ω) ≈ γ 2ω2/ω4
n

1 + (γ 2ω2/ω4
n)

(3.2.51)

Substituting the relaxation time, τr = γ /ω2
n = c/k: the time it takes for the dis-

placement to be reduced by a factor 1/e and is a quantity independent of the mass, m.
Hence we can write Equation (3.2.51) as

R(ω) ≈ τ2
r ω

2

1 + τ2
r ω

2 (3.2.52)

A plot of Eqn. (3.2.52) is shown in Figure 3.2.27.
The plot is very unlike the resonant curve we saw earlier. We are interested here in

the frequency range.
ωτr = 1, and this implies, ω = 1/τr = Qωn << ωn.
The absorbed power, directly proportional to R(ω), will increase from a very small

value to its maximum possible value of F2
0/2c as the frequency increases past 1/2πτr,

whereas we can ‘heat’ a lightly damped system efficiently by choosing an operating fre-
quency in the region of the resonant frequency, with very heavy damping the criterion
is to choose ω well above 1/τr. The concept is used in microwave cooking.
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Figure 3.2.27 Response function for heavy damping.

3.2.7 Frequency dependent loading

A sinusoidal dynamic force is represented by F(t) = F0 sinωt. Here, F0 is of constant
magnitude. However dynamic forces emanating from unbalanced rotating mass is
frequency dependent. Consider, for example an eccentric mass rotating with a constant
circular frequency ω, around a fixed point O as in Figure 3.2.28.

The mass is rotating with an angular velocity, ω.
Hence, ω = dθ

dt ; normal or centripetal acceleration an = ρω2 = ρθ̇2; and the

tangential acceleration at = d (ρω)dt = ρω̇ + ρ̇ω = ρθ̈ + ρ̇ω̇

As ρ is a constant → ρ̇ = 0, a symmetric case, and at = 0 as ω = constant.
The idealized system is shown in Figure 3.2.28.
F = mρω2 ⇒ FH = mρω2 cos θ = mρω2 cosωt; FV = mρω2 sinωt.
Hence forth the eccentricity ρ will be termed as e. So, we have a system subjected to

the exciting force of the type shown in Figure 3.2.29(b). Figure 3.2.29(b) also indicates
that the horizontal forces get cancelled; only the vertical component of oscillation
remains and two such components get added up.

3.2.7.1 Mechanical oscillators

Two counter-rotating eccentric weights are used to produce forced oscillations. By
varying the speed of rotation the magnitude of the resultant force can be varied. This
is described in Figure 3.2.30.

Using, FV = 0 : FH = 0.
Net vertical force = 4emω2 sinωt + 8emω2 sinωt

= m[2an cos(ωt + α)− 2an cosωt]
When α = 0; FV = 0 : α = 180◦; FV is maximum.
A typical value of the vertical force:
F = [1.875 sin α

2 N2] in lbs. in which N = 2π f in rpm.
So, a S.D.O.F. system with frequency dependent amplitude, may be written as

mẍ + cẋ + kx = meω2 sinωt = F0 sinωt (3.2.53)
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Figure 3.2.29 Generation of frequency dependent loading.

A typical foundation-soil system may be shown in Figure 3.2.31.
Thus from Equation (3.2.53),

xmax = m0eω2/k√
(1 − r2)2 + (2Dr)2

= m0eω2/mω2
n√

(1 − r2)2 + (2Dr)2
and tanφ = 2Dr

1 − r2 .

(3.2.54)

xmax
m0e
m

= r2√
(1 − r2)2 + (2Dr)2

= r2M = M′ (3.2.55)

= Magnification factor for rotating mass type oscillator.

Response M′ versus frequency ratio are shown in Figure 3.2.32 along with phase
angle variation with frequency ratios. The phase angle of the steady state response is
same as that shown in Figure 3.2.20.
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Figure 3.2.30 Principles of mechanical oscillator.

mo= eccentric mass 

m= m1 + m2 

m2

m1 +

Figure 3.2.31 Footing-mass system.

3.2.7.2 To obtain M′
max

Equation (3.2.55) may be rewritten as

M′ =
(

xmax
m0e
m

)
= r2√

(1 − r2)2 + (2Dr)2
= 1√(

1
r2 − 1

)2 +
(

2D
r

)2
(3.2.56)
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Figure 3.2.32 Response curves for different damping factors and phase angle.

Assume 1
r = r′; this reduces Equation (3.2.55) to

M′ = 1√
(1 − r′2)2 + (2Dr′)2

(3.2.57)

and for M′ to be maximum, (1−r′2)2+(2Dr′)2 is to be minimum. Now, from Equation
(3.2.57) we can write that for a maximum value of M′, r′ = √

1 − D2.

Thus, for maximum M′, r should be equal to
1√

1 − 2D2
. (3.2.58)

Hence rres = 1√
1 − 2D2

or ωres = ωn√
1 − 2D2

. (3.2.59)
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Thus ωres is always less than ωn.

M′
max = 1

2D
√

1 − D2
so M′ = 1

2D
. (3.2.60)

At low speed, the force meω2 is small, and the amplitude is nearly zero. At resonance,
when the frequency ratio, r is unity, the magnification factor M′ is equal to 1/2Dr.
When frequency ratio is large the mass m has an amplitude (m0e/m).

3.2.7.3 Physical significance of (m0e/m)

We have, m0eω2

k : Now, if ω = ωn → the mass is rotating at its natural frequency.
The force produced by the eccentric mass = m0eω2

n, and if k = spring constant of
the system,

m0eω2
n

k
⇒ m0e

m
. (3.2.61)

1 When r is increased far beyond 1,

xmax = m0e
m

. (3.2.62)

This concludes that a rotating mass, if unrestrained, will tend to rotate about its
centre of gravity. For this case, the vibration amplitude is e, since m0 = m. For most
systems m0 is only a part of the total mass resulting in a limiting vibration amplitude
of (m0/m)e.

This phenomenon is the basis of adding more mass to a system when it is vibrating
above resonant frequency in order to reduce its dynamic amplitude (Richart et al.
1970).

3.2.7.4 Summary of S.D.O.F vibrating systems

Free vibration → two natural frequencies, ωn,ωnd
Forced vibration → two resonant frequencies,

rres =
√

1 − 2D2 = ωres

ωn
[constant amplitude]; (3.2.63)

rres = 1√
1 − 2D2

= ωres

ωn
[rotating mass]. (3.2.64)

As shown in Figure 3.2.34, up to D = 0.2 all natural and resonant frequencies are
within 5% of the undamped natural frequency of the system. For higher D, difference
is more. For D ≥ 1/

√
2, no peak is produced for forced vibration. For D ≥ 1, no

oscillating motion is generated for damped free vibrations.
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Figure 3.2.34 Natural and resonant frequencies of S.D.O.F. systems. [After Richart et al. (1970)]

3.2.7.5 Soil properties from response curves

If an experiment is conducted and response curves have been obtained for a signle-
degree-of-freedom system, one can determine the following soil properties:
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Figure 3.2.35 Single response of rotating mass type oscillator.

1 Rotating mass type oscillator (Figure 3.2.35): fn, the undamped natural frequency,
can be obtained from tangency of a line originating from origin to the curve.

However, the following relationship exists

f 2
n = f1 · f2 (3.2.65)

Thus from a single curve can give several calculations can be made and an
average is, normally used to obtain the undamped natural frequency of the system.

2 Constant amplitude force
A classical case for this type of behaviour (Figure 3.2.36) is the logarithmic

decrement, as mentioned earlier.

δ = π

2
f 2
2 − f 2

1

f 2
res

√
x2

1

x2
max − x2

1

(√
1 − 2D2

1 − D2

)
(3.2.66)

for D, this equation has to be solved by trial and error, as D is involved on r.h.s.
When D is small

√
1−2D2

1−D2 ≈ 1 and if x is chosen such that x = 0.707 xmax, then

δ = π(f2 − f1)

fres
. (3.2.67)
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Figure 3.2.36 Single response of constant amplitude oscillator.

Example 3.2.6

Set up differential equations of motion for the systems shown in Figure 3.2.37.
Determine expressions for: i) critical damping coefficient and, ii) the natural
frequencies of the damped oscillation.

a
a + bmg

caθ

kaθ JOθ

mgcaθ

mg

JOθ

k(a + b)θ

a + b
amg

b

O

O

System 1 

System 2

ba

a
c

c

k

k

m

m
θ

θ

Figure 3.2.37 A system with mass-spring-dashpot.
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Solution:

System 1: Taking moment about O: J0θ̈ + ca2θ̇ − mga + mg a(a+b)
a+b +

k(a + b)2θ = 0
Here J0 = mass moment of inertia of the body = ma2, and hence,

[ma2]θ̈ + [ca2]θ̇ + [k(a + b)2]θ = 0; Comparing with mẍ + cẋ + kx = 0

Cc =
√

4km =
√

4k(a + b)2 ma2 = a(a + b)
√

4km;

ωn =
√

k
m

=
√

k(a + b)2

ma2 = a + b
a

√
k
m

and

D = c
Cc

= ca2

a(a + b)
√

4km
= ca

(a + b)
√

4km
.

System 2: Similarly taking moment about O:
m(a + b)2 + ca2θ̇ + ka2θ − mg(a + b)+ mg (a+b)

a a = 0
[m(a + b)2]θ̈ + [ca2]θ̇ + [ka2]θ = 0; Comparing with mẍ + cẋ + kx = 0

Cc =
√

4km =
√

4ka2 m(a + b)2 = a(a + b)
√

4km;

ωn =
√

k
m

=
√

ka2

m(a + b)2
= a

a + b

√
k
m

.

D = c
Cc

= ca2

a(a + b)
√

4km
= ca

(a + b)
√

4km
.

The results are identical.

3.2.8 Dissipation of energy

Consider the general equation of motion, given by

mẍ + cẋ + kx = F0 sinωt (3.2.68)

Solution of Equation (3.2.68) is

x = F0/k√
(1 − r2)2 + (2Dr)2

sin(ωt − φ) = A sin(ωt − φ);

where, tanφ = 2Dr
1 − r2 .

Now, x = A sin(ωt − φ) and ẋ = ωA cos(ωt − φ)
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3.2.8.1 Work done by the force F in one cycle

With reference to the forcing function shown in Figure 3.2.38 with time period τ

EF =
τ∫

0

Fdx =
τ∫

0

F0 sinωt
dx
dt

dt = F0

τ∫
0

sinωt Aω cos(ωt − φ)dt (3.2.69)

Equation (3.2.69) can be solved substituting ωt = θ → dt = dθ
ω

and for t = 0 →
θ = 0; t = τ → θ = 2π . Eqn. (3.2.69), then, reduces to

E = F0

2π∫
0

sin θ cos(θ − φ )dθ = π A F0 sinφ (3.2.70)

Thus, when the phase angle φ between the force and the displacement is zero, the
work done per cycle is zero, since the spring and the mass are conservative elements.
When φ = 90◦, the work done per cycle is a maximum. Hence the harmonic force F
can be considered to be composed of two components, one in phase, or 180◦ out of
phase, with the displacement, and the other in phase with the velocity. The net work is
due to the force in phase with the velocity; the damping force is opposed to this force
component.

3.2.8.2 Work done by the damping (viscous) force

Ed =
τ∫

0

c
dx
dt

dx
dt

dt =
τ∫

0

cA2ω2 cos2(ωt − φ)dt (3.2.71)

Equation (3.2.74) can be solved by substituting, ωt − φ = z → dt = dz/ω, and for
t = 0 → z = −φ, t = τ = 2π/ω → z = 2π − φ.

F0

F(t)

t

Figure 3.2.38 General sinusoidal motion.
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Equation (3.2.71), then, reduces to

Ed = cA2ω

2

2π−φ∫
φ

(1 + cos 2z)dz = π cA2ω (3.2.72)

If the damping is non-viscous, an equivalent viscous damping coefficient ceq can be
assumed to describe the damping. However, a steady state motion with non-viscous
damping need not be harmonic, a reasonable harmonic motion can be approximated if
the damping is not large enough to change its wave form appreciably from its harmonic
counterpart.

3.2.9 Velocity squared damping

When a mass vibrates in a fluid or a fluid is forced through an orifice, fluid friction is
generally assumed to be proportional to the square of the velocity.

Let the damping force be = aẋ2 and if the motion is harmonic of the type: x =
x0 sinωt,

Energy dissipation per cycle

E = 2

x∫
−x

aẋ2dx = 2x2
0

π/2∫
−π/2

aω2 cos3 ωtd(ωt) = 8
3

aω2x3
0 (3.2.73)

If ceq = equivalent viscous damping, we have

➔ ceqπωx2
0 = 8

3
aω2x3

0 ⇒ ceq = 8aωx0

3π
. (3.2.74)

Here we find that ceq is not a constant, it depends on the excitation frequency and
the amplitude of vibration. For a single-degree-of-freedom system, we can write

x0 = F0/k√
(1 − r2)2 + (ceq

ω
k )

2
(3.2.75)

Squaring both sides, x4
0 + 9m2π2(1 − r2)2

64a2r4 x2 − 9m2π2

64a2r4

F0

k2 = 0. (3.2.76)

This gives real root as

x0 =
(

3mπ
8ar2

)√√√√− (1 − r2)2

4
+
√
(1 − r2)4

4
+
(

8ar2F0

3mπ k

)2

. (3.2.77)
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3.2.10 Solid damping

Solid damping exists in a material if it is imperfectly elastic. When a spring of
such material is subjected to cyclic load, the same strain has different values for
increasing and decreasing stresses. The stress-strain diagram for a system with
such materials forms a close loop, and the energy dissipation per cycle is pro-
portional to the area enclosed by the loop. This is a very common phenomenon
in geomaterials. However its magnitude is quite small. This damping is variously
called hysteresis damping, material damping, structural damping and displacement
damping.

Consider a damping force proportional to the displacement and independent of
frequency: damping force = ax = bkx; where a and b are constants and a has the
dimension of spring constant k and b are dimensionless constants.

As the damping force is opposite in phase to the velocity, to have this force propor-
tional to the displacement, we write the equation of motion in exponential form and
obtain a steady state amplitude X by impedance method

mẍ + k(1 + ib)x = F0eiωt (3.2.78)

∴ X = F0

|k − mω2 + ibk| = F0/k√
(1 − r2)2 + b2

(3.2.79)

This implies ceqω/k = b → ceq = bk
ω

= a/ω.
Hence energy dissipation per cycle = ceqωπX2 = aπX2.
So the energy dissipation in solid damping may be assumed to be independent of

frequency but proportional to the square of displacement (strains) amplitude. This
observation reduces the equation of motion to be linear. For mild steel, the energy
dissipation is found to be proportional to X2,3 and for other materials the amplitude
exponent may range from 2 to 3.

3.2.11 Analysis of friction forces (Coulomb friction,
dry friction)

Since the steady state motion with non-viscous damping may not be harmonic, the
assumption of harmonic motion is reasonable only if damping is not large enough to
change its wave appreciably. In many practical problems the damping in a system is
small, and its effect may be neglected except near resonance. At resonance it is the
damping that governs the amplitude of the motion. Hence, equivalent damping is
often used to determine the resonant amplitude.

The coulomb damping force (Timoshenko & Young 1964) is generally assumed
to be proportional to the normal force between the two sliding bodies. Hence, it is
independent of the displacement and its derivatives, and, for a given sliding body, the
frictional force is of constant magnitude.

It should be remembered that in a physical system the force required to start the
motion is usually greater than that is required to maintain the motion. Frictional
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Figure 3.2.39 Free vibration of a sliding block.

coefficient is not necessarily constant, depending somewhat on the surface roughness
of the sliding surface.

3.2.11.1 Free vibration considering the friction force

Let m is a mass sliding on a rough surface shown in Figure 3.2.39. Let the spring is
at unstressed condition at position ‘0’. The direction of x is positive as shown in the
Figure. The mass m is given an initial displacement −x0 and is at position ‘1’ at t = 0.
Subsequently the mass is released and slides to position ‘2’ through position ‘0’. While
moving from ‘1’ to ‘2’, ẋ ≥ 0; again the mass slides back from ‘2’ to ‘1’ and through
‘0’, here ẋ ≤ 0.

Cases

a Movement from left to right (ẋ ≥ 0) (Figure 3.2.40)
Equation of motion can be written as

mẍ + kx = −f

b Movements from right to left (ẋ ≤ 0) (Figure 3.2.41).
Equation of motion can be written as

mẍ + kx = f

General equation of motion of a mass sliding over a rough surface may be written as

mẍ + kx = ∓f (3.2.80)

Solution: Substitute x = z± f
k in Equation (3.2.80) to obtain mz̈+k(z ± f

k ) = ±f i.e

mz̈ + kz = 0 (3.2.81)
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m

Figure 3.2.40 Block sliding left to right.

x

Slide movement

mxkx

f

m

Figure 3.2.41 Block sliding right to left.

Solution of Equation (3.2.84) is

z = C1 cosωnt + C2 sinωnt; or, x = C1 cosωnt + C2 sinωnt ∓ f
k

(3.2.82)

in which negative sign is for block motion left to right and positive sign for the
movement right to left; C1 and C2 are to be found out from the initial conditions.

Let it be given that, at t = 0; x = x0 and ẋ = 0, substituting in Equation (3.2.82)
→ C2 = 0.

Movement from left to right

x = C′
1 cosωnt − f /k; −x0 = C′

1 − f /k → C′
1 = −(x0 − f /k)

Solution is: x = −(x0 − f /k) cosωnt − f /k; valid for ẋ > 0. (3.2.83)

Now at the end of ωnt = π , the movement from right to left starts (i.e. ẋ < 0).
Hence displacement at the end of ωnt = π for left to right is equal to the displacement
at t = 0 for right to left (velocity is ẋ0 < 0).

Thus xr to �
0 = x0 − f

k
− f

k
= x0 − 2

f
k

.
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Figure 3.2.42 Response curve for a SDOF system with frictional damping.

Movement from right to left

x = C′′
1 cosωnt + f /k, substituting initial condition,

xr to �
0 = C′′

1 + f
k

⇒ C′′
1 = x0 − 3

f
k

,

Solution is: x =
(

x0 − 3
f
k

)
cos ωnt + f

k
; valid for ẋ < 0. (3.2.84)

And x� to r
0 = −(x0 − 3 f

k

)+ f
k , using ωnt = π . ⇒ x� to r

0 = −x0 + 4 f
k and so on.

Thus, the amplitude diminishes by 4f /k in each cycle, i.e. the sequence of amplitudes
forms an arithmetic progression and the envelope of the curve ia a straight line and the
tangent of the angle that the line makes with the t-axis is 4f /kT. Calculations can be
continued only until the the amplitude becomes less than say, a small value α, and the
motion ceases completely since the elastic force kx0 at beginning of movement, from
right to left or from left to right will not be large enough to resist the friction force.

A graphical representation of Eqns. (3.2.83) and (3.2.84) is shown in Figure 3.2.42.
It can be observed that attenuation of the response in this case is linear unlike an
asymptotic attenuation in viscous damping shown earlier.

3.2.11.2 Forced vibration considering the friction force

System is shown in Figure 3.2.43.
Motions from left to right: mẍ + kx = −f + F0 sinωt
Motions from right to left: mẍ + kx = f + F0 sinωt
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x

r to

to rf

x

m
m

k

Figure 3.2.43 Forced vibration of a sliding block.

If an equivalent viscous damping to friction is used, we have from energy
consideration:

Energy dissipation per cycle = 4fA (friction) [left to right (2A) + right to left (2A)] =
CeqπωA2 (viscous)

Hence, Ceq = 4f
πωA

. (3.2.85)

The difference in using Ceq is that we have an asymptotic dissipation in equivalent
viscous damping whereas coulomb damping is linear. However, for small values of f ,
it gives a reasonable value for the response.

In forced vibration, we have,

mz̈ + Ceqż + kz = F0 sinωt; as the governing equation of motion. (3.2.86)

Steady state solution is given by

z = F0/k√
(1 − r2)2 + (

Ceq
ω
k

)2 sin(ωt − φ) = A sin(ωt − φ) (3.2.87)

From Eqn. (3.2.87), we can obtain A2
[
(1 − r2)2 +

(
4f
π Ak

)2
]

=
(

F0
k

)2
and a value

of A can be obtained as

A =
F0
k

(1 − r2)

√
1 −

(
4f
π F0

)2

(3.2.88)

Equation (3.2.88) gives a real value of A only if (4f /�F0) < 1. It is clear that the
amplitude at resonance is always theoretically infinite.
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3.2.12 Response under impulsive loading

If the duration of loading is very small in comparison to the natural period of the
system, the load is called an impulsive load or an impulse. The impulse F̂ acting on a
mass will result in a sudden change in its velocity equal to F̂/m without any appreciable
change in its displacement. A mass m, which is initially at rest, will gain a velocity,
say v0, and can be written in the following form

F̂ =
�t∫

0

F(t)dt = mv0 (3.2.89)

and with any change in displacement. This can be shown as given in Figure 3.2.44.
A free undamped vibration of a single-degree-of freedom system can be written as

x = (v0/ωn) sinωnt = F̂ g(t) (3.2.90)

where, g(t) = sinωnt/ωnm = impulse response function.
The response is, thus, a sinusoidal vibration at the natural frequency with amplitude

(F̂/mωn). This is shown in Figure 3.2.45.

F(t)

Area of the curve = F = ∫Ft(dt)
0

ˆ

tΔt

Λt

Figure 3.2.44 Definition of an impulse.

x

ˆ
t

π/ωn

Figure 3.2.45 Sinusoidal response due to an impulse.
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For a damped (viscous) single-degree-of freedom system Equation (3.2.90) can be
written as

x = v0

ωn
e−Dωnt sinωndt = F̂g(t) (3.2.91)

in which g(t) = e−Dωnt sinωndt
mωn

; and ωnd = ωn
√
(1 − D2) = damped natural frequency of

the system.

3.2.13 General solution for any arbitrary forcing system

Consider an undamped single-degree-of freedom system subjected to an arbitrary forc-
ing function as shown in Figure 3.2.46. The force diagram can be considered to be
consisting of a large number of thin slices each having area F(ξ)dξ . Contribution of
this force to the response of the system at any time t is dependent upon the elapsed time
(t − ξ ). The response of each of these impulses can be obtained through Eqns. (3.2.90)
and (3.2.91), as the case may be. To obtain the response of an arbitrary force F(t),
individual contribution of all these slices can be added up to obtain the complete
response of the system. Thus, by combining all such contributions, the response to the
arbitrary excitation F(t) is represented by the integral over a total time t for a linear
system can be written as

x(t) =
t∫

0

F(t − ξ) g(ξ) dξ =
t∫

0

F(ξ) g(t − ξ) dξ ; for t < tp (3.2.92)

F(t) 

t

dξ

t

ξ

F(ξ)

Figure 3.2.46 General loading.
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When t is greater than the pulse time, say tp, the upper limit of the general equation,
remains at tp; the integral then can be written as

x(t) =
tp∫

0

F(ξ) g(t − ξ) dξ +
t∫

tp

F(ξ) g(t − ξ) dξ

(3.2.93)

=
tp∫

0

F(ξ) g(t − ξ) dξ as F(ξ) = 0, for ξ > tp.

For an undamped and damped system can be written as

x = F̂
mωn

t∫
0

F(ξ) sin ωn (t − ξ)dξ and (3.2.94)

x = F̂
mωnd

t∫
0

F(ξ) e−Dωnt sin ωnd (t − ξ)dξ (3.2.95)

Equations (3.2.94) and (3.2.95) present a complete solution for transient as well as
steady state problems. This is also known as convolution integral or Duhamel integral
or superposition integral valid for linear problems. If F(t) is given in a simple analytical
form, Equation (3.2.94) can be obtained in closed form whereas for a complicated F(t),
one has to go in for a numerical technique. A general solution of the problem having
initial conditions like, x0 = ẋ0 = 0 can be written as

3.2.13.1 For an undamped system

x = x0 cosωnt + ẋ0

ωn
sinωnt + F̂

mωn

t∫
0

F(ξ) sinωn(t − ξ)dξ (3.2.96)

3.2.13.2 For a damped system

x = e−ωnDt
[
x0 cosωndt + ẋ0

ωnd
sinωndt

]
+ F̂

mωnd

t∫
0

F(ξ) sinωnd(t − ξ)dξ

(3.2.97)
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Example 3.2.7

1 A single-degree-of freedom system subjected to step excitation (Figure
3.2.47):

f(t)

F0

T

Figure 3.2.47 Unit step function.

Solution:

a Consider an undamped system

From Equation (3.2.93), g(t) = 1
mωn

sin ωnt

Solution is x(t) = F0

mωn

t∫
0

sin ωn(t − ξ)dξ = F0

k
(1 − cosωnt)

Peak response to step excitation of magnitude F0 is twice the statical value.

b Consider a damped system

From Equation (3.2.94), g(t) = e−Dωnt

mωn
√
(1 − D2)

sin (
√

1 − D2) ωnt

Solution is x(t) =
t∫

0

F0e−Dωn (t−ξ)

mωnd
sinωnd (t − ξ)dξ ;

substitute ωnd (t − ξ) = z ; → dz = −ωnd dξ

x(t) = F0

mω2
nd

t∫
0

e
− Dωn

ωnd
z sin zdz = F0

k
[1 − cos(ωndt −�)e−Dωnt]

in which tan� = Dωn

ωn

√
1−D2

= D√
1−D2

.

A plot of xk/F0 versusωnt with D as a parameter is shown in Figure 3.2.48 and
it is evident that the peak response is less than 2F0/k when damping is present.
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2

2.5

0 2 4 6 8 10
nt

kx
D = 0.707

D

Figure 3.2.48 Peak response for unit step function.

Alternative solution

Alternatively, one can simply consider the differential equation as ẍ + 2Dωn ẋ +
ω2

n x = F0/m, whose solution is the sum of homogeneous equation plus that of
the particular integral (−F0/mω2

n). Thus the solution is:

x(t) = C2 e−Dωnt sin
[√

1 − D2 ωnt − ψ
]

+ F0

mω2
n

fitted to the initial conditions of x(0) = 0 = ẋ(0) will result in

x = F0

k

[
1 − e−Dωnt

√
1 − D2

cos
(√

1 − D2 ωnt − ψ
)]

; with tan ψ = D√
1 − D2

.

2 Consider an undamped mass-spring system where the motion of the base is
specified by a velocity pulse of the form (Figure 3.2.49)

ẏ(t) = v0 e−t/t0 , the time rate of change is a = v̇.

Solution:

Velocity pulse at t = 0 has a sudden jump from zero to its rate of change (or
acceleration) is infinite.

Acceleration of the base becomes [differentiating ẏ(t)], ÿ(t) = v0δ(t) − v0
t0

e− t
t0 .

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
These functions can be brought under the head of “singularity Functions”
defined hereunder:

Unit step function u(t) = 〈t − τ 〉0,
Differentiation of 〈t − τ 〉0 = 〈t − τ 〉−1∗ = delta function = δ(t − τ),
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v

v0

0 t

a = v

0 t

Figure 3.2.49 Velocity excitation.

Differentiation of 〈t − τ 〉−1∗ = 〈t − τ 〉−2∗ = unit doublet function.

These functions have the magnitude unity only argument (t − τ ) is zero or else
the value is zero and they follow integration and differentiation as given above.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Thus z(t) = − 1
ωn

t∫
0

ÿ(ξ) sinωn (t − ξ)dξ

= v0 t0

1 + (ωn t0)2
[e−t/t0 − ωn t0 sinωnt − cosωnt].

3 An undamped system subjected to a rectangular pulse (Figure 3.2.50):
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An undamped spring-mass system can be written as g(t) = 1
mωn

sin ωnt

F(t)

F0

t00 t

F0

Figure 3.2.50 Rectangular impulse.

Solution is, x(t) = F0

mωn

t∫
0

sinωn(t − ξ) dξ − F0

mωn

t∫
t0

sinωn (t − ξ)dξ

i.e. x(t) = F0

k
(1 − cosωnt)− F0

k
[1 − cosωn (t − t0)] for t > t0.

3.2.14 Response spectra

A shock represents a sudden application of a force or other form of disruption which
results in a transient response of a system. The maximum value of the response is a good
measure of the severity of the shock and is, of course, dependent upon the dynamic
characteristics of the system. In order to categorize all types of shock excitation, a
single-degree-of freedom undamped oscillator is chosen as a standard system.

A response spectrum is a plot of the maximum peak response of the single-degree-of
freedom oscillator and represented as a function of the natural frequency of the
oscillator. Different types of shock excitation will then result in different response
spectra.

Since the response spectrum is determined from a single point on the time response
curve, which is in itself an incomplete bit of information, it does not uniquely define
the shock input. It is possible for two different shock excitations to have very similar
response spectra.

The response of a system to an arbitrary excitation can be expressed as given in
Equation (3.2.97) and the peak response for an undamped single-degree-of freedom
is given by

x(t)max =
∣∣∣∣∣∣

1
mωn

t∫
0

f (ξ) sinωn(t − ξ)dξ

∣∣∣∣∣∣
max

(3.2.98)

In the case where the shock is due to a sudden motion of the support point, f (t) in
the above equation is replaced by −ÿ(t), the acceleration of the support point and the
peak response is given by
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x(t)max =
∣∣∣∣∣∣

1
mωn

t∫
0

−ÿ(ξ) sinωn(t − ξ)dξ

∣∣∣∣∣∣
max

. (3.2.99)

Associated with the shock excitation f (t) or −ÿ(t) is some characteristic time t1,
such as the duration of the shock pulse. With T as the period of natural frequency
of oscillator, the maximum value of x(t) is plotted as a function of t1/T. Following
figures represent response spectra for three different excitations.

Example 3.2.8

Determine the undamped response spectrum for a step function (Figure 3.2.51)
with a rise time t1.

subtract this area 

t
t1

F 

F0

0 

Figure 3.2.51 Ramp excitation.

Solution:

The input can be considered to be the sum of two ramp functions F0(t/t1), the
second of which is negative and delayed by the time t1.

For the first ramp: f (t) = F0(t/t1) = (F0/t1) < t >1∗; g(t) = sinωnt/k and the
response is

x(t) = ωn

k

t∫
0

F0ξ

t1
sinωn(t − ξ)dξ = F0

k

[
t
t1

− sinωnt
ωnt1

]
for t < t1.

For the second ramp, starting at t1; f (t) = −F0

(
t−t1

t1

)
= F0

t1
< t − t1 >

1∗

x(t) = F0

k

[
t
t1

− sinωnt
ωn t1

]
at t = t−0

1 ;

x(t) = −F0

k

[
t − t1

t1
− sin ωn (t − t1)

ωnt1

]
at t = t+0

1
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For t > t1 x(t) = F0

k

[
1 − sinωnt

ωnt1
+ sinωn (t − t1)

ωnt1

]

Differentiating w.r.t. time, t and equating it to zero, the peak time tp is
obtained from

For t < t1

ẋ(t) = F0
k

[
1
t1

− cos ωnt
t1

]
= 0, i.e. cos ωntp = 1, or ωn tp must be more than 2π

as tp = 0 is not possible.
Hence ωntp must be more than π .
Again, for t > t1

ẋ(t) = F0

k

[
−cos ωnt

t1
+ cos ωn(t − t1)

t1

]
= 0 : → tan ωnt = 1 − cos ωnt1

sin ωnt1

→ tan ωntp = tan
ωnt1

2
→ tp = t1

2
= π

Since ωntp must be greater than π

sin ωntp = −
√

1
2
(1 − cosωnt1); cosωntp = − sinωnt1√

2(1 − cosωnt1)
.

Substituting these quantities into the expression for x(t), peak amplitude is
found as(

xk
F0

)
max

= 1 + 1
ωnt1

√
2(1 − cos ωnt1), letting T = 2π/ωn be the period of the

oscillator the above equation is plotted as shown in Figure 3.2.52.[
xk
F0

]
→ a measure of the dynamic effect over the statically applied load.

F0

(xk/F0)max

2

1

0 1 2 3 4

t1

Figure 3.2.52 Response spectra for ramp excitation.
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Figure 3.2.53 Response spectra for variety of loading.

Response spectra for a variety loading is shown in Figure 3.2.53.

Example 3.2.9

Determine the response spectrum for the base velocity input (Figure 3.2.54),
ẏ(t) = v0 e−t/t0 .

)(ty

t

Figure 3.2.54 Base velocity input.
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Solution:

The relative displacement z(t) was found earlier,

z(t) = v0 t0

1 + (ωnt0)2
[e−t/t0 − ωnt0 sinωnt − cosωnt]

To determine the peak value zp, the usual procedure is to differentiate the
equation with respect to t, set it equal to zero, and substitute this time back into
the equation for z(t). This is a complicated procedure. Instead, one can follow
a different approach.

For a very stiff system [k/m = ω2
n, stiff means k is large], which corresponds to

large ωn, the peak response will certainly occur at small t, and one would obtain
for the time varying part of the equation, the peak value as (1−ωnt0 −1) = ωnt0.

For large ωn, the peak value will be nearly equal to

|Zp| ≈ v0t0

1 + (ωnt0)2
(ωnt0) ≈ v0t0

ωnt0
.

So that zp/v0t0 plots against ωnt0 as a rectangular hyperbola.
For small ωn, or a very soft system, the duration of the input would be small

compared to the period of the system. Hence the input would appear as an impul-
sive doublet as shown below strength being v0t0δ

′(t) [v0t0 < t >−2∗ , singularity
function].

The solution for z(t) is then: z(t) = v0t0cosωnt
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

[General, z(t) = v0t0
1+(ωnt0)2

[e−t/t0 − ωnt0 sinωnt − cosωnt], when ωn is small
and t is small compared to the period of the system]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

and its peak value is |z| ≈ v0 t0
With these extreme conditions evaluated, one can now fill in the response

spectrum as shown in Figure 3.2.55.

     1.0 

t0v0

zp

 t 0

Figure 3.2.55 Response spectra for base velocity input.
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3.2.15 Earthquake type of excitation

Response of a structure or a foundation to earthquake type excitation is a very impor-
tant study for a civil engineer. For other than earthquake itself the phenomenon can
also occur due to movement of rapid mass transit systems like underground metro rail,
underground blasts in mining areas, driving of piles near sensitive structures etc.

However to understand the same in proper perspective we feel presenting the same
in detail herein may be a bit pre-matured and would prefer that you first go through
Chapter 5 (Vol. 1) first and then would be in a better position to appreciate its
significance.

Thus this has been dealt in some detail in Chapter 3 (Vol. 2) where we study
earthquake engineering as a topic itself.

3.3 STABILITY OF DYNAMIC SOLUTIONS

3.3.1 Phase planes and stability of solution

Other than the people, who specialize in the theory of vibration in the realms of
applied physics and mathematics, study of phase plane and stability solution is usually

    x

                     k                 c   y0

m

Figure 3.2.56 A single-degree-of freedom system subjected to ground motion y(t).

z

t

Figure 3.2.57 Modulated wave.
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an ignored topic in the realms of engineering technology. As such, it is not surprising
that there are many engineers who are aware of this topic, yet are not very clear as to
its application and usefulness.

In the most simplistic term phase plane study can be termed as a geometric interpre-
tation of the differential equation of motion and could be stated as a qualitative study
of the behaviour of the body under motion.

This has a great application especially when the oscillation of a body is deemed
non-linear.

Though non linear dynamic analysis of civil engineering structures and foundations
is a recent trend yet many of the basic characteristics of non linear dynamic equation
of motion has been long been studied in different branch of physics and science.

The study has revealed that systems undergoing non linear vibration and especially
having large amplitudes develop completely different behaviour and pattern and that
which cannot be predicted based on linear analysis.

Systems have also been found to suddenly become unstable showing no previous
sign of such behaviour. It is in such cases, phase plane and phase portrait study is of
great help to understand pictorially how the body would behave under such non linear
condition.

3.3.2 Basics of differential equation

An nth order differential equation can be reduced to a system of n first-order differen-
tial equations. Thus, it permits the study and solution of single equations by methods
for systems. An nth order differential equation

y(n) = F(t, y, y′, . . . , y(n−1)) (3.3.1)

can be reduced to a system of n first-order differential equations by setting

y1 = y, y2 = y′, . . . , yn = y(n−1). (3.3.2)

and the system of first-order equations can be written as

y′
1 = y2

y′
2 = y3

... (3.3.3)

y′
n−1 = yn

y′
n = F(t, y1, y2, . . . , yn)

The first order system in Equation (3.3.3) can be expressed in a more general way as

y′
1 = f1(t, y1, y2, . . . , yn)

y′
2 = f2(t, y1, y2, . . . , yn)

y′
3 = f3(t, y1, y2, . . . , yn) (3.3.4)
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...

y′
n = fn(t, y1, y2, . . . , yn)

A solution of Equation (3.3.4) in some interval a < t < b is a set of n-differentiable
functions, namely,

y1 = q1(t), y2 = q2(t), . . ., yn = qn(t).

Thus the solution vector may be written as

y = q(t)

An initial value problem for Equation (3.3.4) consists of n given initial conditions

y1(t0) = k1, y2(t0) = k2, . . ., yn(t0) = kn, (3.3.5)

In vector form:

y(t0) = k,

t0 is a specified value of time t in the interval considered and the components k =<k1,
k2, . . . , kn> are given values.

Example 3.3.1

Consider the mass-spring-dashpot system:

y′′ + c
m

y′ + k
m

y = 0

Using y′
1 = y2; y′

2 = − k
my1 − c

my2, and writing yT =<y1 y2>, the matrix
form of the equations is

{y} =
[

0 1
− k

m − c
m

]{
y1
y2

}

the characteristic equation is

det(A − λI)
∣∣∣∣−λ 1
− k

m − c
m − λ

∣∣∣∣ = λ2 + c
m
λ+ k

m
= 0.
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Assuming m = 1, c = 1 and k = 1, solution is λ1 = −(1 + i
√

3)/2, and
λ2 = −(1 − i

√
3)/2 are the eigenvalues, eigenvectors are obtained from:

[(1 + i
√

3)/2]x1 + x2 = 0 ➔ x =<2/(1 + i
√

3)− 1>T

[(1 − i
√

3)/2]x1 + x2 = 0 ➔ x =<1 − (1 − i
√

3)/2>T

The solution is

y = A1

{
2/(1 + i

√
3)

−1

}
e−[(1+i

√
3)/2]t + A2

{
1

−(1 − i
√

3)/2

}
e−[(1−i

√
3)/2]t

Thus y1 = A1[2/(1 + i
√

3)]e−[(1+i
√

3)/2]t + A2e−[(1−i
√

3)/2]t

and y2 = −A1e−[(1+i
√

3)/2]t − A2[−(1 − i
√

3)/2]e−[(1−i
√

3)/2]t = y′
1

3.3.3 Homogeneous Systems with Constant
Coeff icients, Phase Plane, Critical Points

Let us consider a homogeneous linear system of the type

dyi

dt
=

n∑
j=1

aijyj i = 1, 2, . . ., n (3.3.6)

Let us assume that aij are constants and do not depend on t. For a single equation
y′ = ky has the solution y = Cekt, accordingly we may try

yi = xieλt, i = 1, 2, . . ., n (3.3.7)

as a solution to Equation (3.3.6). Substituting this as a solution to Equation (3.3.6)
and writing in matrix (n × n) form, we have

y′ = λXeλt = AXeλt

Dividing by eλt, we are left with the eigenvalue problem

AX = λX (3.3.8)

The non-trivial solution of Equation (3.3.6) are of the form Equation (3.3.7), where
λ is an eigenvalue of A and X is a corresponding eigenvector.

Now, let us assume that A has a basis of n-eigenvectors x1, x2, . . ., xn corresponding
to eigenvalues λ1, λ2, . . ., λn [which may be all different or some of which or all of
which may be equal].
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Basis. General solution, Wronskian
By a basis or a fundamental system of solution of the homogeneous system:

y′ = Ay (a)

on some interval J we mean a linearly independent set of n-equations y1, y2, . . . , yn of
the equation on that interval. The following linear combination of solutions

y = c1y1 + c2y2 + · · · + cnyn, c1, c2, . . . , cn being arbitrary. (b)

is called a general solution of Equation (a) on J. It can be shown that if the aij(t) in
Equation (a) are continuous on J then Equation (3.3.4) has a basis of solution on J,
hence a general solution, which include every solution of Equation (3.3.4) on J.

One can write n-solutions y1, y2, . . . , yn of Equation (3.3.4) on some interval J as
columns of an n × n matrix

Y = [y1 y2 . . . yn] (c)

The determinant of Y is called the Wronskian of y1, y2, . . . , yn and is written as

W(y1, y2, . . . , yn) =

∣∣∣∣∣∣∣∣∣∣∣

y1
1 y2

1 . . . yn
1

y1
2 y2

2 . . . yn
2

. . . . . . . . . . . .

y1
n y2

n . . . yn
n

∣∣∣∣∣∣∣∣∣∣∣
(d)

The columns are these solutions, each in terms of components. These solutions form
a basis on J if W is not zero at any t = t1 in this interval. W either is identically zero
or is nowhere zero in J. If these solutions form a basis (a fundamental system), then
Equation (d) is called the fundamental matrix.

Example 3.3.2

If y and z are solutions of a second order homogeneous linear differential
equation, their Wronskian is

W =
∣∣∣∣y z
y′ z′

∣∣∣∣
If we write this equation as a system, we have to set y = y1, y′ = y′

1 = y2, and
similarly for z. Thus W(y, z) becomes Equation (d) with n = 2.
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Then the corresponding solution of Equation (3.3.7) are

y1 = x1eλ11t, y2 = x2eλ2t, . . . , yn = xneλnt (3.3.9)

Their Wronskian is

W(y1, y2, . . ., yn) = e(λ1+λ2+···+λn)t

∣∣∣∣∣∣∣∣∣∣∣

x1
1 x2

1 . . . xn
1

x1
2 x2

2 . . . xn
2

. . . . . . . . . . . .

x1
n x2

n . . . xn
n

∣∣∣∣∣∣∣∣∣∣∣
(3.3.10)

In Equation (3.3.10), the exponential terms are never zero, and the determinant is
not zero either because its columns are the linearly independent eigenvectors that form
a basis. Hence, we have the theory for a general solution as follows:

If the constant matrix A in Equation (3.3.6) has a linearly independent set of
n eigenvectors {holds if A is symmetric or if it has n distinct eigenvalues] then the
corresponding solutions y1, y2, . . . , yn in Equation (3.3.10) form a basis of solutions
of Equation (3.3.6), and the corresponding general solution is

y = c1x1eλ1t + c2x2eλ2t + · · · + cnxneλnt (3.3.11)

3.3.3.1 Phase plane

With the advent and advances in of computer graphics, phase plane projections have
become an integral part of solution procedures. Let the linear system in Equation
(3.3.6) consists of two equations:

y′ = Ay : in long hand notation: y′
1 = a11 y1 + a12 y2 : y′

2 = a21 y11 + a22 y2

(3.3.12)

We can plot solutions: y(t) = <y1(t) y2(t)>T (3.3.13)

of Equation (3.3.12) as two curves against the t-axis, one for each component of y(t).
We can also plot Equation (3.3.13) as a single curve in the y1 y2-plane. This is a
parametric representation with parameter t, known from calculus. Such a curve is
called a trajectory (an orbit or path) of Equation (3.3.12) The y1 y2-plane is called the
phase plane of Equation (3.3.6). If we fill the phase plane with trajectories of Equation
(3.3.12), we obtain the so-called phase portrait of Equation (3.3.12).
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Example 3.3.3

Plot the phase-plane trajectories for the problem

y′ = Ay : given A =
[
-3 1
1 -3

]

Equations are: y′
1 = −3y1 + y2 : y′

2 = y1 − 3y2 (3.3.14)

Solution:

Using the solution as y = xeλt and y′ = λxeλt and dropping the exponential
terms, we have Ax = λx

The characteristic equation as

det(A − λI) =
∣∣∣∣−3 − λ 1

1 −3 − λ

∣∣∣∣ = λ2 + 6λ+ 8 = 0 : eigenvalues are :

λ1 = −2; λ2 = −4.

Eigenvectors are obtained from: (−3 − λ)x1 + x2 = 0
For λ1 = −2, this is −x1 + x2 = 0; hence we can write x1 =<1 1>T .
For λ2 = −4, this is x1 + x2 = 0; hence we can write x2 = <1 −1>T .
This gives the general solution: y =<y1 y2>

T = c1y1 + c2y2 = c1 <1 1>T

e−2t + c2<1 −1>Te−4t.
Figure 3.3.1 shows a phase plane-portrait of some of the trajectories. Straight

trajectories refer to c1 = 0 and c2 = 0.

o

y2(t) y1(t)

y2

y1

Figure 3.3.1 Trajectorie s of the system [Equation (3.2.14)] [Improper node].
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3.3.3.2 Critical points of the system

In Figure 3.3.1, The point y(0, 0) is a common tangent to all the trajectories, the
reason for this remarkable observation can be obtained by using Equation (3.3.14),
as follows

dy2

dt

/
dy1

dt
= dy2

dy1
= a21y1 + a22y2

a11y1 + a12y2
(3.3.15)

For every point, say P(y1, y2) there is a unique tangent direction dy2/dy1 of the
trajectory passing through P; except for the point P = P0(0, 0) [at P0, we have
dy2/dy1 ≡ 0/0 form] at which (dy2/dy1) becomes undetermined and the point is
called a critical point of Equation (3.3.14).

There are five types of critical points depending upon the geometrical shape of the
trajectories near them. These points are called improper nodes, proper nodes, saddle
points, centres and spiral points.

Improper node

An improper node is a critical point P0 at which all the trajectories, except two
of them, have same limiting direction of the tangent. The two exceptional tra-
jectories also have a limiting direction of the tangent at P0 which, however, is
different.

Equation (3.3.14) has an improper node at ‘0’ as shown in Figure 3.3.1. The com-
mon limiting directions at 0 is that of the eigenvectors x1 =<1 1>T because e−4t tends
to zero faster than t increases. The exceptional limiting tangent direction is that of
x2 =<1 −1>T .

Proper nodes

A proper node is critical point P0 at which every trajectory has a definite limiting
direction and for any given direction ‘d’ at P0 there is a trajectory having ‘d’ as its
limiting direction.

The system:

y′ =
[
1 0
0 1

]
y means : y′

1 = y1 and y′
2 = y2 (3.3.16)

has a proper node at the origin as shown in Figure 3.3.2 as it has a general solution

y = c1<1 0>Tet + c2<0 1>Tet or y1 = c1et : y2 = c2et

➔ c1y2 = c2y1.

Saddle point

A saddle point is a critical point P0 at which there are two incoming trajectories, two
outgoing trajectories and all other trajectories in a neighbourhood of P0 bypass P0.
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o

y2

y1

Figure 3.3.2 Trajectories of [Equation (3.2.16)] [Proper node].

The system:

y′ =
[
1 0
0 −1

]
y means : y′

1 = y1 and y′
2 = −y2 (3.3.17)

has a saddle point at the origin as shown in Figure 3.3.3 as it has a general solution.
This gives a system of hyperbolas shown in Figure 3.3.3.

y = c1<1 0>Tet + c2<0 1>Te−t or y1 = c1et : y2 = c2e−t

➔ y2y1 = constant.

Centre

A centre is a critical point that is enclosed by infinitely many closed trajectories.
The system:

y′ =
[

0 1
−4 0

]
y means : y′

1 = y2 and y′
2 = −4y1 (3.3.18)

has a centre at the origin. The characteristic equation is: λ2 + 4 = 0. It has the eigen
values 2i and −2i and eigenvectors<1 2i>T and<1 −2i>T , respectively. The general
solution is given by

y = c1<1 2i>Te2it + c2<0 −2i>Te−2it or

y1 = c1e2it + c2e−2it; y2 = 2ic1e2it − 2ic2e−2it
(3.3.18a)
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y2

y1
o

Figure 3.3.3 Trajectories of Equation (3.2.17) [Saddle point].

o

Y

y1

Figure 3.3.4 Trajectories of Equation (3.3.18) [Centre].

We can get a similar type of information as in the earlier cases by separating the
solutions to real and imaginary parts.

Again, from Equation (3.3.18) we may write 4y1y′
1 = −y2y′

2 and by integration
2y2

1 + 1/2 y2
2 = constant.

This gives a family of ellipses shown in Figure 3.3.4.

Spiral Points

A spiral point is a critical point P0 about which the trajectories are spirals approaching
P0 as t →∝ (or tracing these spirals in the opposite sense away from P0).
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The system:

y′ =
[−1 1
−1 −1

]
y means : y′

1 = −y1 + y2 and y′
2 = −y1 − y2 (3.3.19)

has a spiral point at the origin. The characteristic equation is λ2 + 2λ + 2 = 0 and
has eigen values −1+ i and −1− i with corresponding eigenvectors are obtained from
(−1 − λ)x1 + x2 = 0. This gives a complex solution

y = c1<1 i>Te(−1+i)t + c2<1 −i>Te(−1−i)t.

This equation can be converted to real solution through transformations.
Again, multiply the first equation of (3.3.19) by y1 and the second by y2 and add

to obtain

y1y′
1 + y2y′

2 = (y2
1 + y2

2)

Introducing polar coordinates (r, θ ), using r2 = y2
1 + y2

2, the equation reduces to
1/2(r2)′ = −r2 : we can obtain r = ce−θ . For each real c this is a spiral as shown in
Figure 3.3.5.

When no basis of eigenvectors available
So long as the matrix A is symmetric or skew-symmetric and also in many cases like
eqns. (3.3.18) and (3.3.19), we have basis of eigenvectors. Let A be an n × n matrix
having double eigenvalues p [i.e. the product representation of det (A−λI) has a factor
(λ − p)2 with only one eigenvector (and its multiples) corresponding to it, instead of
two linearly independent eigenvectors, so that we first get only one solution y1 = xept.
In this case we can obtain a second independent solution by substituting

y2 = xtept + uept (3.3.20)

y2

y1

o

Figure 3.3.5 Trajectories of the system [Equation (3.2.19)] [Spiral point].
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into Equation (3.3.6) [with having t-terms also], we have

y2′ = xept + pxtept + puept = Ay2 = Axtept + Auept

since px = Ax, the terms (pxtept) and (Axept) would cancel and a division by ept would
result in

x + pu = Au and hence [A − pI]u = x. (3.3.21)

Although det (A − pI) = 0, this can always be solved for u.

Degenerated node

The system:

y′ =
[

4 1
−1 2

]
y = Ay

The matrix A is not skew-symmetric, its characteristic equation is

det(A − λI) =
∣∣∣∣4 − λ 1

−1 2 − λ

∣∣∣∣ = λ2 − 6λ+ 9 = 0 = (λ− 3)2.

It has a double root λ = 3. Eigenvectors are obtained from (4 − λ)x1 + x2 = 0
➔ x1 + x2 = 0, say x1 = <1 −1>T and multiples of this. This does not help.

Now, from Equation (3.3.21) we can have

(A − 3I)u =
[

1 1
−1 −1

]
u =

{
1
1

}
➔ u1 + u2 = 1 : −u1 − u2 = −1

and we can take simply u = <0 1>T . This solves the problem

y = c1y1 + c2y2 = c1<1 −1e3t + c2> (<1 1>Tt +<0 1>T)e3t.

This critical point at the origin is called a degenerate node or sometimes an improper
node.

Shown in Figure 3.3.6, c1y1 gives the heavy straight line with c1 > 0 corresponding
to the lower part in the fourth quadrant and c1 < 0 corresponding to the upper part.
y2 gives the right part of the heavy curve from 0 through the second, first and finally
fourth quadrants. −y2 gives the other part of that curve.

Consider the system in Equation (3.3.6) consists of three or more equations and
that A has triple eigenvalue p with only a single linearly independent eigenvector
corresponding to it. Then we get a second solution (3.3.20) with a vector satisfying
(3.3.21) and a third of the form

y3 = 1
2

xt2ept + utept + vept (3.3.22)
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y2

y1

y2

y1

Figure 3.3.6 Degenerated node.

with u satisfying (3.3.21) and v determined from

(A − pI )v = u (3.3.23)

and this can be solved.
Finally we may mention that if A has a triple eigenvalue p and two linearly indepen-

dent eigenvectors x1, x2 corresponding to it, then three linearly independent solutions
are

y1 = x1ept, y2 = x2ept and y3 = xtept + uept (3.3.24)

where x is a linear combination of x1 and x2 such that

(A − pI )u = x (3.3.25)

is solvable for u.

3.3.4 Phase plane method for SDOF system

When the response of a vibrating system is plotted graphically in terms of, say Z and
Ż/ωn, we obtain a curve referred to as the phase-plane trajectory. This curve is very
useful for problems involving transient motion, since it allows the engineer to ’see’ how
the properties of the system affect its response to impact or transient loads. Consider
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Z = A sin ωnt + B cosωnt = C[(A/C) sinωnt + (B/C) cosωnt]
= C[cos φ cosωnt + sin φ sinωnt]

That is

Z = C cos(ωnt − φ); phase angle,φ = tan−1(B/A) and C = √
(A2 + B2).

(3.3.26)

Differentiating Equation (3.3.26) w.r.t. t

➔ Ż/ωn = −C sin(ωn t − φ) (3.3.27)

From Eqns. (3.3.26) and (3.3.27), one can get

Z2 + ( Ż/ωn)
2 = C2 (3.3.28)

⇒ equation of a circle with centre at the origin, having a radius of C.
Plot of Equation (3.3.26) and Equation (3.3.27) on coordinates of Z and Ż/ωn, gives

a point starting at Z0 and Ż0/ωn traveling clockwise on the circular arc describing by
Equation (3.3.28) and moving with an angular velocity ωn. Plots of Z and Ż/ωn are
shown in Figure 3.3.7, start with Z0 and Ż0/ωn traveling clockwise on the circular arc
described by Equation (3.3.28) and moving with an angular velocity ωn. At any time

P(Z,
Z

)

t = 0

Z

Z0

0Z

Z

t

t

Z

Z
n

Figure 3.3.7 Phase plane solutions to SDOF system.
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t, the angular distance traveled around the circle is ωnt. Quantities Z or Ż/ωn can be
obtained as a function of t and plotted by extending lines from the phase-plane shown
in Figure 3.3.7.

3.3.5 Self-excited oscillations

When oscillation of a system depends on the motion itself the oscillation of the system
is termed as a self-excited or self-induced vibration. Included under this category are
the flutter of aeroplane wings and shimmy of automobiles. The van der Pole equation
is a classic mathematical form of such oscillations. The oscillations may be linear
or a nonlinear. Forcing function in this case may be some function of velocity or a
combination of the velocity and the displacement. The system becomes unstable when
the motion tends to increase the energy of the system. Consider the case of a mass-
spring-dashpot system subjected to a forcing function dependent on velocity alone

mẍ + cẋ + kx = F(ẋ) (3.3.29)

Equation (3.3.29) may be written in the form

mẍ + [cẋ − F(ẋ)] + kx = mẍ + α(ẋ)+ kx = 0 (3.3.30)

The damping, α(ẋ) in Equation (3.3.30) may be negative if F(ẋ) becomes greater
than cẋ. This leads to a negative damping. When damping is negative amplitude of
oscillation tends to increase while for a negative-positive cyclic damping oscillations
tend to a limit cycle.

3.3.6 Autonomous system

Self-excited system is an autonomous system wherein time does not appear in the
governing equation of motion quite explicitly and only the differential of time ‘dt’
may appear in the Equation. Thus the governing equation may take a shape like

ẍ + f (x, ẋ) = 0 (3.3.31)

in which f (x, ẋ) may be a linear or nonlinear function of x and ẋ.

3.3.7 State space method

In this method we express Equation (3.3.31) in terms of two first order differential
equations as follows:

ẋ = y and ẏ = −f (x, y) (3.3.32)

If x and y are the Cartesian coordinates, the x-y plane is called the phase plane. The
state of a system is defined by the coordinates x ≡ x = displacement and y ≡ ẋ =
velocity in x-y plane. As the state of a system changes, the point (x, ẋ) traces a path
known as trajectory.
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3.3.8 State speed

The state speed V is defined as

V =
√

ẋ2 + ẏ2 (3.3.33)

An equilibrium state is reached when V is zero. It is obvious that in such a situation
both velocity and acceleration i.e. ẋ and ẏ are zero. Dividing ẏ by ẋ in Equation
(3.3.32), one can obtain

ẏ
ẋ

= dy
dx

= − f (x, y)
y

= φ(x, y) (3.3.34)

Hence for every point x, y in the phase plane for which φ(x, y) is not indeterminate,
there is a unique slope of the trajectory.

3.3.8.1 Various cases

When y = 0 and f (x, y) �= 0, the slope of the trajectory is infinite. All trajectories
corresponding to such points must cross the x-axis at right angles.

When y = 0 and f (x, y) = 0, the slope is indeterminate. These points are called
singular points. A singular point corresponding to a state of equilibrium occurs when
both the velocity and the force are zero y = ẋ = ẍ = ẏ = −f (x, y) = 0. This is
the necessary condition; the sufficient condition for stability of a system requires still
further conditions.

A classical example may be sighted from an undamped S.D.O.F. system, as follows:

ẍ + ω2
nx = 0 (3.3.35)

Here, with y = ẋ, we have ẏ = −ω2
nx and ẋ = y and dividing

dy
dx

= −ω
2
nx
y

. (3.3.36)

Integrating the above, we can write:

y2 + ω2
nx2 = a constant C (3.3.37)

and this represents a series of ellipses, the size of which is determined through C.
The equation given above is also the equation of conservation of energy given as

follows:

1
2

mẋ2 + 1
2

kx2 = const. = A (3.3.38)

At any given instant the state of a system can be expressed by the displacement x
and velocity y; to this state corresponds a generic point of coordinates x and, y in
the phase plane. The generic point will move with time on the phase plane describing
phase trajectory. In the above case of harmonic vibration, we have:
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x = x0 sin(ωnt + φ) : y = x0ωn cos(ωnt + φ) (3.3.39)

This set of equations may be regarded as a phase trajectory prescribed in parametric
form, with t as parameter. To obtain the equation of phase trajectory in explicit form,
it is necessary to eliminate the time t from Equation (3.3.11); we obtain

x2

x2
0

+ y2

x2
0ω

2
n

= 1 (3.3.40)

➔ equation of an ellipse.
To the initial condition x = x0, y0 = ẋ0 corresponds to the initial generic point of

the phase trajectory from which the motion is started. The periodicity of the system
expresses itself in the fact that the generic point will run around one and the same
elliptic orbit.

Singular point is at x = y = 0, the phase plane plot appears as shown in
Figure 3.3.8(a). If y is replaced by (y/ωn), ellipses will reduce to circles.

When the initial conditions are changed, the phase trajectory is found to be a differ-
ent ellipse; the set of all possible states of the system is described by a family of ellipses
embedded into one another as shown in Figure 3.3.8(b). The set of phase trajectories
forms the phase diagram of the system. The parameters of the system determine the
phase diagram and the initial conditions fix a particular trajectory.

In order to construct the phase diagram of a damped system, let us consider the
following equations:

x = Ae−Dωnt sin (ωndt + φ );
ẋ = e−Dωnt [ωnd cos(ωndt + φ )− Dωn sin(ωnd + φ)]

(3.3.41)

as the equation of the phase trajectory in parametric form.

(a) (b)

x

y = x

o
x0, y0

y = x

xo

o

Figure 3.3.8 Phase-plane plot.
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x0

x

x0

x0

o

Figure 3.3.9 Phase plane plot for damped free vibration.

A typical phase trajectory is shown in Figure 3.3.9. It represents a spiral wound
around the origin. The phase diagram is found by a system of such spirals surrounding
the singular point 0; the later is called the stable focus in this case.

3.3.9 Stability of the solution

Let us consider the Cauchy’s problem, similar to Equation (3.3.1), as follows

dy
dt

= f (t, y), subjected to initial condition y(t0) = y0. (3.3.42)

If the function f (t, y) is continuous jointly with respect to the arguments and pos-
sesses a bounded derivative ∂f /∂y in a certain domain� of variation of t and y, which
contains a point (t0, y0), then the solution of Cauchy’s problem Equation (3.3.42)
exists and is unique. If we vary the values of t0 and y0, then the solution also varies.
Then a question arises which is important in applications: how will the solution vary?
This is a matter of principle. If some physical problem leads to Cauchy’s problem,
then the initial values are found from an experiment and we cannot guarantee the
accuracy of measurement. And if, negligibly small changes in the initial data lead to
a drastic change in the solution, then the mathematical model will be hardly suitable
for describing a real process.

If f(t, y) of the differential equation Equation (3.3.42) is continuous jointly with
respect to variables and possesses a bounded partial derivative ∂f/∂y in a certain domain
� of variation of t and y, then the solution y(t) = y(t, t0, y0), satisfying the initial
condition y(t)=y0, where (t0, y0) ∈ �, continuously depends on the initial data.
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If we assume that the solution y(t), defined on the interval α ≤ t ≤ β, ∈ (α, β),
passes through the point (y0, t0). Then, for any ε > 0 there is δ > 0 such that
for |t̃0 − t0|<δ, |x̃0 − x0| <δ, the solution x̃(t) of Equation (3.3.42), which passes
through the point (t̃0, x̃0), exists on the interval [α, β] and differs from x(t) by less
than ε : |x(t)− x̃(t)| < ε ∀ t ∈ [α,β ].

3.3.9.1 Existence and uniqueness theorem

A similar theorem is valid for the system of differential equations for Equation(3.3.4)
can be stated as follows:

Let f1, f2, f3, . . ., fn in Equation (3.3.4) be continuous having continuous par-
tial derivatives ∂f1/∂y1, ∂f12∂y2, ∂f3/∂y3, . . ., ∂fn/∂yn in some domain � of t,
y1, y2, y3, . . ., yn – space containing the point (t0, k1, k2, k3, . . ., kn) then Equation
(3.3.4) has a solution on some interval t0 − α < t < t0 + α satisfying Equation (3.3.5)
and this solution is unique. When the conditions just laid down are satisfied, the solu-
tion of Cauchy’s problem exists, is unique, and continuously depends on the initial
data. In that case we say that Cauchy’s problem is correctly posed. The fact that the
interval [α, β] of variation of t is finite is essential. In many problems, we are interested
in the relationships between the solution and the initial data in the infinite interval,
i.e. t0 ≤ t ≤ ∞. The passage from a finite interval, in which we consider a continuous
dependence of the solution on the initial data, to an infinite interval changes essentially
the nature of the problem and the investigation methods. This problem is from the
theory of stability created by Lyapunov.

3.3.9.2 Stability in the sense of Lyapunov

Consider Equation (3.3.42):
dy
dt

= f (t, y) (3.3.42)

Where the function f (t, y) is defined and continuous for t ∈ (a, +∞) and y from
a certain domain � and possesses a bounded partial derivative ∂f /∂y. Let us assume
that the function y = ϕ(t) is a solution of Equation (3.3.42), which satisfies the
initial condition y|t=t0 = ϕ(t0), t0 > a. We assume, furthermore, that the function
y = y(t) is a solution of the same equation, which satisfies another initial condition
y|t=t0 = y(t0). It is assumed that the solution ϕ(t) and y(t) are defined for all t ≥ t0,
i.e. can be extended indefinitely to the right.

Definition I. The solution y = ϕ(t) of Equation (3.3.42) is said be stable in the sense
of Lypunov as t → +∞ (to the right) if, for any ε > 0, there is δ = δ(ε) > 0 such that
for every solution y = y(t) of that equation the inequality

|y(t0)− ϕ(t0)| < δ (3.3.43)

yields an inequality

|y(t0)− ϕ(t0)| < ε (3.3.44)

for all t ≥ t0, we can always assume that δ ≤ ε.
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This means that the solution that are close to the solution y = ϕ(t) as concerns the
initial values remain close for all t ≥ t0 as well. Geometrically the solution y = ϕ(t)
of Equation (3.3.42) is stable if, however narrow the ε-strip containing the curve
y = ϕ(t), all the integral curves y = y(t) of the equation, which are sufficiently close
to the strip at the initial moment t = t0, lie entirely in the indicated ε-strip for all
t ≥ t0. This is shown in Figure 3.3.10.

If for an arbitrarily small δ > 0 inequality [Equation (3.3.44)] does not hold for at
least one solution y = y(t) of Equation (3.3.42), then the solution y = ϕ(t) of that
equation is said to be unstable. A solution which cannot be extended to the right as
t → +∞ must be considered to be unstable.

Definition II. The solution y = ϕ(t) of Equation (3.3.42) is said to be asymptotically
stable if: a) the solution y = ϕ (t) is stable: b) there is δ1 > 0 such that for any solution
y = y(t) of Equation (3.3.42), which satisfies the condition |t(t0)−ϕ(t)| < δ1, we have

lim
t→+∞ |y(t)− ϕ(t)| = 0.

This means that all the solutions y = y(t), which are close to the asymptotically
stable solution y = ϕ(t) as concerns the initial conditions, not only remain close to it
for t ≥ ∞.

Assume that a ball rests at the bottom of a hollow hemispheric body (stable equili-
brium position). If the all is disturbed from the equilibrium position by a small

0

t

y

y =

Figure 3.3.10 Stability in the sense of Lypunov.

Figure 3.3.11 Stability.
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perturbation then it will oscillate about it. If the body is frictionless, then the equilib-
rium position will be stable, and if there is some friction, the oscillations of the ball
will decrease with time, that is the equilibrium position will be asymptotically stable
[Figure 3.3.11].

Example 3.3.4

Investigate the solution of y ≡ 0 of the equation
dy
dt

= 0, for stability. (3.3.45)

Solution:

The solution satisfies the initial condition y|t=t0 = 0. Evidently the solution of
Equation (3.3.45), which satisfies the initial condition y|t=t0 = y0, has the form
y ≡ y0. One can observe in Figure 3.3.12 that whatever the strip about the
integral curve y = 0, there is a δ > 0, say δ = ε, such that any integral curve
y = y0, for which |y0 − 0| < δ, lies entirely in the indicated ε-strip for all t ≥ t0.
Consequently, as shown in Figure 3.3.12, the solution y ≡ y0 does not tend to
the straight line y = 0 as t →∝.

t0

y

t

y = y0

Figure 3.3.12

Example 3.3.5

Investigate the solution y ≡ 0 of the equation

dy
dt

= −λ2y, (λ = constant) for stability. (3.3.46)

Solution:

Solution of Equation (3.3.46) which satisfies the initial condition yt=t0 = y0 has
the form

y = y0 e−λ2(t−t0) (3.3.47)
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Take any ε >0 and consider the difference between the solutions y(t) and
ϕ(t), i.e.

y(t)− ϕ(t) = y0e−λ2(t−t0) − 0 = (y0 − 0)e−λ2(t−t0) (3.3.48)

Since e−λ2(t−t0) ≤ 1 for all t ≥ t0, it follows from Equation (3.3.48) that there
is δ > 0, say, δ = ε, such that for |y0 − 0| < δ = ε, we have

|y(t)− ϕ(t)| = |y0 − 0|e−λ2(t−t0) < ε ∀t ≥ t0 (3.3.49)

According to Definition I this means that the solution ϕ(t) ≡ 0 of Equation
(3.3.46) is stable.

In addition we have
lim

t→+∞ |y(t)− ϕ(t)| = lim
t→+∞ |y0|e−λ2(t−t0) = 0 and, therefore the solution ϕ(t) ≡

0 is asymptotically stable. This is shown in Figure 3.3.13.

t
y –

y

t

Figure 3.3.13

Example 3.3.6

Show that the solution ϕ(t) ≡ 0 of the equation
dy
dt

= λ2 y is unstable.

Solution:

For an arbitrarily small y0 the solution y(t) = y0eλ
2(t−t0)of this equation does

not satisfy the condition |y(t)− 0| = |y0|eλ2(t−t0) < ε for sufficiently large t > t0.
For any y0 �= 0, we have, |y(t)|t→+∞ → +∞. This is shown in Figure 3.3.14.

Let us consider now a system of equations

dyi

dt
= fi(t, y1, y2, . . . , yn), i = 1, 2, 3, . . . , n (3.3.50)
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where the function fi are defined for a < t < +∝ and y1, y2, . . . , yn belonging to
a certain domain� of variation of y1, y2, . . . , yn and satisfies the conditions of the
unique existence theorem of the solution of Cauchy’s problem. We may assume
that all solutions of system in Equation (3.3.50), can be extended indefinitely to
the right for t ≥ t0> a.

y

t
t0

Figure 3.3.14

Definition III. The solution ϕi(t), i = 1, 2, 3, . . . , n of system Equation (3.3.50) is
said to be stable in the sense of Lyapunov as t → + ∝ if for any ε > 0 there is a
δ = δ(ε) > 0 such that for every solution yi(t), i = 1, 2, 3, . . ., n of that system, whose
initial values satisfy the inequalities

|yi(t0)− ϕi(t0)| < δ, i = 1, 2, 3, . . ., n

the inequalities |yi(t)− ϕi(t)| < ε, i = 1, 2, 3, . . . , n (3.3.51)

are satisfied for all t ≥ t0, i.e. the solutions close as concerns the initial values remain
close for all t ≥ t0.

If, for an arbitrarily small δ > 0, inequalities Equation (3.3.51) do not hold even
for one solution yi(t), i = 1, 2, 3, . . ., n, then the solution ϕi(t) is unstable.

Definition IV. The solution ϕi(t), i = 1, 2, 3, . . . , n of system Equation (3.3.50) is
asymptotically stable if

1 The solution is stable;
2 There is δ1 > 0 such that any solution yi(t), i = 1, 2, 3, . . ., n, of the system for

which

|yi(t0)− ϕi(t0)| < δ1 i = 1, 2, 3, . . ., n
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satisfies the condition

lim
t→∝ |yi(t)− ϕi(t)| < 0, i = 1, 2, 3, . . ., n (3.3.52)

Example 3.3.7

From the definition of the Lyapunov stability, show that the solution of the
system

dx
dt

= y and
dy
dt

= −x (3.3.53)

which satisfies the initial condition x(0) = 0, and y(0) = 0 is stable.

Solution:

The solution of Equation (3.3.53), which satisfies the initial conditions, is x(t) ≡
0, y(t) ≡ 0. The solution of this system, which satisfies the conditions x(0) = x0,
y(0) = y0, has the form

x(t) = x0 cos t + y0 sin t; y(t) = −x0 sin t + y0 cos t

Let us take an arbitrary ε > 0 and show that there is a δ(ε) > 0 such that
for |x0 − 0| < 0 and |y0 − 0| < δ the inequalities |x(t) − 0| = |x0 cos t +
y0 sin t|<ε, |y(t)−0| = |−x0 sin t +y0 cos t| < ε hold for all t ≥ 0. This signifies
that the zero solution x(t) ≡ 0, y(t) ≡ 0 of Equation (3.3.53) is stable in the
sense of Lyapunov, we have, again

|x0 cos t + y0 sin t| ≤ |x0 cos t| + |y0 sin t| ≤ |x0| + |y0|
|−x0 sin t + y0 cos t| ≤ |−x0 sin t| + |y0 cos t| ≤ | − x0| + |y0|

If we take δ(ε) = ε/2, then for |x0| < δ and |y0| < δ, the inequalities |x0 cos t+
y0 sin t| < ε, |−x0 sin t + y0 cos t| < ε hold for all t ≥ 0, i.e. the zero solution of
the system is stable in the sense of Lyapunov but the stability is not asymptotic.
The stability of a nontrivial solution of a differential equation does not imply that
the solution is bounded. Let us consider an equation of the type dy/dt = 1. The
solution of this equation, which satisfies the condition y(0) = 0, is a function
ϕ(t) = t. The solution which satisfies the initial condition y(0) = y0, has the
form y(t) = y0 + t. It is geometrically shown in Figure 3.3.15 and for any ε > 0,
there is a δ > 0, say ε, such that any solution y(t) of the equation, for which
the inequality |y0 − 0| < δ holds, satisfies the condition |y(t)− 0| < ε for every
t ≥ 0. This latter signifies that the solution ϕ(t) = t is a stable in the sense of
Lyapunov; this solution is bounded, however, as t → ∝.
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x =

y = t +

y0

y

t

Figure 3.3.15

The boundedness of solutions of a differential equation does not imply that
the solutions are stable. Let us consider an equation

dy
dt

= sin2 y (3.3.54)

It has solutions y = kπ , k = 0, ±1, ±2, . . .
Integrating Equation (3.3.54), we find that cot y = All these solutions are

bounded on (−∝, +∝).
However, the solution ϕ(t) ≡ 0 is unstable for t → +∝ since for any y0 ∈

(0,π), shown in Figure 3.3.16, we have

lim
t→+∝ y(t) = π .

Thus the concepts of boundedness and stability of solutions are mutually
independent.

The solution ϕi(t) ≡ 0, i = 1, 2, 3, . . . , n of system Equation (3.3.50), investi-
gated for stability can always be reduced to a trivial solution yi ≡ 0 of another
system by substituting yi = xi −ϕi(t), i = 1, 2, 3, . . ., n. Let we have a differential
equation of the type

dx
dt

= f (t, x) (3.3.55)

and assume that we have to investigate a certain solution ϕ(t) of that equation
for stability.

We set y(t) = x(t)− ϕ(t) [this is known as perturbation]. Then x(t) = y(t)+
ϕ(t) and its substitution into Equation (3.3.55) leads to

dy
dt

+ dϕ
dt

= f (t, y(t)+ ϕ(t)) (3.3.56)
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y0

t

y

Figure 3.3.16

But ϕ(t) is a solution of Equation (3.3.55), and hence, dϕ/dt ≡ f (t,ϕ(t)) and
we have from Equation(3.3.56)

dy
dt

= f (t, y(t)+ ϕ(t))− f (t,ϕ(t)) = F(t, y) (3.3.57)

Equation (3.3.57) has a solution y ≡ 0 since for y ≡ 0 its l.h.s. and r.h.s. are
identically zero with respect to t, i.e.

F(t, 0) = f (t,ϕ(t))− f (t,ϕ(t)) ≡ 0.

Thus the equation as to the stability of the solution ϕ(t) of Equation (3.3.55)
leads to the question concerning the stability of the trivial solution y ≡ 0 of
Equation (3.3.57) to which Equation (3.3.55) can be reduced. Therefore, in
what follows we shall assume, as a rule, that a trivial solution is investigated for
stability.

3.3.9.3 The stability of autonomous systems: Simplest
kind of rest points

A normal system of differential equations is called autonomous if its right hand side
fi does not depend explicitly on t, i.e. if it has the form

dyi

dt
= fi(y1, y2, . . . , yn), i = 1, 2, 3, . . . , n (3.3.58)

This means that the law of variation of the unknown functions, which is described
by the autonomous system, does not vary with time as is the case for many physical
systems.
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Let us assume that (a1, a2, a3, . . . , an) is a set of numbers such that

fi(a1, a2, a3, . . . , an) = 0, i = 1, 2, 3, . . . , n.

Now, the system of functions yi(t) ≡ ai, i = 1, 2, 3, . . ., n, is a solution of Equation
(3.3.58). The point (a1, a2, a3, . . . , an) of the phase space (y1, y2, y3, . . . , yn) is called
a rest point (position of equilibrium) of the given system.

Let us consider Equation (3.3.58) for which fi(0, 0, 0, . . . , 0) = 0, i = 1, 2, 3, . . . , n,
so that the point xi = 0, i = 1, 2, 3, . . . , n, is a rest point of that system.

We denote by S(R) a sphere:
∑n

i=1 x2
i < R2: we assume that the condition of

Theorem:
Given a normal system of differential equations (Cauchy’s problem)

dxi

dt
= fi(t, x1, x2, . . . , xn), i = 1, 2, . . . , n (3.3.59)

Assume that the functions, fi(t, x1, x2, . . . , xn), i = 1, 2, . . . , n, are defined in a cer-
tain (n + 1)-dimensional domain � of variation of the variables t, x1, x2, . . . , xn. If
there is a neighbourhood �′ of the point M0 (t0, x0

1, x0
2, . . . , x0

n) at which the function
fi are continuous jointly with respect to the arguments and possess bounded partial
derivatives with respect to the variables x1, x2, x3, . . . , xn, then there is an interval
t0 − h0 < t0 + h0 of variation of t on which there is a unique solution of the normal
system satisfying the initial conditions are fulfilled for the system being considered
in S(R).

Definition V. We say that the rest point xi = 0, i = 1, 2, . . ., n, of Equation (3.3.58)
is stable if for any ε > 0(0 < ε < R) there is δ = δ(ε) > 0 such that any trajectory of
the system, which begins at the initial moment t = t0 at the point M0 ∈ S(δ), remains
all the time in the sphere S(ε).

asymptotically stable 

unstable

stable

O

M0

S(R)

o

Figure 3.3.17
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The rest point is asymptotically stable if

1 it is stable;
2 there is a δ1 > 0 such that every trajectory of the system, which begins at the

point M0 of the domain S(δ1), approaches the origin when the time t increases
indefinitely, as shown in Figure 3.3.17.

Example 3.3.8

Consider a system:
dx
dt

= y :
dy
dt

= −x

In this case the trajectories are concentric circles: x2 + y2 = h2 with centre at
the origin, which is the only rest point of the system. If we take δ = ε, then any
trajectory beginning in the circle S(δ) remains in the interior of S(δ) all the time,
and, consequently, in the interior of S(ε) as well, so that we have stability here.
However, the trajectories do not approach the origin as t →∝ and the rest point
is not asymptotically stable.

Example 3.3.9

Consider a system :
dx
dt

= −x :
dy
dt

= −y

Its solution are x = C1e−t; y = C2e−t . Hence we have y/x = C2/C1 = k =
constant, and therefore, the trajectories are rays which converge at the origin
(Figure 3.3.18). We can choose δ = ε. Any point of trajectory, which is in the
interior of S(δ) at the initial moment, remains in the circle S(ε) all the time,
and, in addition, approaches indefinitely the origin as t →∝. Thus we have an
asymptotic stability here.

y

x

Figure 3.3.18



418 Dynamics of Structure and Foundation: 1. Fundamentals

Example 3.3.10

Consider another system:
dx
dt

= x :
dy
dt

= y

Its solutions are x = C1et; y = C2et. Here we also have y/x = C2/C1 = k =
constant and the trajectories are rays beginning at the origin, but, as distinct
from the last example, the direction of motion along the rays is away from the
centre. The rest point is unstable.

Let us investigate the positions of the trajectories in the neighbourhood of the
rest point x = 0, y = 0 of a system of two homogeneous linear equations with
constant coefficients, i.e.

dx
dt

= a11x + a12y :
dy
dt

= a21x + a22y (3.3.60)

in which
∣∣∣∣a11 a12
a21 a22

∣∣∣∣ �= 0.

We seek a solution in the form x = Aept, y = Bept. To determine p we get a
characteristic equation

∣∣∣∣a11 − p a12
a21 a22 − p

∣∣∣∣ = 0 (3.3.61)

The quantities A and B can be found from the system
(a11 −p)A+a12B = 0; a21A+(a22 −p) B = 0, with an accuracy to a constant

factor.
The following cases are possible:

1 The roots p1 and p2 of Equation (3.3.61) are real and distinct.
The general solution of Equation (3.3.60) is

x(t) = C1α1ep1t + C2α2ep2t : y(t) = C1β1ep1t + C2β2ep2t (3.3.62)

a Assume that p1 < 0 and p2< 0; the rest point (0, 0) is asymptotically
stable in this case since due to the presence of the factors ep1t and ep2t

all the points of any trajectory, which are in any δ-neighbourhood of
the origin at the initial moment t = t0, for a sufficiently large t pass into
points lying in an arbitrarily small ε-neighbourhood of the region, and
as t →∝, approach the origin.

Such a rest point is called a stable nodal point.
For C2 = 0, we get from Equation (3.3.62) x = C1α1ep1t : y =

C1β1ep1t

when y = (β1/α1)x and the trajectories are two rays entering the origin
with the slope k1 = (β1/α1).
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Similarly, for C1 = 0 we obtain another two rays entering the origin
with the slope k2 = β2/α2.

Assume now that C1 �= 0 and C2 �= 0, and let, for definiteness, |p1| >
|p2|. Then by using Equation (3.3.62) dy

dx = C1β1p1ep1 t+C2β2p2ep2 t

C1α1p1ep1 t+C2α2p2ep2 t → β2
α2

for t → +∞, i.e. all the trajectories, except for the rays y = (β1/α1)x,
have the direction of the ray y = (β2/α2)x in the neighbourhood of the
point O(0, 0).

This is shown in Figure 3.3.19.

0

y

x

Figure 3.3.19

b If p1 < 0 and p2 > 0, then the position of the trajectories is the same
as in the earlier case but the points move along the trajectories in the
opposite direction. A rest point of this kind is shown in Figure 3.3.20
and is called an unstable nodal point.

o

y

x

Figure 3.3.20
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For example, consider a system :
dx
dt

= x :
dy
dt

= 2y

For this system the origin (0, 0) is a rest point. The characteristic
equation is

∣∣∣∣1 − p 0
0 2 − p

∣∣∣∣ = 0

and it has roots p1 = 1 and p2 = 2, so that we have an unstable nodal
point. We pass from the given system to an equation dy/dx = 2y/x or
xdx−2ydy = 0. It has solutions y ≡ 0, x ≡ 0, and y = −Cx2, so that the
trajectories of the system are rays which coincide with the coordinate
semi-axis, and the family of parabolas which touch the x-axis at the
origin (Figure 3.3.21).

y

xo

Figure 3.3.21

c Assume that p1 > 0 and p2 > 0, then the rest point is unstable e.g. For
C2 = 0, we get the motion: x = C1α1ep1t : y = C1β1ep1t

In which with an increase in t the point moves along the ray y =
(β1/α1)x in the direction from the origin (p1 > 0), moving away from
it indefinitely.

For C1 = 0, x = C2α2ep2t : y = C2β21ep2t, it can be seen that with an
increase in t the point moves along the ray y = (β2/α2)x in the direction
towards the origin (p2 < 0).

If C1 �= 0 and C2 �= 0, then both for t → +∝ and for t → −∝ the
trajectory leaves the neighbourhood of the rest point. A stationary point
of this kind is called a saddle point (Figure 3.3.20).

Let us investigate the character of the rest point O(0, 0) of the system:

dx
dt

= −x :
dy
dt

= y (3.3.63)
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The characteristic equation of the system is p2 − 1 = 0 and has roots:
p1 = 1 and p2 = −1. Here we have one equation

dy
dx

= −y
x

or xdx + ydy = 0 (3.3.64)

whose integration yields xy = C = a constant.
Equation (3.3.64) also has a solution y ≡ 0 and x ≡ 0. Thus the

integrated curves of Equation (3.3.63) are equilateral hyperbolas and
rays coinciding with the coordinate semi-axes.

2 The roots p1 and p2 of a characteristic equation are complex: p1,2 = r ± is
and s �= 0. The general solution of Equation (3.2.60) can be written as

x(t) = ert[C1 cos st + C2 sin st] : y(t) = ert[C∗
1 cos st + C∗

2 sin st]
(3.3.65)

where C1 and C2 are arbitrary constants, and C∗
1 and C∗

2 are some linear
combinations of these constants.

a Assume that p1,2 = r± i s, r < 0, s �= 0. In this case the factor ert, p < 0,
tends to zero as t → +∝, and the second factors in Equation (3.3.65)
are bounded periodic functions. The trajectories are spirals, as shown
in Figure 3.3.21, approaching asymptotically to the origin as t → +∝.
The rest point x = 0, y = 0 is asymptotically stable. It is known as a
stable focal point.

If p1,2 = r ± i s, r > 0, s �= 0, then this case passes into the preceding
one when t is replaced by −t. The trajectories do not differ from those
in the preceding case, but with a increase in t the movement along them
is in the opposite direction. The rest point is unstable. It is known as an
unstable focal point.

y

x

Figure 3.3.22
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b If p1,2 = ±i s, s �= 0, then the solutions of Equation (3.3.60) are periodic
functions. The trajectories are closed curves possessing in their interior
a rest point which, in this case, is called a vortex point and is shown in
Figure 3.3.22. The vortex point ias a stable rest point: however, there
is no asymptotic stability since the solution

x(t) = C1 cos st + C2 sin st : y(t) = C∗
1 cos st + C∗

2 sin st (3.3.66)

does not tend to zero as t →∝.

Example 3.3.11

As an example consider a system of equations

dx
dt

= ax − y :
dy
dt

= x + ay, a is a constant. (3.3.67)

The characteristic equation of the system is: (a − p)2 + 1 = 0 has complex
roots p1,2 = a ± i.

We pass from the system to one equation

dy
dx

= x + ay
ax − y

(3.3.68)

and introduce polar coordinates x = ρ cos θ and y = ρ sin θ and hence ρ2 =
x2 + y2, tan θ = y/x and

ρ
dρ
dx

= x + y
dy
dx

: ρ2 dθ
dx

= x
dy
dx

− y (3.3.69)

and this is reduced to

dρ
dθ

= ρ
x + yy′

xy′ − y
(3.3.70)

From Equation (3.3.68), we obtain

dρ
dθ

= aρ, and the solution is ρ = Ceaθ

The solution of this equation is logarithmic spiral. The curves winding on the
origin reach the limit as θ → ±∝, depending upon a < 0 or a > 0. We have
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here a rest point of the kind of a focal point. In a particular case, when a = 0,
Equation (3.3.68) assumes the form:

dy
dx

= −x
y

.

The integral curves of this equation are circles with centre at the origin, which,
for a = 0, ia a rest point of the system, Equation (3.3.67), of the kind of a vortex
point.

The roots p1 and p2 of a characteristic equation are Multiple: i.e. p1 = p2.
This case is rather an exception rather than a rule. An arbitrarily small varia-

tion of the coefficients of the system disturbs it. If we use, say, the elimination
method, we find that the general solution of Equation (3.3.60) has the form

x(t) = (C1 + C2t) ep1t : y(t) = (C∗
1 + C∗

2t) ep1t

where C∗
1 and C∗

2 are certain linear combinations of C1 and C2.
If p1 = p2 < 0, then, because of the presence of the factor, ep1t, p1 < 0, the

solution x(t) and y(t) tend to zero as t →∝. The rest point x = 0, y = 0 is
asymptotically stable. It is known as a stable degenerate nodal point and shown
in Figure 3.3.23. It differs from the nodal point in case 1a since in that case one
trajectory had a tangent different from all the others. A proper nodal point is
also possible (Figure 3.3.17).

x

y

Figure 3.3.23

Example 3.3.12

Consider small oscillation of a pendulum, taking damping into account:

d2x
dt2 = −x − c

dx
dt

(3.3.71)
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We can replace Equation (3.3.71) by an equivalent system

dx
dt

= x1
dx1

dt
= −x − cx1 (3.3.72)

The characteristic equation of Equation (3.3.72) is

∣∣∣∣−p 1
−1 −c − p

∣∣∣∣ = 0 i.e. p2 + cp + 1 = 0 (3.3.73)

and has roots p1,2 = − c
2 ±

√
c2

4 − 1. If 0 < c < 2, then the roots are complex with
a negative real part so that the lower position of equilibrium of the pendulum
x = x1 = 0 is a stable focal point. The solution of Equation (3.3.71) is a
function

x(t) = Ae−ct/2 sin(ωt + α),

where ω =
√

1 − c2
/

4 is the oscillation frequency, and the quantities A and α
can be found from the initial conditions.

For 0 < c < 2 the time-domain solution and phase plane solution are shown in
Figs. 3.3.24 and 25. As c → 0, i.e. for undamped condition, the focal point turns
into a vortex point: the pendulum will make undamped periodic oscillation.

A = e-kt/2

y = y(t)

y

t

Figure 3.3.24

Now we will extend our attempts to the study of the stability of solutions of
a system of n-homogeneous linear differential equations of the first order with
constant coefficients, namely
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y

y1

Figure 3.3.25

dxi

dt
=

n∑
j=1

aijxj, i = 1, 2, 3, . . . , n, aij = constant. (3.3.74)

For system above we consider the characteristic equation as

∣∣∣∣∣∣∣∣
a11 − p a12 . . . a1n

a21 a22 − p . . . a2n
. . . . . . . . . . . .

an1 an2 . . . ann − p

∣∣∣∣∣∣∣∣
= 0 (3.3.75)

We have following propositions to make:

1 If all the roots of a characteristic equation have a negative real part, then all the
solutions of Equation (3.3.75) are asymptotically stable. In this case all the terms
of the general solution contain factors eReal(p) · kt which tends to zero as t →∝;

2 If at least one root pk of Equation (3.3.75) has a positive real part, the all the
solutions of the system are unstable;

3 If Equation (3.3.75) has simple roots with a zero real part (purely imaginary or
zero roots) and the other roots, provided they exist, have a negative real part, then
all the solutions are stable, but there is no asymptotic stability.

These results also refer to one linear differential equation with constant coefficients.
A linear system all the solutions are simultaneously either stable or unstable.

Theorem 1. The solution of a system of differential equations

dxi

dt
=

n∑
j=1

aij(t)xj + fi(t), i = 1, 2, 3, . . . , n (3.3.76)

are all simultaneously either stable or unstable.
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Proof. Transform any particular solution ϕi(t), i = 1, 2, 3, . . . , n of system (Equation
3.3.60) into a trivial solution by means of a substitution yi = xi(t) − ϕi(t). Then
Equation(3.3.76) turns out into a homogeneous linear system with respect to yi(t):

dyi

dt
=

n∑
j=1

aij(t)yj, i = 1, 2, 3, . . . , n (3.3.77)

Now, all particular solutions of Equation (3.3.76) behave similarly i.e. as a trivial
solution of homogeneous system (Equation 3.3.61).

In fact, let the trivial solution yi(t) ≡ 0, i = 1, 2, 3, . . . , n, of Equation (3.3.77)
be stable. This means that for any ε > 0 there is δ = δ (ε) > 0 such that for every
other solution yi(t), i = 1, 2, 3, . . . , n of the system it follows from the condition
|yi (t0)| < δ, i = 1, 2, 3, . . . , n, that

|yi(t)| < ε, i = 1, 2, 3, . . . , n, ∀t ≥ t0

Noting that yi(t) = xi(t) − ϕi(t), we find that the condition |xi(t0) − ϕi(t0)| < δ,
i = 1, 2, 3, . . . , n, implies that |xi(t) − ϕi(t)| < ε, i = 1, 2, 3, . . . , n, ∀t ≥ t0 for every
solution xi(t), i = 1, 2, 3, . . . , n, of the original system [Equation (3.3.76)]. According
to the definition, this signifies the stability of the solution ϕi(t), i = 1, 2, 3, . . . , n of
that system.

This proposition does not hold for nonlinear systems, some of whose solutions may
be stable while the others may be unstable.

Let us consider a nonlinear equation of the type dx
dt = 1 − x2.

It has obvious solutions x(t) = −1 and x(t) = 1. The solution x(t) = −1 is unstable,
and the solution x(t) = 1 is asymptotically stable. As t → +∝ all the solutions

x(t) = (1 + x0)e2(t−t0) − (1 − x0)

(1 + x0)e2(t−t0) + (1 − x0)
, x0 �= −1

tend to +∝. According to the definition, this means that the solution x(t) = 1 is
asymptotically stable.

For example in a case for n = 2, we can investigate the position of the trajectories in
the neighbourhood of the rest point O(0, 0) of system in Equation (3.3.77). For n = 3
the so called nodal–focal points are shown in Figure 3.3.26 and saddle points shown
in Figure 3.3.27 are the possibilities.

Theorem 2. Lyapunov’s theorem of asymptotic stability
If, for the system of differential equations

dxi

dt
= fi(x1, x2, x3, . . . , xn), i = 1, 2, 3, . . . , n (3.3.78)

there is a differentiable definite function V(x1, x2, x3, . . . , xn), whose total derivative
with respect to time, formed out of the system, is also a definite function of the sign
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y3′

y2′

y1′

Figure 3.3.26

y3′

y2′

y1′

Figure 3.3.27

opposite to that of V, then the rest point xi = 0, i = 1, 2, 3, . . . , n, of Equation (3.3.78)
is asymptotically stable.

Example 3.3.13

Test for stability of the system :
dx
dt

= y;
dy
dt

= −x. rest point being O(0, 0)

(3.3.79)

Consider a function V(x, y) = x2 + y2 as the function V(x, y). This function
is positive definite. From Equation (3.3.79) we obtain
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dV
dt

= ∂V
∂x

dx
dt

+ ∂V
∂y

dy
dt

= 2xy − 2xy = 0

It follows from theorem 1 that the rest point O(0, 0) of Equation (3.3.79) is
stable (vortex point). There is no asymptotic stability since the trajectories of
Equation (3.3.79) are circles and they do not tend to the point O(0, 0) as t →∝.

Example 3.3.14

Test for stability of the system :
dx
dt

= y − x3;
dy
dt

= −x − y3;

rest point being O(0, 0). (3.3.80)

Taking V(x, y) = x2 + y2, we find that

dV
dt

= 2x(y − x3)+ 2y(−x − y3) = −2(x4 + y4)

Thus dV/dt is a negative definite function. From theorem 2, the rest point
O(0, 0) of Equation (3.3.80) is asymptotically stable.

Theorem 3. Lyapunov’s theorem of instability

Assume that for the system of differential equations

dxi

dt
= fi(x1, x2, x3, . . . , xn), (fi(0, 0, 0, . . . , 0) = 0) i = 1, 2, 3, . . . , n (3.3.81)

there is a function V(x1, x2, x3, . . . , xn), differentiable in the neighbourhood of the
origin, such that V(0, 0, 0, . . . , 0) = 0. If its total derivative dV/dt formed out of
Eqn. (3.3.81), is a positive definite function, and there are points, arbitrarily close to
the origin, at which the function V(x1, x2, x3, . . . , xn) assumes positive values, then
the rest point xi = 0, i = 1, 2, 3, . . . , n, of Equation (3.3.81) is unstable.

Example 3.3.15

Test for stability of the system :
dx
dt

= x;
dy
dt

= −y, having rest point O(0, 0).

(3.3.82)
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We take a function V(x, y) = x3 − y2 for which the function

dV
dt

= ∂V
∂x

dx
dt

+ ∂V
∂y

dy
dt

= 2(x2 + y2)

is positive definite. Since there are points at which V > 0, say V = x2 > 0
along the straight line y = 0, arbitrarily close to the origin, All the conditions of
theorem 3 are fulfilled and the rest point O(0, 0) is unstable, a saddle point.

3.3.9.4 Stability in the first (linear) approximation

Let the given equation be

dxi

dt
= fi(x1, x2, x3, . . . , xn), i = 1, 2, 3, . . . , n (3.3.83)

It is given that xi = 0, i = 1, 2, 3, . . . , n, is a rest point of the system i.e.

Fi(0, 0, 0, . . . , 0) = 0, i = 1, 2, 3, . . . , n, (3.3.84)

We assume that the function fi (x1, x2, x3, . . . , xn) are differentiable in the neigh-
bourhood of the origin a sufficient number of times. We apply Taylor’s formula to
expand the function fi in terms of x in the neighbourhood of the origin:

fi(x1, x2, x3, . . . , xn) = fi(0, 0, 0, . . . , 0)+
n∑

j=1

∂fi(0, 0, 0, . . . , 0)
∂xj

xj

+ Ri(x1, x2, x3, . . . , xn)

or using Equation (3.3.84), we can have

fi(x1, x2, x3, . . . , xn) =
n∑

j=1

aijxj + Ri(x1, x2, x3, . . . , xn)

in which aij = ∂fi(0,0,0,...,0)
dxj

= constant, and Ri include terms not lower than the second

order of smallness w.r.t x1, x2, x3, . . . , xn. The system of differential equations (3.3.83)
assumes the form:

dxi

dt
=

n∑
j=1

aijxj + Ri(x1, x2, x3, . . . , xn), i = 1, 2, 3, . . . , n; aij is a constant.

(3.3.85)

Since the concept of stability of a rest point O(0, 0, 0, . . . , 0) is connected with
small neighbourhood of the origin in the phase space, it is natural; to expect that
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the behaviour of solution (3.3.83) will be defined by the principal linear terms of the
expansion of the functions fi in terms of x. Therefore, alongside the system (3.3.85)
we consider a system

dxi

dt
=

n∑
j=1

aijxj : i = 1, 2, 3, . . . , n (3.3.86)

There is, strictly no connection between systems (3.3.85) and (3.3.86). Let us
consider, for example, an equation

dx
dt

= x2 (3.3.87)

Here f (x) ≡ x2. The linearised equation for (3.3.87) has the form:

dx
dt

= 0 (3.3.88)

The solution x(t) ≡ 0 of Equation (3.3.88) is stable. But it is not stable when
it is a solution of the original Equation (3.3.87). Indeed, every real solution of
Equation (3.3.87), which satisfies the initial condition x|t=t0 = x0 > 0, has the form
x = x0/(1 − tx0) and ceases to exist for t = 1/x0, i.e. the solution cannot be extended
to the right.

Theorem 1. If all the roots of the characteristic equation

∣∣∣∣∣∣∣∣
a11 − p a12 . . . a1n

a21 a22 − p . . . a2n
. . . . . . . . . . . .

an1 an2 . . . ann − p

∣∣∣∣∣∣∣∣
= 0 (3.3.89)

have negative real parts, then the rest point xi = 0, i = 1, 2, 3, . . . , n, of Eqns. (3.3.84)
and (3.3.87) is asymptotically stable.

When the conditions of the theorem are satisfied, it is possible to test the rest point
for stability in the first approximation.

Theorem 2. If at least one root of the characteristic equation (3.3.89) has a positive
real part, then the rest point xi = 0 of the systems in Eqns. (3.3.85) and (3.2.86) is
unstable.

In this case it is also possible to test the rest point for stability in the first
approximation.

Proof. Let us assume that the roots p1, p2, p3, . . . , pn of Equation (3.3.89) are real
and distinct. We know that in this case there is a non-singular matrix B = (bij)

n
i,j=1
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with constant elements bij such that the matrix B−1AB is diagonal, i.e.

B−1AB =

⎡
⎢⎢⎣

p1 0 . . . 0
0 p2 . . . 0
. . . . . . . . . . . .

0 0 . . . pn

⎤
⎥⎥⎦

where A = (aij)
n
i,j=1 is a coefficient matrix of Equation (3.3.86).

Now we set

X = B Y, in which X =

⎧⎪⎪⎨
⎪⎪⎩

x1
x2
. . .

xn

⎫⎪⎪⎬
⎪⎪⎭ and Y =

⎧⎪⎪⎨
⎪⎪⎩

y1
y2
. . .

yn

⎫⎪⎪⎬
⎪⎪⎭

Then dX/dt = B dY/dt, and Equation (3.3.86) is reduced to the form B dY/dt =
ABY. Hence we obtain dY/dt = B−1ABY, or, by the choice of the matrix B

dyi

dt
= piyi, i = 1, 2, 3, . . . , n

Under the same transformation, Equation (3.3.51) reduces to

dyi

dt
= piyi + R̃i(y1, y2, . . . , yn) (3.3.90)

and R̃i include terms not lower than that of the second order of smallness w.r.t. yi as
yi → 0.

Possibilities:

1 All the roots pk are negative. We set, V = y2
1 + y2

2 + · · · + y2
n

The from Equation (3.3.90), the derivative dV/dt will have the form

dV
dt

= 2(p1y2
1 + p2y2

2 + · · · + pny2
n)+ S(y1, y2, . . . , yn).

where S(y1, y2, . . . , yn) for
∑n

i=1 y2
i → 0, which is an infinitesimal of the order

higher than that of the quadratic form
∑n

i=1 piy2
i .

Thus, in a sufficiently small neighbourhood � of the point O(0, 0, 0, . . . , 0) the
function V(y1, y2, . . . , yn) is positive definite, and the derivative dV/dt is negative
definite, and, hence the rest point O(0, 0, 0, . . . , 0) is asymptotically stable.
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2 Some of the roots pk, say p1, p2, . . . , pm, m ≤ n, are positive and others are
negative. We set

V = y2
1 + y2

2 + · · · + y2
m − y2

m+1 − · · · − y2
n.

Then,

dV/dt = 2[p1y2
1 + p2y2

2 + · · · + pmy2
m − pm+1y2

m+1 − · · · − pny2
n]

+ S(y1, y2, . . . , yn).

It can be seen that, arbitrarily close to the origin, there are points (such points
say, for which ym+1 = · · · = yn = 0), at which V > 0. As to the derivative dV/dt,
it is a positive definite function since pm+1, . . . , pn are negative. From theorem 3,
the rest point O (0, 0, 0, · · · , 0) is unstable.

In a critical case, when all the real parts of the roots of the characteristic equation
are nonnegative, and the real part of at least one root is zero, the stability of
the trivial solution of Equation (3.3.85) begins to be affected by the nonlinear
terms of Ri and it becomes impossible to carry out a test for stability in the first
approximation.

Example 3.3.16

Test for stability in the first approximation the rest point x = 0, y = 0, of the
equation

dx/dt = −x + 2y − 5y2; dy/dt = 2x − y + x3/2 (3.3.91)

The system of the first approximation has the form

dx/dt = −x + 2y; dy/dt = 2x − y (3.3.92)

The nonlinear terms satisfy the necessary conditions: their order is not smaller
than 2. We derive a characteristic equation for Equation (3.3.92) as

∣∣∣∣−1 − p 2
2 −1 − p

∣∣∣∣ = 0, or p2 + 2p − 3 = 0.

The roots of the characteristic equations are p1 = 1 and p2 = −3. Since
p1 > 0, the zero solution x ≡ 0, y ≡ 0 of Equation (3.3.91) is unstable.
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Example 3.3.17

Test for stability the rest point O(0, 0) of the system:

dx/dt = y − x3; dy/dt = −x − y3. (3.3.93)

The rest point x = 0, and y = 0, of Equation (3.3.93) is asymptotically stable
since for this system Lyapunov’s function V = x2 + y2 satisfies the conditions
of Lyapunov’s theorem of an asymptotic stability. In particular,

dV/dt = 2x(y − x3)+ 2y(−x − y3) = −2(x4 + y4) ≤ 0.

At the same time the rest point x = 0, y = 0, of the system

dx/dt = y + x3, dy/dt = −x + y3 is unstable. (3.3.94)

From Equation (3.3.94) we have for the function V(x, y) = x2 + y2

dV
dt

= ∂V
∂x

dx
dt

+ ∂V
∂y

dy
dt

= 2x(y + x2)+ 2y(−x + y3) = 2(x4 + y4)

i.e. dV /dt is a positive definite function. Arbitrarily close to the origin O(0, 0)
there are points at which V(x, y) > 0.

By theorem 3, we infer that the rest point O(0, 0) of Equation (3.3.94) is
unstable.

For system in Eqns. (3.3.93) and (3.3.94) the system of the first approximation
is the same, i.e.

dx/dt = y; dy/dt = −x (3.3.95)

For Equation (3.3.95), the characteristic equation is p2 + 1 = 0 and has
pure imaginary roots, which is a critical case [the real parts of the roots
of the characteristic equation are zero]. For the system of the first approx-
imation Equation (3.3.95), the origin is a stable rest point, a vortex point.
Eqns. (3.2.93) and (3.2.94) results from a small perturbation of the right hand
sides of Equation (3.2.95) in the neighbourhood of the origin. However, as a
result of the small perturbations, the rest point O(0, 0) for Equation (3.3.93)
becomes asymptotically stable, whereas for system Equation (3.3.94) it becomes
unstable.

This shows that in a critical case the nonlinear terms can affect the stability
of the rest point.
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3.4 MULTIPLE-DEGREES-OF-FREEDOM SYSTEMS

3.4.1 Free vibration: Undamped system

In this section we give you just an introduction to what do we mean by a system
having multi-degrees of freedom. In general, the number of degrees of freedom of a
system is equal to the sum of the number of independent coordinates necessary to
describe each mass into which the system has been discretised. Also when the exciting
force is not acting at the c.g. of the system, it will develop a coupled motion (rocking
and translation simultaneously) resulting in a two-degrees-of-freedom system. Shown
in Figure 3.4.1 is a general machine foundation system resting on the ground. It is
apparent that mathematical model of the system boils down to a multi-degrees-of-
freedom system.

A general multi-storied Frame structure is shown in Figure 3.4.2. This is usually
idealized as a multi-mass system. It is usual to assume the masses to be lumped at
the floor levels and the lumped mass having a value corresponding to weight of the
floor plus part of the supporting system above and below the floor level and also
the effective live load. If the frame is set to vibrate horizontally in the vertical plane, the
floor supporting systems provide the restoring forces (spring force). Each mass would
provide one-degree-of freedom and the entire frame in Figure 3.4.2, has five-degrees-of
freedom.

When the system is set into vibration and all the masses attain maximum amplitude
simultaneously and all the masses pass through the equilibrium position simultane-
ously, then it is said to be vibrating in its natural or normal or principal mode of
vibration.

For an undamped system, the response in such a mode of vibration would be sinu-
soidal and correspond to one of the frequencies of the system termed as natural or
principal frequency. If all the masses vibrate in phase, i.e. all the masses have same
sign of amplitude at any particular instant of time, the mode is called the first mode
or the lowest or fundamental mode of vibration. The frequency corresponding to this
mode will be the lowest in magnitude. If all adjacent masses vibrate out of phase with

m1

m2

x1

x2

Wooden plank

Exciting mechanism

x1

x2

m2

m1

Actual situation

Idealised situation

Figure 3.4.1 A two-degrees-of-freedom system.
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Ist IIIrd IVth VthIInd

Figure 3.4.2 A multi-storied frame structure: idealisation and mode shapes.

one another, i.e. adjacent masses have opposite sign of amplitude at any particular
instant of time, the mode is termed as the highest mode of vibration. The frequency
corresponding to this mode would be the highest in magnitude.

We will not pursue the matter further here, and would come back to it latter in
Chapter 5 (Vol. 1) where we have exhaustively developed the mathematical theo-
ries underlying this. We would however like to elaborate hereafter the mechanical
impedance theory as applied to multi-degrees of freedom that is sometimes used
also by structural and foundation engineers in analysis and design of some typical
structures-especially subjected to harmonic loads.

3.4.2 Steady-state analysis: Mechanical
impedance method

Mechanical impedance method described for a single-degree-of-freedom system can
be extended to a multi-degree-of-freedom system (n-degree) and expressed as

[m] {Ẍ} + [C] {Ẋ} + [K] {X} = {F} (3.4.1)

n × n n × 1 n × n n × 1 n × n n × 1 n × 1

For a harmonic of response of the type eiωt Equation (3.4.1) can be reduced to

[−ω2[M] + iω [C] + [K] ] {X} = {F} (3.4.2)

This can be rewritten as

[Z]{X} = {F}, that is {X} = [Z]−1{F} (3.4.3)

where Z is known as mechanical impedance.
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For a two-degrees-of-freedom system as an example (say),

[
−ω

[
m11 m12
m21 m22

]
+ iω

[
c11 c12
c21 c22

]
+
[
k11 k12
k21 k22

]]{
X1
X2

}
=
{

F01
F02

}
(3.4.4)

the rest is similar to the one given in Equation (3.4.3) that is [Z] {X} = {F} and results
are shown below

X1 = Z22F01 − Z12F02

Z11Z22 − Z12Z21
; X1 = −Z21F01 + Z11F02

Z11Z22 − Z12Z21
(3.4.5)

If we substitute F01eiωt for F01 sinωt, X1eiωt for x1(t) and F02eiωt for F02 sinωt,
X2eiωt for x2(t) in Equation (3.4.5), X1 and X2 are the complex amplitude of x1(t) and
x2(t), respectively. After some rearranging and factoring out eiωt we obtain

[(k1 + k2)− m1ω
2 + i(c1 + c2)]X1 − (k2 + icω)X2 = F01

− (k2 + icω)X1 + [(k2 + k3)− m2ω
2 + i(c2 + c2)ω ]X2 = F02 (3.4.6)

X1 and X2 can be obtained from these equations by using Cramer’s rule as follows

X1 =

∣∣∣∣F01 −(k2 + ic2ω )

F02 k2 + k3 − m2ω
2 + i(c2 + c3)ω

∣∣∣∣
(ω)

= X1e−iψ1

X2 =

∣∣∣∣k1 + k2 − m1ω
2 + i(c1 + c2)ω F01

−(k2 + ic2ω) F02

∣∣∣∣
(ω)

= X2e−iψ2

in which

(ω) =
∣∣∣∣k1 + k2 − m1ω

2 + i(c1 + c2)ω −(k2 + ic2ω )

−(k2 + ic2ω ) k2 + k3 − m2ω
2 + i(c2 + c3)ω

∣∣∣∣ (3.4.7)

and ψ1 and ψ2 are the phase angles of the complex amplitudes X1 and X2, respectively.
Corresponding to the excitation forces F01 sinωt and F02 sinωt, the steady state

response of the masses are

x1 = X1 sin(ωt − ψ1) and x2 = X2 sin(ωt − ψ1) (3.4.8)
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3.4.3 Coupled translation and rotation

Consider a situation wherein a rigid body like say a foundation block is resting on an
non-uniform spring support as shown in Figure 3.4.3.

Say k4 > k1: Line of reaction of the spring force will not pass through the c.g. of the
rigid footing whereby there will be a rotation of the footing as shown in Figure 3.4.4
Let the c.g. be fixed while the footing rotates about the horizontal axis

Assumptions:

1 We have a centre of rotation, O.
2 Centre of pressure moves only in vertical direction.
3 Replacement of all sprins k1 to k4 by kz.
4 Spring constant of rotation kθ exists.

Translation Using force balance:

mz̈ = −kz(z + Rθ) ⇒ mz̈ + kz (z + Rθ) = 0 (3.4.9)

Rotation Moment balance about O:

Jθ̈ = −kθ θ − kz(z + Rθ )R ⇒ Jθ̈ + kθ θ + kz(z + Rθ )R = 0 (3.4.10)

Rigid
body 

R

Line of action of
the spring force 

k1 k2 k3 k4

Figure 3.4.3

Wholebody
goes down 
vertically by
an amount z

  
 

 

z

k z

R

Figure 3.4.4 Coupled translation and rotation with no lateral movement.
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Figure 3.4.5 Combined lateral movement and rocking.

→

Mx

Fz

Fx

z

x

c .p.

R

L

c .g.

c .p.

Figure 3.4.6 Coupled translation and rocking.

Equations (3.4.9) and (3.4.10) can be solved by assuming

z = Az sinωt and θ = Aθ sinωt (3.4.11)

Centre of gravity has a free movement in lateral direction (Figure 3.4.5)
Governing equations of motion:

Vertical mz̈ = −kzz − (θ Rkz) ⇒ mz̈ + zkz + Rθ kz = 0 (3.4.12)

Horizontal mẍ = −kxx − kx(Lθ ) ⇒ mẍ + xkx + Lθ kx = 0 (3.4.13)

Rotation about O′ Jθ̈ = −θ kθ − [kz(z + Rθ )R] + WLθ − [kx(x + Lθ )L]
Jθ̈ + θ kθ + [kz(z + Rθ )R] + [kx(x + Lθ )L] − WLθ = 0

(3.4.14)

➔ Results in three-degrees-of-freedom.
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Q0

Q0

z

x
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Fx

s
c .g.
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Figure 3.4.7 Coupled translation and rotation.

Cases:

1 If R = 0 → Two-degrees-of-freedom: Equations (3.4.12) and (3.4.13) are
uncoupled while Equations (3.4.13) and (3.4.14) are always coupled.

2 If there is no horizontal movement: Equation (3.4.13) will not be there and
corresponding terms in Equation (3.4.14) will be absent.

3.4.4 Forced vibration

Consider the situation shown in Figure 3.3.6
Governing equations are:

mz̈ + zkz + Rθ kz = Fz sin � t
mẍ + xkx + Lθ kx = −Fx sin � t
Jθ̈ + θ kθ − WLθ + Rzkz + R2θ kz + xLkx + kxL2θ = M sin � t

(3.4.15)

A practical situation may look like the one shown in Figure 3.4.7.

Example 3.4.1

1 An elastically supported damper system, shown in Figure 3.4.8, can be used
to successfully isolate the force transmitted to the foundation of the machine.
Analyse the response.

Solution:

We have two equations from the free-body diagram of the problem:

mẍ1 + c(ẋ1 − ẋ2)+ kx1 = F sinωt and c(ẋ1 − ẋ2) = k1x2 (3.4.16)
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Free-body Diagram

k1 x2

m

kx1

c

x2

x1

m

c

k
1

k
mx1

Figure 3.4.8 Elastically supported damper.

Replacing viscous term from the first equation using the second equation, we
have

mẍ1 + k1x2 + kx1 = F sinω t ⇒ x2 = [F sinωt − mẍ1 − kx1]/k1 (3.4.17)

Substituting the value of x2 in the first equation and a little rearrangement of
terms, one can have

x
...

1 + k1

c
ẍ1 + k + k1

m
ẋ1 + kk1

mc
x1 = k1

mc
F sinωt + ω

m
F cosωt (3.4.18)

This is a third order differential equation to be solved for obtaining the
value of x1.

The problem can be solved by using impedance method as follows:

Let the excitation be represented by Feiωt and the displacements x1(t) and
x2(t), respectively by X1eiωt and X2eiωt, where X1 and X2 are complex ampli-
tudes. Now, the free-body equations may be written as (by factoring out eiωt)

[k − mω2 + icω] X1 − icωX2 = F : −icωX1 + [k1 + i c ω]X2 = 0
(3.4.19)

X1 and X2 can be solved by Cramer’s rule as

X1 = F(k1 + icω)
k1(k − mω2)+ icω (k + k1 − mω2)

:

X2 = icωF
k1(k − mω2)+ icω (k + k1 − mω2)

(3.4.20)
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Taking non-dimensional parameters like: n = k1/k, ωn = √
(k/m), c/m =

2Dωn = ω/ωn, X1 and X2 can be expressed as

X1 = F
k

√
1 + (2Dr/n)2√

(1 − r2)2 +
[
2Dr

(
1 + 1

n − r2

n

)]2
e−iφ = X1e−iφ

1

X2 = F
k

2Dr/n√
(1 − r2)2 +

[
2Dr

(
1 + 1

n − r2

n

)]2
e−iφ

2 = X2e−iφ
2

(3.4.21)

In which

φ1 = tan−1

⎡
⎣2Dr

[
1 + 1

n − r2

n

]
1 − r2

⎤
⎦− tan−1

[
2Dr

n

]
;

φ2 = tan−1

⎡
⎣2Dr

[
1 + 1

n − r2

n

]
1 − r2

⎤
⎦− π

2 .

(3.4.22)

The steady-state response can be written as

x1 = X1 sin (ωt − φ1) and x2 = X2 sin(ωt − φ2). (3.4.23)

Example 3.4.2

Effect of earthquake on a rigid building is simulated as shown in Figure 3.4.9
The building base is idealized through two springs kH and kθ for ground’s
translational and rotational stiffnesses respectively. The ground is now given
a harmonic motion xG = xgsin ωt. Set up the equations of motion in terms of
coordinates shown in the Figure

Solution:

Vibration due to the translation x0 of the foundation, Eqns. (3.4.13) and (3.4.14)
may be written as

mẍ + kx(x + θ�0) = −mẍ and J0θ̈ + θ kθ + kx(x + θ �0) = 0 (3.4.24)

where x is the displacement of the mass-c.g. along the X-axis, less the displace-
ment of the foundation; θ is the angular rotation of the mass-c.g. or the mass
point; �0 is the eccentricity of the mass centre relative to the stiffness centre; kx
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k

H

X0

X

c.g .

0

Figure 3.4.9 An earthquake type of disturbance to a rigid building frame.

and kθ are the stiffness factors of the system in linear and angular deflec-
tion, respectively; and J0 is the mass moment of inertia about the mass
centre.

Physically, the first equation of Equation (3.4.24) is the equation of the
dynamic equilibrium of the force projection on the X -axis, whereas the second
describes the equilibrium of the moments about the mass c.g. Setting xG = xg
sin ωt, Equation (3.4.24) reduces to

mẍ + kx(x + θ�0) = mω2 sinωt and J0θ̈ + θkθ + kx(x + θ�0) = 0
(3.4.25)

➔ Consider a case where
ω2

x = kx/m;ω2
θ = kθ /J0 = kθ /[mρ2

c ]; and [ρc/�0]2 = 1/3; and (ωr
/
ωx)

2 = 4
and J0 = m�2

c , where �c is the radius of gyration.
Now, we can have the equations for free vibration as

mẍ + kx(x + θ�0) = 0 and J0θ̈ + θkθ + kx(x + θ�0) = 0 (3.4.26)

The solution of Equation (3.4.26), from which the natural frequencies and
mode of the translational and rotational vibrations could be obtained, are
written in the form x = Ax sinωt and θ = Aθ sinωt. Substituting them,
Equation (3.4.26), we have

[
kx − mω2 �0kx

�0kx kθ + kx�
2
0 − j0ω2

]{
A1
A2

}
=
{

0
0

}
(3.4.27)
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Thus, the characteristic equation reduces to

(−mω2 + kx)(kθ − J0ω
2 + kx�

2
0)+ �2

0k2
x = 0 (3.4.28)

Finally, it reduces to ω4 − ω2

mJ0
[kθm + kx( J0 + m�2

0)] + kxkθ
mJ0

= 0 (3.4.29)

Two roots of Equation (3.4.29) may be written as

ω2
1,2 = φ ±

[
φ2 − kxkθ

mJ0

]1/2

(3.4.30)

where φ = 1
2mJ0

[kx(J0 + m�2
0)+ mkθ ].

Substituting the values outlined for the present case, we have, φ = 4ω2
x and

ω2
1,2 may be written as

ω2
1,2 = 4ω2

x ±
√

16ω2
x − ω2

θ

ω2
x
ω4

x = ω2
x[4 ± 3.464]

ω̄1 = (ω1/ωx) = 0.732 and ω̄2 = (ω2/ωx) = 2.732.

From Equation (3.4.27), the mode shapes can be expressed as

A1i

A2i
= − �0kx

kx − mω2
i

= −kθ + kx�
2
0 − J0ω

2
i

kx�0
, at i = 1, 2. (3.4.31)

Here we assume A11, A12, A21 and A22 are values of A1 and A2 for ω1 and
ω2, with the parameters given for this problem, Equation (3.4.31) reduces to

A1i

�0A2i
= − 1

1 − ω̄2
i

= −7 − ω̄2
i

3
= −2.154, −0.154,

for i = 1 and 2, respectively.

x-displacement of the mass can be written as x + �0θ , hence X1
�0θ

= 1 − 2.154 =
−1.154; and X2

�0θ
= 0.854 and X2

X1
= −0.732.

3.4.5 Semi-def inite systems

When one of the natural frequencies of a system is zero, i.e. one of the roots of the
frequency equation vanishes; the system reduces to a degenerated system. Physically,
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the system may move as a rigid body without any exciting force. This class of system
represents a large group of engineering problems and is called a semi-definite system.

Example 3.4.3

Examples are shown in Figure 3.4.10.

k1 k2m1
m2 m3

bearing

kt1 kt1kt1 J4
J3

J2J1

Figure 3.4.10 Semi-definite systems.

3.4.5.1 Rectilinear system

The system consists of a number of masses connected through springs. This system
may used to study the vibration of a locomotive or a similar vehicle.

3.4.5.2 The rotational system

It may consist of a number of discs coupled together by torsional shafts.
As for example we may select two-mass and two-disk systems shown in

Figure 3.4.11.

3.4.5.3 Rotational system

Summing up torques about the longitudinal axis of the shaft (Figure 3.4.11), equations
of motion may be written as

J1θ̈1 = −kt1( θ1 − θ2) : J2θ̈2 = −kt1(θ2 − θ1) (3.4.32)
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J1

bearing

kt1

J2
k1

m1
m2

Figure 3.4.11 Two-disc and two-mass semi-definite systems.

Equation (3.4.32) may my rearranged in the form of

J1θ̈1 + kt1 θ1 − kt1θ2 = 0 : J2θ̈2 + kt1θ2 − kt1θ1 = 0 (3.4.33)

With solution of the type θ1(t) = Aθ1 sin(ωt + ψ) : θ2(t) = Aθ2 sin(ωt + sψ),
frequency equation may be written as

(ω) =
∣∣∣∣kt1 − J1ω

2 −kt1

−kt1 kt1 − J2ω
2

∣∣∣∣ = 0 (3.4.34)

Equation (3.4.34) reduces to

[
ω2 −

(
kt1

J1
+ kt1

J2

)]
ω2 = 0 (3.4.35)

Two roots of ω2 are zero and
(

kt1
J1

+ kt1
J2

)
respectively.

The amplitude ratios of the principal modes are

Aθ1

Aθ2
= kt1

kt1 − J1 ω2 = kt1 − J2 ω
2

kt1

= 1 for ω2 = 0

= − J2

J1
for ω2 =

(
kt1

J1
+ kt1

J2

)
.

(3.4.36)

These amplitude ratios indicate that the discs may rotate either together as a rigid

body or oscillate in opposite directions with a frequency ω2 =
(

kt1
J1

+ kt1
J2

)
.

3.4.5.4 Rectilinear system

Summing up torques about the longitudinal axis of the shaft (Figure 3.4.11), equations
of motion may be written as

m1ẍ1 = −k1( x1 − x2) : m2ẍ2 = −k1(x2 − x1) (3.4.37)
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Equation (3.4.37) may be rearranged in the form of

m1ẍ1 + k1 x1 − k1x2 = 0 : m2ẍ2 + k1x2 − k1x1 = 0 (3.4.38)

With solution of the type x1(t) = A1 sin(ωt +ψ) : x2(t) = A2 sin(ωt +ψ), frequency
equation may be written as

(ω) =
∣∣∣∣k1 − m1ω

2 −k1
−k1 k1 − m2ω

2

∣∣∣∣ = 0 (3.4.39)

Equation (3.4.39) reduces to

[
ω2 −

(
kt1

J1
+ kt1

J2

)]
ω2 = 0 (3.4.40)

Two roots of ω2 are zero and
(

k1
m1

+ k1
m2

)
respectively.

The amplitude ratios of the principal modes are

A1

A2
= k1

k1 − m1 ω2 = k1 − m2 ω
2

k1
= 1 for ω2 = 0

= −m2

m1
for ω2 =

(
k1

m1
+ k1

m2

)
.

(3.4.41)

These amplitude ratios indicate that the discs may rotate either together as a rigid

body or oscillate in opposite directions with a frequency ω2 =
(

k1
m1

+ k1
m2

)
.

Example 3.4.4

A dynamic absorber is shown in Figure 3.4.12(a) in which a damper c is installed
in parallel with the spring k2. Discuss the effect of the damper c on the motion
of the mass m1.

Solution:

Equivalent system is shown in Figure 3.4.12(b). Summing up the forces in the
vertical direction we have

m1ẍ1 + cẋ1 + (k1 + k2)x1 − cẋ2 − k2x2 = F01 sinωt

m2ẍ2 + cẋ2 + k2x2 − cẋ1 − k2x1 = 0
(3.4.42)
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k2
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m2k1/2 k1/2
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k1/2 k1/2

m
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Figure 3.4.12 Dynamic Absorber.

From Equation (3.4.42), we have complex amplitudes

X1 =

∣∣∣∣F01 −(k2 + icω)
0 k2 − m2 ω

2 + icω

∣∣∣∣
(ω)

= X1 e−iψ1 :

X2 =

∣∣∣∣k1 + k2 − m1 ω
2 + icω F01

−(k2 + icω) 0

∣∣∣∣
(ω)

= X2 e−iψ2

(3.4.43)

and (ω) =
∣∣∣∣k1 + k2 − m1 ω

2 + icω −(k2 + icω)
−(k2 + icω) k2 − m2 ω

2 + icω

∣∣∣∣ (3.4.44)

The steady state responses of two masses are x1 = X1 sin (ωt − ψ1); x2 =
X2 sin (ωt − ψ2).

If c = 0, the system is that of an undamped dynamic absorber. Hence,

X1 =

∣∣∣∣F01 −k2)

0 k2 − m2 ω
2

∣∣∣∣
(ω)

= X1 e−iψ1 :

X2 =

∣∣∣∣k1 + k2 − m1 ω
2 F01

−k2 0

∣∣∣∣
(ω)

= X2 e−iψ2

(3.4.45)
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(ω) =
∣∣∣∣k1 + k2 − m1 ω

2 −k2
−k2 k2 − m2 ω

2

∣∣∣∣ = ω4 −
[

k1 + k2

m1
+ k2 + k3

m2

]
ω2

+
[

k1k2 + k2k3 + k3k1

m1m2

]
= 0 (3.4.46)

ψ1 and ψ2 are either zero or 180◦.
These expressions indicate that when k2 − m2 ω

2 = 0, X1 = 0 and X2 =
−F01/k2, i.e. x1(t) is zero and the force is transmitted to the foundation is
zero. The force transmitted through spring k2 to the base of the machine is
k2x2 = −F01 sinωt. This means that the motion of m2 is 180◦ out of phase with
the exciting force and the force due to the deformation of the spring k2 is equal
and opposite to the exciting force.

The dynamic absorber minimizes the vibration of the original system when
operating frequency is nearly equal to

√
k1/m1. It can be shown that when the

exciting frequency ω is equal to
√

k2/m2, the amplitude of x1(t) is zero. Hence
an undamped dynamic absorber is normally tuned so that k1/m1 = k2/m2. Fre-

quency equation of the system is then, m1m2
k1k2

ω4−
[(

1 + k1
k2

)
m2
k2

+ m1
k1

]
ω2+1 = 0,

if the dynamic absorber is tuned i.e. k1/m1 = k2/m2, using ω/
√

k1/m1 =
ω/
√

k2/m2 = r and equating k1/k2 = m1/m2, the equation reduces to
r4 − [

2 + m2
m1

]
r2 + 1 = 0. The resonant frequency of the tuned system can

be determined from the root of this equation with mass ratio as a parameter.
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Figure 3.4.13 Variation on Resonant frequency with mass ratio.
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Figure 3.4.14 Response curves.

There are two resonant frequencies. Figure 3.4.13 shows that the effect of the size
of the absorber mass m2 is to change the range of resonant frequencies. When
m2/m1 is very small, the absorber mass has very little effect, and the resonant
frequencies are close to those of the original system. When m2/m1 is apprecia-
ble, the resonant frequencies are separated. For example, when m2/m1 = 0.4,
the resonant frequency ratio are, 0.73 and 1.37; that is, resonance occurs at
frequencies 0.732 and 1.36 times those of the original system. If c = ∞, which
means that the mass m2 is securely attached to the mass m1, the response of
the system is that of a single-degree-of-freedom system. The vibrating mass is
equal to (m1 +m2) and the spring constant is k1. The response is now sinusoidal.
Hence, for 0< c< ∞, the steady state response of mass m1 must be intermediate
between these two extreme conditions. The steady state response curves of m1
for 0 < c < ∞ are shown in Figure 3.4.14.

Curve 1 in Figure 3.4.14, shows an undamped system and Curve 2 corresponds
to c = ∞. Where these two curves intersect, the damping can range from zero to
infinity. Curve 3 is that of a properly tuned dynamic absorber with appropriate
damping.

3.5 NONLINEAR SYSTEMS

3.5.1 Free vibrations

In the Preceding sections it was assumed that the force in a spring is linearly propor-
tional to the deformation; damping force is a linear function of velocity of motion.
The resulting governing equation of motion always resulted in a linear differential
equation with constant coefficients. There are practical problems in which this linear-
ity proposition is violated and in such situations, one has to deal with systems having
nonlinear characteristics. For most of geomaterials, the modulus of elasticity (if one
still takes recourse to elastic behaviour) decreases with deformation. Therefore some
decrease in the frequency with increase in amplitude of vibration must be expected.
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If due to resonance, the amplitude of vibration begins to increase, the frequency of
vibration changes, i.e. the resonant condition disappears.

A Summary of the properties of linear and nonlinear systems is given in Table 3.5.1.
Let us consider Van der Pol equation (in the form of a nonlinear differential equation)

ẍ + ε [x2 − 1]ẋ + x = 0; where ε is a constant. (3.4.1)

If one assumes 0 ≤ x ≤ 1, Equation (3.5.1) resembles to the free vibration of
a damped single-degree-of-freedom system with nonlinear damping. If x < 1, the
damping term is negative and the amplitude x will increase with time. If x >1, the
damping term is positive and amplitude x will decrease with time. Thus, if the system
is given a small initial displacement or velocity, the motion will build up and will
eventually become periodic with constant amplitude. Conversely, if a large initial

Table 3.5.1 Summary of the properties of linear and nonlinear systems.

Linear system Nonlinear systems

1. Only one static equilibrium position exists More than one stable equilibrium positions
around which the system vibrates. may exists and the system can vibrate

around any, or all of these.
2. With time independent system parameters, The presence of a constant force may

constant forces do not play any role except significantly change the nature of the
changing the static equilibrium position. response.

3. Free undamped vibration is harmonic with a Free undamped vibration is not harmonic
characteristic (natural frequency ωn which and the time period of oscillation is
is a system property, independent of the amplitude dependent, not a system
amplitude). property.

4. The principle of superposition holds good The principle of super position is not valid.
which implies that the response is propor-
tional to the level of excitation.

5. For a harmonic excitation, the steady state Besides the excitation frequency, super
response (for a damped system) has the and subharmonics of different orders
same frequency as that of the excitation. may be contained in the response.

6. The amplitude of harmonic response is At a given frequency of excitation, the
unique for a given excitation frequency. amplitude of response can have multiple

values. Which one, among the possible a
stable amplitude, is reached depends on
the initial conditions (and the method of
experimentation). For a multi-frequency
excitation, only simple responses can
occur when the natural frequency
coincides with one of the excitation
frequencies.

7. Besides simple (primary), subharmonic and For a damped, forced system, the steady
super harmonic resonances, combination state response is not governed by the
of resonances can occur when certain initial disturbances. Even in the presence
combinations of forcing frequencies bear of damping, the response of a forced
specific relationships with the natural system after a long time interval may be
frequency. highly sensitive to the initial disturbances

and the motion may not show any
periodicity.
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xy =

x

Figure 3.5.1 Phase plane trajectories of Van der Pol equation.

displacement or velocity is imposed on the system, its motion will diminish until the
same periodic motion with constant amplitude is attained.

If ε = 0, the equation is same as linear mass-spring system and the phase trajectories
for this case is an ellipse shown in Figure 3.5.1.

If ε > 0, the motion tends to build up for small oscillations and tends to decrease
for large oscillations. Hence after the initial transient, the motion becomes peri-
odic, represented by a closed trajectory. This phase trajectory is called a limit cycle.
Shown in Figure 3.5.2, are the phase trajectories of Van der Pol equation for various
values of ε. In each of these figures, the limit cycle is indicated by heavy lines. For a
given ε, the same limit cycle is obtained whether the system is set into motion with
initial conditions inside or outside the limit cycle.

3.5.1.1 Non-linear springs

In the Preceding sections it was assumed that the force in a spring is linearly propor-
tional to the deformation; damping force is a linear function of velocity of motion. The
resulting governing equation of motion always resulted in a linear differential equation
with constant coefficients. There are practical problems in which this linearity propo-
sition is violated and in such situations, one has to deal with systems having nonlinear
characteristics. For geomaterials, where modulus of elasticity (if one sill takes recourse
to elastic behaviour) decreases with deformation, some decrease in the frequency with
increase in amplitude of vibration must be expected. If due to resonance, the amplitude
of vibration begins to increase, the frequency of vibration changes, i.e. the resonant
condition disappears.

Consider the general equation of motion in the form of

mẍ + f (x) = 0 ➔ ẍ + ω2
nf (x) = 0 (3.4.2)

where ω2
nf (x) is the restoring force per unit mass as function of the displacement x.

Now ẍ = dẋ
dt

= dẋ
dx

dx
dt

= dẋ
dx

ẋ = 1
2

d(ẋ)2

dx
(3.4.3)



452 Dynamics of Structure and Foundation: 1. Fundamentals

o

o
o

o

x

(c)   = 0.5

xy=

o

o
xy=

( b )   = 0.2

xy=

x

Figure 3.5.2 Phase plane trajectories of Van der Pol equation.

Equation (3.5.2) then reduces to

1
2

d(ẋ)2

dx
+ ω2

nf (x) = 0 (3.4.4)

Assume that the restoring force is given by the curve OA in Figure 3.5.3 and at
t = 0, x = x0, ẋ = 0

Integrating Equation (3.5.4)

1
2

ẋ2 = −ω2
n

x∫
x0

f (x)dx = ω2
n

x0∫
x

f (x)dx = Area of the shaded part.

Means that for any position of the vibrating mass, m, its kinetic energy is equal to
the difference of the potential energy stored in the spring initially due to the deflection
x0 and the potential energy at the moment under consideration.
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Figure 3.5.3 Restoring force-deformation behaviour.

3.5.1.2 Non-harmonic motions

Vibration is harmonic only if the return force controlling it is directly proportional to
the corresponding displacement. A system where return force depends upon x in some
other way is called a non-linear system. Vibrations of non-linear systems are non-
harmonic. Again, many springs take a slightly different magnitude of force to produce
a given extension than to produce an equal compression. The simplest asymmetry of
this kind is represented by a term in restoring force proportional to x2. Or it may be that
the spring is symmetrical with respect to positive and negative displacements, but that
there is not strict proportionality of the restoring force to x. The simplest symmetrical
effect of this kind is described by a term in the restoring force proportional to x3. The
equation of motion of these cases may be written as

mẍ + kx + α x2 = 0 : In nonlinear, asymmetric situation.

mẍ + kx + β x3 = 0 : In nonlinear, symmetric situation.
(3.4.5)

Nonlinear systems are described by nonlinear differential equations [Equation
(3.5.5)] and these are usually impossible to solve exactly. If we try a solution of the
form x = A cosωnt in either of the Equation (3.5.5), we find that it does not work. The
motion is no longer describable as a harmonic vibration at some unique frequency ωn.
Some times it is possible to use a linear equation as an approximation and assume that
any small vibration is approximately harmonic. To start with let us consider systems
where there is only slight non-linearity and let us consider the case of free vibration.

a Symmetric return force
Let a mass is attached to a spring which exerts a return force with a cubic function

of the displacement i.e.

Fspring force = −Fs = (1 + αx2)kx (3.4.6)

where α and k are constants.
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Figure 3.5.4 Non linear symmetric return forces.

This force |Fs| is symmetric against displacement both positive and negative and
shown in Figure 3.5.4.

Slight nonlinearity is implied by assuming |αx2| << 1. However, we can ensure αx2

to be small by limiting the maximum value that |x| reaches during vibration.
If damping is ignored, the equation of motion assumes the form

ẍ + (1 + α x2)ω2
nx = 0 (3.4.7)

1 We now assume that the motion must be periodic, as there is no damping. If T is
the period then

x(t) = x(t + T) (3.4.8)

2 ‘Inward’ part of any cycle (|x| decreasing) will be exactly same as the ‘outward’
part (|x| increasing) run backwards i.e.

|x(t0 − t)| = |x(t0 + t)|, (3.4.9)

where t0 is any value of t for which x(t0) = 0.
3 Since |Fs| is symmetric about x = 0, the motion during a movement to the left,

x < 0, will be a mirror image of the motion during a movement to the right, x > 0.
Both these movements take exactly the same time, half a period to be precise and
hence

x(t + 1/2 T) = −x(t). (3.4.10)

For a solution of Equation (3.5.7), we think of harmonic functions, and consider x,
in general, to be the sum of the terms cos(ωt+φ), cos(2ωt+φ), cos(3ωt+φ), . . . , where
ω = 2π/T. With symmetric restoring force, one can exclude all the terms involving
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even multiples of ωt and again, without any loss of generality using ẋ(0) = 0, we may
write

x = A[cosωt + ε cos 3ωt + · · · ] (3.4.11)

The first term is fundamental and the other terms are called harmonics and ε is a
small multiplier. Thus a vibration controlled by a symmetric returning force will not
contain any even harmonics. From Equation (3.5.11) we have

x3 = A3[cos3 ωt + 3ε cos2 ωt cos 3ωt + · · · ] omitting higher order terms of ε;

ẍ = −Aω2[cosωt + 9ε cos 3ωt + · · · ] omitting higher order terms of ε.

Using cos3 ωt = 1/4 cos 3ωt + 3/4 cosωt, we have now

1 Coefficient of cosωt : [−ω2A + ω2
nA + 3/4 αω

2
nA3] = 0

ω2 = ω2
n(1 + 3/4 αA2) → ω = ωn(1 + 3/4 αA2)1/2 → ω ≈ ωn(1 + 3/8 αA2).

(3.4.12)

This implies that the nonlinear term in Equation (3.5.6) can either increase or
decrease the fundamental frequency from its value with α = 0, depending upon
the sign of α and frequency shift becomes larger as the maxima of |x| become
larger. Mass and the spring do not fix the period of vibration alone as in the case
of a linear system.

2 Collecting the coefficients of cos 3ωt : −9εω2A + εω2
nA + 1/4αA3 = 0

Selecting ω from Equation (3.5.8), we have ➔ ε ≈ αA2/32. (3.4.13)

When the quantitiesω and ε given by Equations (3.5.12) and (3.5.13) are substituted
in Equation (3.5.11) it gives the solution of Equation (3.5.7). The adequacy of the
solution should be judged from its utility for we have discarded the terms of order
of magnitude one order smaller than α A2. Any value of ω and ε that we calculate
using these formulas will have an error of the order of (αA2)2. Thus, if we have a
vibration with αA2 = 0.1, then (αA2)2 is 0.01 and the error will be of the order
of 1%.

For a more precise solution, we have to go in for retaining second order terms in ε.
For zeroth order approximation, nonlinear terms are ignored entirely and it will yield
errors of 1%.
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Example 3.5.1

Let us consider the case of pendulum, we have motion

θ̈ + g
�

sin θ = 0 (3.4.14)

For small amplitudes, sin θ ≈ θ and the system vibrate in simple harmonic
motion. The simple pendulum is a ‘soft’ nonlinear system. The amplitude of the
return torque is plotted as shown in Figure 3.5.5. The plot indicates that the exact
curve i.e. θ versus |sinθ | = T/mg� and also shown are the linear approximation
(dotted line) as well as cubic approximation |(1 − θ)2/6θ |

|(1- 2/6) |

T/mg

0

0 . 2

0 . 6

1

-2 -1 0 1 2

|sin |

Figure 3.5.5 Restoring torque of a simple pendulum.

If small oscillation is not assumed, Equation (3.5.14) is a nonlinear differential
equation, elliptical integral has to be used to solve the equation von Karman and
Biot (1940) gave solution to this problem as

t =
θ∫

θ0

dθ√
θ̇2

0 + 2mg�
J0

(cosθ − cosθ0)

(3.4.15)

where θ0 and θ̇0 are the initial conditions at t = 0. If the pendulum is given a
sufficiently large initial velocity to set it into motion, the pendulum will continue
to rotate about the hinge point. Thus θ(t) will increase with time, and motion is
not periodic. Small oscillation assumption simplifies the solution procedure and
a periodic will result.

If the amplitudes are not small sin θ may be expanded in power series and we
have, say,

θ̈ + g
�

[
θ − θ3

6
+ · · ·

]
= 0 (3.4.16)
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Here we see that the nonlinear term has opposite sign and is a case of soft
system. Normally it is sufficient to consider only the first two terms, i.e.

Restoring force = −mg�

[
θ − θ3

6
+ · · ·

]
= kx + αkx3 (3.4.17)

→ α = −1/6 and |αA2| � 1 ‘A’ should be small compared to
√

6
radian = 140◦.

Thus,

➔ ω ≈ ωn(1 − αA2/16) and ε ≈ A2/192. (3.4.18)

Hence, for an amplitude 10◦, αA2 = −0.005 and error will be of the order of
0.001%.

b Unsymmetric returning force
Here we consider an unsymmetric returning force in quadratic form as follows:

FS = −(1 + βx)kx (3.4.19)

β and k are constants and |βx| � 1 and if β is positive as shown in Figure 3.5.6(a),
the spring is stiffer for x > 0 but becomes softer when x < 0. If β is negative just an
opposite case develops as shown in Figure 3.5.6(b).

In an undamped situation the equation of motion can be written as

ẍ + (1 + βx)ω2
nx = 0 (3.4.20)

Setting ẋ(0) = 0 as initial the condition and seek a solution of Equation (3.5.20) in
the form of a series of harmonics we cannot ignore the even-harmonics as we do not
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Figure 3.5.6 Unsymmetric returning force.
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have a symmetric force. Most important harmonic will be now the second term and
one may write the solution as

x = A0 + A[cosωt + η cos 2ωt + · · · ] (3.4.21)

The term A0 can be taken as the zeroth harmonic. Figure 3.5.7 describes the indi-
vidual and combined effect of harmonics. It may be noticed that on the positive
displacement side loop is sharpened in comparison to the negative side showing how
the ‘hard’ force turns the mass round more rapidly than the ‘soft’ force.

From Equation (3.5.21) we have

x2 = A2
0 + 2A0A[cosωt + η cos 2ωt] + A2[cos2 ωt + 2η cosωt cos 2ωt + · · · ]

× ẍ = −ω2A[cosωt + 4η cos 2ωt + · · · ] (3.4.22)

Substituting these values in Equation (3.5.19) and using the identity cos2 ωt =
1/2[1 + cos 2ωt] and ignoring η2, (βA)2 and ηβA and higher order terms of η and
(βA), we obtain

− ω2A[cosωt + 4ηcos2ωt + · · ·] + ω2
n[A0 + A(cosωt + η cos 2ωt + · · ·)]

+ β2ω2
n[A2

0 + 2AA0 cosωt + A2(1/2 + 1/2 cos 2ωt + · · ·)] = 0 (3.4.23)

Now collecting coefficients of cos ωt and equating them to zero leads to

−ω2A + ω2
nA + 2βω2

n AA0 = 0 ➔ ω2 = ω2
n(1 + 2βA0) (3.4.24)
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Figure 3.5.7 Superposition of harmonics.
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Table 3.5.2 Free Vibrations under cubic (symmetric) and quadratic (axisymmetric)
restoring forces.

Cubic restoring force Quadratic restoring force

X = A( cosωt + ε cos 3ωt + · · · ) x = A0 + A( cosωt + η cos 2ωt + · · · )
ω ≈ ω0(1 + 3/8αA2) ω ≈ ωn
ε ≈ 1/32αA2 η ≈ 1/6βA
x̄ = 0 x̄ = A0 ≈ − 1

2βA2

Collecting coefficients of cos 2ωt and equating them to zero leads to

− 4ηω2A + ηω2
nA + 1/2 βω2

nA2 = 0 ➔ − η(1 + 2βA0)+ η + 1/2 βA = 0

➔ η ≈ 1/6 βA (3.4.25)

neglecting a term in (βA) (βA0).

We also have constant terms and they will also add up to zero

ω2
nA0 + βω2

nA2
0 + 1/2 βω2

nA2 = 0 (3.4.26)

Neglecting (βA)2 term, we have

A0 ≈ −1/2 βA2 (3.4.27)

Equation (3.5.27) indicates that A0 is much smaller than A, the amplitude of the
fundamental mode.

Approximate value of ω2 may be given as

ω2 ≈ ω2
0(1 − βA2) ≈ ω2

0 (3.4.28)

Thus we have the following conclusions to make for an asymmetric return force

1 Within the approximation made, there is no frequency shift.
2 There is a presence of small constant term A0 and the average position of the mass

during the vibration is given by

x̄ = A0 ≈ −1
2
β A2 (3.4.29)

Since the average of each cosine term in Equation (3.5.21) is zero, Equation (3.5.27)
indicates that A0 has the opposite sign to β, and so, as we might expect the mass spends
more time on the ‘soft’ side of x = 0, than on the ‘hard’ side.

A summary of the results is shown in Table 3.5.2.
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3.5.2 Forced vibrations

Since there is no exact solution for a general nonlinear vibration problem we must
resort to an approximate solution.

Method of superposition is not valid which was always applicable to problems
solved earlier. Thus even if the free vibration of a system as well as its forced vibration
can be found, the sum of these two motions does not give the resultant vibration. Also
if there are several harmonics in the disturbing force, the resultant forced vibrations
cannot be obtained by summing up vibrations due to each harmonics alone as was
done in the earlier sections.

To start with a solution procedure, let us consider a lightly damped vibrator sub-
jected to harmonic driving force of moderate amplitude and nonlinearity is slight.
We also assume that driving force is of much less frequency that the resonance. Thus
ω � ωn and at this range motion of the system depends mostly on the stiffness and
mass or the damping hardly have any influence. The effects of nonlinearity in the
spring may be expected to be the most pronounced under these conditions.

Hence the response of the system x may be expressed as

x ≈ a F + b F3 + c F3 + · · · (3.4.30)

in which a, b, c, etc are constants and F is the driving force which, for stiffness
controlled motion, is at all times nearly equal and opposite to the spring force.

Assuming the force to be harmonic and of the type F = F0 cosωt and using the
identity cos2 ωt = 1/2[1 + cos 2ωt] and cos3 ωt = 1/4 cos3 ωt + 3/3 cosωt, and
substituting it in Equation (3.5.30), we have

x = bF2
0

2
+
(

aF0 + 3cF3
0

4

)
cosωt + bF2

0

2
cos 2ωt + cF3

0

4
cos 3ωt + · · · (3.4.31)

Equation (3.5.31) reveals that the solution has also second, third and higher har-
monics as well as a constant term present. These new contributions to x will become
increasingly important as the force amplitude is increased.

3.5.2.1 Sub-harmonic resonance

If the driving frequency is at resonance, ωn, and we gradually decrease it, ω will
successively pass through the values ωn/2, ωn/3, . . . , at which the harmonics in the
driven motion are close to the resonance frequency. At one of these frequencies, we
should expect the relevant component to go through a resonance so that the dominant
motion will be at the resonant frequency. Subsidiary resonance peaks will appear at
each of these driving frequencies, which are sub-harmonics of the resonance frequency.

3.5.2.2 Driving force with a combination of two frequencies

A new situation arises when we consider the driving force is consisting of two coherent
driving forces with different frequencies, say ω1 < ωn. As an example, let the force be
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written as

F = F1 cosω1t + F2 cosω2t (3.4.32)

Substituting Equation (3.5.32) in Equation (3.2.29), we have

x = a[F1 cosω1t + F2 cosω2t] + b[F1 cosω1t + F2 cosω2t]2
+ c[F1 cosω1t + F2 cosω2t]3 (3.4.33)

The first expression on the right is the linear case and it will give rise to beats for
ω1 ≈ ω2. The second and third terms will result in

[F1 cosω1t + F2 cosω2t]2 = F2
1 cosω2

1t + F2
2 cosω2

2t + 2F1F2 cosω1t cosω2t

[F1 cosω1t + F2 cosω2t]3 = F3
1 cosω3

1t + F3
2 cosω3

2t

+ 3F1F2 cosω1t cosω2t[F1 cosω1t + F2 cosω2t]
(3.4.34)

Higher power terms in cosωt will result in second and third harmonics of both
driving frequencies and a constant term. The product terms are

2F1F2 cosω1t cosω2t = F1F2[cos(ω1 + ω2)t + cos(ω2 − ω1)t]
3F1F2 cosω1t cosω2t[F1 cosω1t + F2 cosω2t]

= 3/2 F1F2[F1 cosω1t{ cos(ω1 + ω2)t + cos(ω2 − ω1)t}
+ F2 cosω2t{ cos(ω1 + ω2)t + cos(ω2 − ω1)t}]

x = 1/2[F2
1 + F2

2]b + a[F1 cosω1t + F2 cosω2t] + (1/2 bF2
1) cos 2ω1t

+ (1/2 bF2
2) cos 2ω2t + (cF3

1/4) cos 3ω1t + (3cF3
1/4) cosω1t

+ (cF3
2/4) cos 3ω2t + (3cF3

2/4) cosω2t + 3/4 F1F2[F1{ cos(2ω1 + ω2)t

+ 2 cosω2t + cos(ω2 − 2ω1)t} + F2{ cos(ω1 + 2ω2)t + 2 cosω1t

+ cos(2ω2 − ω1)t}] (3.4.35)

We have now four completely new terms: sums of frequencies: (2ω1 ±ω2)/2π , and,
(2ω2 ± ω1)/2π .

These combinations of frequencies will become important with increasing the driv-
ing force amplitudes. Thus we can expect a subsidiary resonance whenever the driving
forces have a combination frequency equal to the resonance frequency.

An important characteristic of nonlinearity in forced vibration is that the system
vibration will be having components, namely harmonics, combination frequencies or
a constant term which are not present in the driving force. This is always undesirable
in practice.



Table 3.5.3 Fourth order Runge-Kutta method with Gill’s variation.

program pendulum
dimension y(3), dy(3)

c
hi = 0.001
t0 = 0.
x0 = 0.0
v0 = 0.0
n = 2
a1 = 1.0
tmgl = 1.35
y(1) = t0
y(2) = x0
y(3) = v0
h = hi
yfin = .0

10 continue
call rkg(y, dy, yfin, h, n, tmgl, a1)
f 1 = tmgl∗ cos(2.∗y(1)/3.)− sin(y(2))− 0.5∗a1∗y(3)
f = dy(3)− f 1
yf in = yf in + 0.001
if (y(1).gt.1.001)yf in = yf in + .1
if (y(1).gt.10.001)yf in = yf in + 1.
if (y(1).gt.100.001)yf in = yf in + 10.
if (y(1).gt.1000.001)yf in = yf in + 100.
write(4,∗ )y(1), y(2), y(3), f
if(yfin.lt.400.001) goto 10
stop
end
subroutine func(y, dy, tmgl, a1)
dimension y(3), dy(3)
dy(1) = 1.
dy(2) = y(3)
dy(3) = tmgl ∗ cos(2.∗y(1)/3.)− sin(y(2))− 0.5∗a1∗y(3)
return
end
subroutine rkg(y, dy, yfin, h, n, tmgl, a1)
dimension a(4), b(4), c(4), q(4), y(3), dy(3)
a(1) = 0.5
a(2) = 1. − sqrt(0.5)
a(3) = 1. + sqrt(0.5)
a(4) = 1./6.
b(1) = 2.0
b(2) = 1.0
b(3) = 1.0
b(4) = 2.0
c(1) = a(1)
c(2) = a(2)
c(3) = a(3)
c(4) = 0.5
i = n + 1

(Continued)
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Table 3.5.3 (Continued)

do 5j = 1, i 5 q(j) = 0.0
50 do 10j = 1, i

do 15k = 1, 4
call func(y, dy, tmgl, a1)
temp = a(k)∗(dy(j) − b(k)∗q(j))
y(j) = y(j) + h∗temp
q(j) = q(j) + 3.∗temp − c(k)∗dy(j)

15 continue
10 continue

if(y(1).lt.yfin)goto 50
return
end

| |

|mgT /0

0 .5

1

1 .5

2

2 .5

- 4 - 2 0 2 4

Linear
approx 

Figure 3.5.8 Restoring torque versus angular rotation.

3.5.3 Large amplitudes in response: Order and chaos

Response of a nonlinear system, particularly at high amplitudes cannot be extrapo-
lated from small amplitude vibration results. Let us consider the behaviour of simple
pendulum [Equation (3.5.14)] for high amplitude vibration. At large amplitudes the
return torque of the pendulum begins to decrease beyond θ = 1/2π and may become
negative for θ > π , when the mass swings over the top [Figure 3.5.8].

Following Equation (3.5.36), the forced vibration equation for pendulum may be
written as

θ̈ + c
m�2 θ̇ + g

�
sin θ = T0

m�2 cosω t (3.4.36)

Equation (3.5.36) cannot be solved analytically and a numerical method has to be
used for solving it.

Runge-Kutta integration given in Table 3.5.1 is given for a set of first order
differential equation and as such Equation (3.5.36) is to be converted into a set of two
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Figure 3.5.9 Oscillation of pendulum: T0/mgl = 1.025.
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Figure 3.5.10 Oscillation of pendulum: T0/mgl = 5.

simultaneous first order differential equations using

y = θ̇ = dθ
dt

and
dy
dt

= θ̈ (3.4.37)

Equation (3.5.36) may be written as

dθ
dt

= y

dy
dt

= T0

m�2 cosω t − c
m�2 y − g

�
sin θ

with θ(t = 0) = θ0 and y(t = 0) = θ̇ (t = 0) = θ̇0
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Figure 3.5.11 Oscillation of pendulum: T0/mgl = 1.35.

Eqns. (3.5.38) are to be non-dimensionalised before using them in numerical
solution technique and these may be realised by assuming

T = ωnt → dT = ωndt and
dθ
dt

= dθ
dT

· dT
dt

= y

→ y = ωn
dθ
dT

; → dy
dt

= d
dt

(
dθ
dt

)
= d

dT

(
dθ
dT

)
ω2

n = ω2
n

dy
dT

Hence using ω2
n = g/�, Q = ωn/γ and γ = c

m�2 , Eqn. (3.5.38) may be written as

dθ
dT = y

ωn

dy
dT =

(
T0

mg�

)
cos

(
ω
ωn

T
)

−
(

1
Q

) (
y
ωn

)
− sin θ

(3.4.38)

with the boundary conditions given in Equation (3.5.38).
A computer experiment with R-K-G method on the numerical result of Equation

(3.5.39) for Q = 2;ω = (2/3)ωn and γ = (1/2)ωn; and (T0/mgl) = 0.5; 1.025 1.07
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Figure 3.5.12 Oscillation of pendulum: T0/mgl = 10.

and 1.35 , with θ0 = 0, 0.5 and θ̇0 = 0, 0.5 are shown in Figs. 3.5.7 to 3.5.12. The RKG
subroutine is appended in the Table 3.5.3. Runge-Kutta method with Gill’s variation
(RKG) or an adaptive Runge Kutta method may be used for solving this type of initial
value problem easily.





Chapter 4

An introduction to soil-structure
systems under statical condition

4.1 INTRODUCTION

This chapter deals with coupled analysis of soil and structure under static load.
Though we focus on the dynamic analysis of structures and foundations in this book

yet understanding the static phenomenon is important for without having this concept
clear the engineers often make mistakes especially in the mathematical modelling.
Moreover, having insufficient concepts in coupled analysis of a system under static
load surely makes behaviour under dynamic load difficult to perceive and as such we
give a brief overview of this topic hereunder.

4.1.1 What we did twenty years ago. . .

Even some twenty years ago coupled analysis was not usually the practice followed in
a normal design office.

• A structural engineer would do his frame analysis considering the frame as fixed
base. On completion of his analysis, he will possibly furnish the fixed end moment
shear and reaction at the base of the structure to a foundation engineer for the
design of foundation.

• Soil mechanics specialist will perform a soil investigation at the site; study the
various engineering parameters of the soil based on various laboratory and field
investigations conducted and will suggest an allowable bearing capacity of the
soil, which becomes the input to the foundation engineer.

• The foundation engineer would carefully review the soil report, find out the
allowable bearing capacity of the soil, study the recommendations of geotechnical
report to arrive at the nature of foundation and design the foundation.

Each of the above activities were done in isolation except some interface data
and each specialist would execute his task in isolation with no interface amongst
each other.

While a structural/foundation engineer would hardly ever bother to know about
the voluminous detail given in the soil report except the bearing capacity value of the
soil which he is only interested in, a soil mechanics specialist will hardly try to look
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beyond the soil (and its properties) to see what is being built, how well the scheme fits
in to his recommendation in terms of money time and safety.

4.1.2 The Present Scenario. . .

But things started changing, with advent of digital computer, Finite element method,
development of complex industrial structures (like reactor building in nuclear power
plant, HRSG raft in combined cycle plant, High speed compressor foundation in oil
and gas industry, tall chimneys in fossil fuel plant to name only a few) it was slowly
realized that doing things in isolation do have its limitations (and at times can be
dangerous too) and often results in a design which is either far too conservative (thus
cost is more) or unsafe.

This gave rise to a new field of study which synthesized the individual behavior of
all these special branches of technology and brought them under one roof to develop
a new branch of analysis termed Coupled Analysis and some salient features of the
same is studied herein.

Our discussion pertaining to Civil/Structural engineering is restricted to the follow-
ing class of soil-structure interaction problems:

• Static Soil-Structure interaction (for e.g. a flexible beam/plate on elastic founda-
tion, Secondary moments in frames due to differential settlements. . . )

• Dynamic Soil-Structure interaction1.

4.2 SOIL-STRUCTURE INTERACTION

Before we go in to the details it may be worthwhile to examine the following
questions:

• What is soil structure interaction?
• What do we really mean by it?

4.3 STATIC SOIL-STRUCTURE INTERACTION

Shown in Figure 4.3.1 are frame structures, which could have raft or isolated footings
as their foundation and which in turn are resting on soil. For analysis of this frame to
obtain the design moments, shears under various loads and its combination, we would
usually consider the bottom of the column as fixed and proceed with the structural or
frame analysis.

The moments and shears induced at the base of the column based on the fixed base
analysis are considered separately for design of foundation.

But does this analysis give a correct picture?
The basic lacuna in this method is possibly the assumption that the columns are

fixed at the base. For if we ponder at this point a bit it is obvious that the foundation
(be a raft or an isolated pad) acts together with the superstructure and the underlying

1 This we are going to take up in Chapter 1 (Vol. 2) subsequently.
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Figure 4.3.1a Frame on Raft. Figure 4.3.1b Frame on isolated footing.

soil if considered as a de-formable material will undergo some deformation which in
turn will affect the moments and shears in the superstructure frame.

Thus, we see that deformation in soil affects the stress parameters in the superstruc-
ture and vice-versa and are inter-related with each other and constitutes the case of
soil structure interaction for the frame/foundation system.

So long as this settlement is uniform over all the foundation, the structure does not
undergo any additional stresses. But when their exists differential settlement or the
contact pressure at various points of the foundation varies analysis of the superstruc-
ture assuming the column base fixed may not yield a realistic picture. The above can
possibly be further explained through a simple example.

Example 4.3.1

Shown in Figure 4.3.2 is a bridge girder across a river and resting at points A
and B on rock abutments at the ends, and resting on a pier at the center of the
girder (point C) which is resting on the soil bed of the river and is subjected to
load of 200 kN/m. The flexural stiffness of the girder is EI = 10,000 kN-m2.
Calculate the moments at A, B and C considering no deformation at C and with
deformation at C.

w = 200 KN/m

A 5.0 m       C  5.0 m B  

Water Level    

Figure 4.3.2 Bridge girder – with a supporting pier.
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Solution:

We can assume the girder as a beam element supported at the points A, B and
C (Figure 4.3.3a). Since the point A and B are lying on rock it can well be
argued that deformation at point A & B will be negligible and it would not
be unrealistic to assume that point A & B are unyielding support. Presuming the
pier at point C is unyielding the analytical model may be depicted as shown in
Figure 4.3.3a.

200 kN/m

A C B

Figure 4.3.3a Idealisation ignoring soil effect.

Then based on our knowledge of structural mechanics it is quite elementary
to find out that

MA = 0 = 0;

Mc = wl2

8
= 625 kN · m;

MB = 0;

MAC = MCB = wl2

16
= 312.5 kN · m

Now considering the soil deformation below the pier the obvious choice to
model the soil and pier is as a linear spring and let this value be K = 8000 kN/m
for simplicity of calculation.2

Thus based on the above the mathematical model for the girder may be
depicted as shown in Figure 4.3.3b.

W = 200 kN/m

A  C B

k = 8000 kN/m

Figure 4.3.3b Idealisation, considering soil effect.

To determine the moments the first thing that we have to do is to find out the
value of the reaction at point C which is an unknown.

2 It may be noted that there are different approaches available for evaluating this spring value and
will be discussed subsequently.
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For this let us presume initially there is no support at point C, thus the girder
behave as simply supported beam between points A and B then

δCD = 5wl4

384EI
, acting downward (4.3.1)

where l = 10 m, the whole length of the girder.
Presuming RC as the unknown reaction at spring support acting upward

we have

δCU = RCl3

48EI
, acting upward (4.3.2)

Thus under the combined action of the load and the spring net deflection (δn)
is given by

δn = δCD − δCU ; ⇒ δn = 5wl4

384EI
− RCl3

48EI
; ⇒ Rc = kδn;

δn = 5wl4

384EI
− kδnl3

48EI

On simplification we have δn = 5wl4

8(48EI + kl3)
(4.3.3)

Back-substituting the above value of δn above RC can be obtained as

RC = 5
8

wl
[
1
/(

1 + 48EI
kl3

)]
kN (4.3.4)

Now substituting the numerical values we have

RC = 1179 kN; Again RA + RB + RC = 2000 kN

Or, RA + RB = 820.75 kN

Considering, AC (Figure 4.3.4):
Taking moment about point B we have, RA × 10 + RC × 5 = 2000 × 5
Substituting RC = 1179 kN, we have RA = 410.55 kN = RB.
Once RA, RB, RC is known moments at support and span are obtained by

drawing the free body diagram of the span AC and applying the equilibrium
equation about the joint C.
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w=200 kN/m MC

RA=410.55 kN RC

Figure 4.3.4 Free body diagram of Span AC.

MA = 0 = MB; MC = 447.553 kN · m; MAC = 401.25 kN · m = MBC

Thus comparing the values we have obtained above, we find the values as
shown in Table 4.3.1.

Table 4.3.1

Moment with Moments with soil
Sl. No. Support/Span no interaction structure interaction Variation in %

1 A 0 0 0
2 B 0 0 0
3 C 625 448 −28%
4 AC 313 401 +28%
5 BC 313 401 +28%

Based on the above calculations it is observed that due to deformation of the pier,
the support moments reduce by 28% while the span moment is increased by 28%.

Thus we see that if we do not take into cognizance the effect of the soil deformation
we would be under-designing the span moment and the girder could eventually exhibit
cracks at bottom face of the span due to inadequate reinforcement.

4.4 NON UNIFORM CONTACT PRESSURE

A similar situation can occur with frames resting on combined foundation supporting
multiple columns.

Based on the contact pressure distribution the moments in the frame can vary as
shown in Figure 4.4.1. If the combined footing supporting the frame settles uniformly
it is obvious that there is no effect on the frame but if there is variation in the contact
pressure depending on the relative stiffness of the soil and the foundation the foun-
dation might deform as a saucer (as shown by the dotted line) it will surely have an
effect on the final moments and shear of the frame

The above phenomenon gave rise to the topic of soil structure interaction where
research is still in continuation to understand the phenomenon properly.

There also exists another class of problem which has intrigued many a design engi-
neers in the Industry. The above phenomenon can best be elucidated by a real life
problem as mentioned hereafter.
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2 1 3

Figure 4.4.1 Deflection of foundation under non-uniform contact pressure.

Example 4.4.1

A combined cycle power plant of 240 MW-unit is to be built at two sites A and
B. It was decided to go to a single vendor to buy the two identical cooling tower
plants for the two sites. The plan area of the cooling water basin for the towers
are 30 m × 60 m in plan, 800 mm thick, with maximum center to center distance
between the columns is 10.3 m. The soil report states that for site-A, bearing
capacity of soil is 80 kN/m2 and that for site B is 450 kN/m2. Will there be a
unified approach for design of these rafts? If not, what needs to be done?

Solution:

Under various combination of loads and moments the basin the may be designed
based on the soil pressure generated due to the superstructure load given by

q = Q/A ± (Qey/Ix)y ± (Qex/Iy)x (4.4.1)

where, q = stress in soil; Q = vertical load on raft including self weight; ex, ey,
Ix, Iy = eccentricities and moments of inertia about the principal axes through
the centroid of the section; x, y = co-ordinates of any given point on the raft
with respect to x and y axes passing through the centroid of the area of the raft.

When we apply the above equation, we start with an implicit assumption that-
“the raft is rigid. By which we imply that it is stiff enough to distribute the load
coming on it to all the points in contact with the soil uniformly”. But is this
assumption valid for all cases?

Certainly not, for it has been observed that depending on the overall stiffness
of the raft, sub-grade modulus of the soil and center to center distance between
the column the raft may either behave as rigid or may behave as flexible (i.e.
stress distribution will be localized) and there is indeed a substantial variation in
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the design moments and shears based on these two methods. It has been observed
that if L the c/c distance between columns resting on a raft. Then for

• λL ≤ π/4 the raft will behave as rigid raft;
• For λL ≥ π the raft will behave as flexible raft;
• For all values between π/4 ≤ λL ≤ π the slab behave in between rigid/

flexible in which,

λ = 4
√

kB/4ECI (4.4.2)

where, if, k = modulus of sub-grade reaction in kN/m3, B = width of raft in m,
Ec = modulus of elasticity of concrete in kN/m2, and, I = moment of inertia of
the raft in m4.

The basic difference between the two methods are that in conventional rigid
analysis the effect of soil deformation is negligible on the raft while in flexible
analysis the deformation of soil plays a significant role in affecting the deforma-
tion in the raft (‘the soil stiffness interacts with the raft stiffness’) and modifies the
moment and shear profile. Usually for soft soils like normally consolidated clay,
peat, organic silts etc., the assumption involved in conventional rigid method
are commonly justified. Now let us see what conclusion we arrive at on solving
the problem.

The sub-grade modulus of the soil is given by the expression3 ks = 100 × qall,
where qall = allowable bearing capacity of soil.

Thus for site A, ksA = 100 × 80 = 8,000 kN/m3 and for site B, ksB =
100 × 450 = 45,000 kN/m3.

Now, λ = 4

√
ksB
4EcI

where, I = Bh3

12 in which, h = thickness of the raft, we have

on substitution on the above equation, λ = 4

√
3ks

Ech3 .

Using Ec = 28500000 kN/m2, for site A λA = 4

√
3 × 8,000

28500000 × (0.8)3
= 0.2013

Therefore λL = 0.2013 × 10.3 = 2.073 m ≥ π/4 but <π thus the raft will be
intermediate between rigid and flexible.

For site B λB = 4

√
3 × 45,000

28500000 × (0.8)3
= 0.310

∴ λL = 0.310 × 10.3 = 3.193 ≥ π , thus the raft behaves as a flexible raft.
Designing the cooling tower basin based on rigid method (Teng 1962) for site

A is justified while designing the raft as flexible, considering the interaction effect
of soil for site B, is more prudent.

Flexible analysis can be done by two methods

• Based on closed form solution as given in IS 2950 (part1)
• By numerical methods like finite element or finite grid method (Selvadurai

1979).

3 The basis of this is explained later.
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The method to be adapted in analyzing a raft based on FEM or FDM has already
been discussed in detail in Chapter 2 (Vol. 1) while discussing numerical methods in
engineering.

4.5 VARIOUS SOIL MODELS–THE TOOLS IN THE TOOLKIT. . .

The two most common models which are in vogue for static soil-structure interaction
problems are

• Winkler springs where soil is modeled as linear springs.
• Finite element models usually when the problem is a 2D plane strain one.

4.5.1 Winkler springs

In this method soil medium is assumed to constitute of a series of closely spaced
springs on which the foundation slab lies. The springs are linear in nature and can be
expressed as:

P = kδ (4.5.1)

in which, P = force on the node at which the spring is connected; k = the spring
constant having units of force per unit displacement; δ = displacement at the node.

P
Foundation Slab

SOIL MEDIUM 

Figure 4.5.1 Foundation resting on soil medium.

Foundation Slab modeled as beam/plate

Soil Springs

Figure 4.5.2 Equivalent foundation resting on Winkler spring bed.
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This can be figuratively shown as mentioned in Figure 4.5.1 and mathematically
represented as shown in Figure 4.5.2.

For springs, the soil parameter on which it is chiefly dependent is the sub-
grade modulus of soil and there exists a major problem in estimating its numerical
value.

Terzaghi and Peck (1967) suggested that this may be obtained from plate load test
where the load versus deflection for a plate loaded gradually is plotted and based on
the curve obtained, the sub-grade modulus is estimated.

4.5.2 Estimation of sub-grade modulus

For footings on sand

ks = k1

(
B + 0.3

2B

)2

(4.5.2)

while that in clay is given by,

ks = k1 · B (4.5.3)

where, ks = sub-grade modulus of the soil for footing of width B in kN/m3;
k1 = sub-grade modulus of the soil obtained from plate load test for a plate of area
300 mm × 300 mm in kN/m3.

4.5.2.1 Sub-grade modulus from allowable bearing capacity of soil. . .

In the absence of this data, the sub-grade modulus can also be estimated from allowable
bearing capacity of the soil based on the following equation (Bowles 1988). This has
been found to be in excellent agreement with observed field data

ks = 40(S.F.)qa kN/m3 (4.5.4)

in which, S.F. = factor of safety to bearing capacity of soil; qa = allowable bearing
capacity of soil, and qult. = ultimate bearing capacity of soil.

This equation is based on qa = qult./S.F. and the ultimate soil pressure is at an
elastic settlement of �H = 25 mm. For �H = 10 mm, the factor 40 gets modified to
100, while for �H = 50 mm the value 40 gets modified to 20 (meaning thereby that
this is linearly proportional to the ratio of the displacement).

Once the sub-grade modulus is estimated the equivalent spring connected to a
particular node of a foundation is given by

ki = ksxAf (4.5.5)
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where, ki = spring data at node i of the foundation; ks = sub-grade modulus of the
soil for a specified displacement δ; Af = influence area of the foundation pertaining to
node I.

How to evaluate the influence area Af we will see it shortly.

4.5.2.2 Effect of consolidation on the sub-grade modulus

Based on the above discussion it is quite evident that discussions where restricted to
the elastic deformation of the soil. So long as the soil is cohesionless/granular in nature
the above is quite right. But for soil constituting of medium to soft clay, the elastic
part of the settlement is secondary and the major deformation in this type of soil is
attributed to consolidation settlement. So what do we do about it?

It must be remembered that consolidation settlement is non-linear in nature and
time dependent while we are restricting our analysis to linear and time independent
frame work.

One of the techniques that is often used to account for the consolidation is to modify
the value of ks as mentioned hereafter.

On clayey type of soil for net pressure �p, total displacement may be defined as

�Ht = �He +�Hc (4.5.6)

where, �Ht = total deformation of the foundation; �He = elastic deformation of the
foundation; �Hc = consolidation settlement of the foundation.

Let k′
s be the modified sub-grade modulus of the soil considering the consolidation

effect under pressure �p. Then,

k′
s = �p

�He +�Hc
; (4.5.7)

Again as, �p = ks ·�He we have,

k′
s = ks ·�He

�He +�Hc
(4.5.8)

This value of modified sub-grade modulus (k′
s) is to be considered for evaluating the

spring taking into consideration the consolidation effect of the soil.
The above is best explained by the following example.

Example 4.5.1

A certain site has been observed to have a ultimate bearing capacity of
150 kN/m2. For a 14 m × 6 m raft on the same site is observed to have con-
solidation settlement of 50 mm. Evaluate the subgrade modulus for computer
analysis of the raft with springs.
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Solution:

Based on Bowles’s equation: ks = 40 · qu; ⇒ ks = 6000 kN/m3

As stated earlier for application above equation �He = 25 mm

Therefore, k′
s = 6000 x

(
25

25+50

)
; k′

s = 2000 kN/m3.

Thus we see that the sub-grade modulus value gets reduced when consolidation
of the soil is taken into cognizance4.

4.6 EVALUATION OF NODAL SPRINGS

Next comes the evaluation of the nodal springs which we have shown earlier is
dependent on the influence area. How do we evaluate the influence area?

Example 4.6.1

Shown in Figure 4.6.1 is a raft discretised into finite element meshes supported
on soil what is the influence area for the spring calculation for nodes 1, 2
and 3? Consider meshes to be equally spaced. K s value considered for the site is
2000 kN/m3.

14000 

              1 

2 6000

1.2 m

2.0 m (typ)

3

             2 

Figure 4.6.1 Raft with finite element meshing of slab supported on Winkler springs.

4 Consolidation is basically time dependent and most of the soil report deals with settlement data at
90–95% consolidation. But as settlement function is time dependent it is obvious that at different stage
of consolidation the sub-grade modulus value will be different and so will be the spring constant. With
spring stiffness changing with time, the moments and shears in the foundation and the frame will also
vary with time. It is for this, analysis is usually carried out for 40%, 60%, 80%, 95% consolidation
stage and the most critical case amongst the same is selected.
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Solution:

Considering equally spaced meshes dimension of each mesh is 2 m × 1.2 m.
Hence for
node 1 k1 = 2000 × 1/4 × 2 × 1.2 × 2(nos) = 2400 kN/m
node 2 k2 = 2000 × 1/4 × 2 × 1.2 × 4(nos) = 4800 kN/m
node 3 k3 = 2000 × 1/4 × 2 × 1.2 × 1(nos) = 1200 kN/m

4.6.1 So the ground rule is. . .

• For each rectangular/quadrilateral mesh 1/4 of the contact area of each mesh
connecting a node constitutes the influence area5.

• For triangular meshes 1/3 of the total area influence a particular node.

Table 4.6.1 gives some range of values for sub-grade modulus of soil and may be
used as a guide for comparison when using the above equations.

Table 4.6.1 (After Bowles 1988).

Sl. No. Soil type Sub-grade Modulus (kN/m3)

1 Loose sand 4800–16000
2 Medium dense sand 9600–80000
3 Dense sand 64000–128000
4 Clayey medium dense sand 32000–80000
5 Silty medium dense sand 24000–48000
6 Clayey soil
6a qa ≤250 kPa 12000–24000
6b 200≤ qa ≤400 kPa 24000–48000
6c qa>800 kPa >48000

qa = Allowable bearing capacity of Foundation in kN/m2.

4.7 LIMITATIONS/ADVANTAGES OF WINKLER SPRING MODEL

One of the major approximations attributed to Winkler’s model is that the springs
assumed to idealize the soil is discrete in nature.

For a nodal load acting on the spring, affects that particular spring only. While in
reality, soil is a continuous medium and the interaction between them (soil to soil) do
exists.

It is for this many engineers prefers to use finite element modeling specially when
the problem constitute of plane strain case like

5 For computer input of spring data the values at node 1 and 3 needs to be doubled. See Section 4.10 for
further explanations.
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• Analysis of box culverts below ground
• Study of influence of one foundation over the other
• Analysis of retaining walls, sheet piles
• Analysis of vertical cuts in soil etc.

But for contact pressure problem of beams and plates and super-structure/foundation
interaction Winkler spring model still remains the most popular mathematical model
in use.

Though mathematical formulation exists based on plates on elastic half space they
are far too complex for handling of day to day engineering work. Moreover most of
the software available in the market cannot handle the special conditions invoked in it.

Some of the major advantages that lie with Winkler model can be stated as follows:

• The idealization is simple yet realistic.
• In spite of its limitations, if used judiciously, has been found to yield results in

excellent agreement with field observed data.
• Most of the commercially available finite element package like SAP, GTSTRUDL,

ANSYS, PAFEC, STAAD, SACS etc. are capable of handling spring elements and
it is easy to furnish the data correctly (the accuracy is of course dependent on to
the extent of the realistic estimation of the sub-grade modulus of the soil).

• Finally a number of structures analyzed and designed based on Winkler spring
model has stood the test of time.

Though finite element model is becoming increasingly popular with classes of prob-
lems as mentioned above, for contact problems of soils with beams or plates and for
foundation/super-structure interaction analysis Winkler spring models will continue
to dominate the scenario of industrial design till further enhancements like boundary
element theory or sub-structuring technique becomes popular or a part and parcel of
standard FEM analysis packages.

4.8 FINITE ELEMENT MODELS

Finite element modelling is increasingly becoming popular for its sheer versatility of
satisfying varied boundary conditions like:

• Irregular boundary conditions.
• Non-homogenous medium (layered soil, different materials in structure like RCC

and steel).
• Complex loading conditions etc.

We have discussed earlier above that for problems classified as contact problems,
Winkler spring model is by far the most popular.

It is quite possible to model a similar structure by finite element in 3D, with soils
modelled as brick elements as shown Figure 4.8.1.

This is a conceptual model only and it should not be thought that the numbers of
element as shown suffices and for real life problem number of brick elements could be
in thousands.
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Y

Z

X

Figure 4.8.1 Finite element model of raft resting on soil modelled as 8-noded brick element.

Though this is the most comprehensive model one can conceive, yet, it is quit obvious
that analysis of such model in terms preparation of the model, generation of input data
interpretation of output results will be extremely intensive (and expensive too) and is
really not called for (Even this small conceptual model as shown above constitute of
210 nodes 120 brick elements and 15 plate elements). Moreover the problem cannot
be converted to 2D problem for the mat have a finite dimension in Z direction and
strain is not invariant in this direction.

Finally what are we looking for? We are not interested to find out the stress within
the soil but the stress induced at the plate/soil interface.

Intuitively it can be seen that modelling the soil as Winkler model do have its distinct
advantages. Like we said earlier that “accuracy of the structural foundation system
with Winkler springs are valid to the extent of realistic estimation of the sub-grade
modulus”, similarly for the FEM the accuracy is valid to the extent of realistic estimate
of the Elastic modulus of the soil (Es) and Poisson’s Ratio (ν).

How to evaluate the value of Es and ν we will see subsequently.
Though we advocate to model the soil as Winkler spring for contact stress class

of problem it is evident that the foundation (which could be isolated footing, raft,
combined footing etc.) is a continuum and can be modeled as finite element which in
turn is connected to the springs.

We give here some details of modeling by FEM of raft foundation resting on soil.
The first step is what element we choose for the raft?
As discussed earlier two options are usually used

• Plate Element
• Equivalent beam element

4.8.1 Plate element

We had already discussed in Chapter 2 (Vol. 1) the advantages and disadvantages
of plate element and have shown that if we use lower order 4-noded plate elements
substantial refinement needs to be done to cater for the discontinuity of slope at edges.
This in turn increases the computational effort substantially.

Provided the software in use supports it, it is advised (Bathe 1990) that 9 nodded
plates based on iso-parametric formulation be used for all plate bending problems.
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1 6 2

795

3 8 4

Figure 4.8.2 Nine node plate element.

The advantages with this element are

• The edge discontinuities are reduced due to imposition of internal nodes (5, 6, 7, 8).
• Elements being of higher order than 4 nodded plates coarser meshes while

modeling will not effect the accuracy to the extent with 4 nodded elements.
• The transition from refined to coarser meshes becomes very simple.
• With nodes at center of plate displacement/stress can be directly obtained (else

this needs to be interpolated from the edge nodes) [Figure 4.8.2].

The above is described by a simple example as follows:

Example 4.8.1

Solution:

Shown in Figure 4.8.3 are two identical models with two different types of
elements it is obvious that in first model with 4 nodded elements the transi-
tioning takes place with triangular or quadrilateral element if this elements are
too skewed in their geometric shape can create numerical ILL-conditioning and
the stress thus obtained will not be a realistic one.

Model with 4 noded elements Model with 4 and 8 noded elements

Figure 4.8.3 Finite element model of a portion of raft near column with 4-noded and 8-noded
plate elements.
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Moreover, the elements at edge of the raft (connected to tri-angular elements)
have large edges where slope will be discontinuous and results obtained therein
will again not be too realistic.

For the second model with 8/9 nodded plate elements it is obvious that the
transition from refined to coarser mesh is smoother with no elements having
geometric shape which is irregular.

Edge elements having additional nodes at the middle of the side edge the slope
discontinuity is reduced to half. This goes on to give much better results in
comparison to 4 nodded plates.

Other than this, plate elements based on Hybrid formulation (Kardestuncer
and Norrie 1987) due to their lower bound stiffness property are found to
give much improved results even with coarse meshes and may also be used
provided the software in hand have this type of element in its finite element
library.

4.9 FINITE ELEMENT ANALYSIS OF PLATE WITH SOIL STIFFNESS
BASED ON ISOTROPIC ELASTIC HALF SPACE THEORY

One of the major complains against the Winkler model as we had stated earlier was
that the springs being localized the displacement of the raft is restricted within the
foundation boundary only.

In reality the soil being a continuous medium the displacements also affects zones
outside the foundation area as shown in Figure 4.9.1.

4.9.1 Displacement profile of soil under a
foundation based on half space theory

In this method based on direct solution of differential equation the displacement of the
elastic half space under vertical loading is obtained. Since this solution is close form
the disadvantage of discrete modelling like in spring does not exists. The displacements
are obtained based on unit load to generate the flexibility matrix of the soil and this
on inversion is added to the element stiffness of the plate to generate the combined
matrix of the soil and the plate (Zienkiewicz and Cheung 1964).

P

Figure 4.9.1 Displacement profile of soil under a foundation.
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The basic steps of the method are discussed herein. Let us consider one plate element
of size a0 × b0. For a load Q on the plate the uniform contact stress induced in the
plate is

q = Q/(a0 × b0) (4.9.1)

The response function for the elastic half space model in closed form takes the
integral form

w(x, y) = (1 − ν2
s )

πEs

∫∫
A

q (ξ , ζ ) dξdζ
[(x − ξ)2 + (y − ζ )2]1/2 (4.9.2)

where νs = Poisson’s ratio of the soil; Es = modulus of elasticity of the soil; x, y =
Co-ordinates in x and y direction; w(x, y) = vertical displacement which is a function
of x and y; A = contact area of the finite element (a0 × b0).

In case of a nodal point i the deflection at center of the loaded area a0 ×b0, namely,
wii (by wii we mean deflection at point i due to a load at i) can be obtained from
integrating the above equation between appropriate limits, when we have

wii = Qi(1 − ν2
s )

a0πEs
fii (4.9.3)

where fii = 4
b0

a0/2∫
ξ=0

b0/2∫
ζ=0

dξdζ
[ξ2 + ζ 2]1/2

The coefficients fii depends on the aspect ratio b0/a0 of the loaded area and numerical
values are tabulated in Table 4.9.1.

The surface deflection wni (here wni means displacement at node n due to a load
at node i) at any arbitrary nodal point n which lies outside the loaded area can be
similarly expressed as:

wni = Qi(1 − ν2
s )

a0πEs
fni (4.9.4)

where

fni =
∣∣∣∣∣∣
[{

xn − xi

a0

}2

+
{

yn − yi

b0

}2
]−1/2

∣∣∣∣∣∣
Based on the above it is possible to find out the soil displacement at the four nodes

of the plate element represent by 1, 2, 3, 4 (Figure 4.9.1). And this is represented by
the displacement matrix as follows:
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Table 4.9.1

b0/a0 2/3 1 2 3 4 5

fii 4.265 3.525 2.406 1.867 1.543 1.322

11

3 4

22

Figure 4.9.2 A four node rectangular plate element.

If {w} = the displacement vector of the soil at the four nodes 1, 2, 3, 4, then the
total soil displacement for node can be described as

{w} = (1 − ν2
s )

a0πEs
[fs]{Q} (4.9.5)

where [fs] = Flexibility matrix of the soil (the diagonal elements are obtained from the
term fii and off-diagonals from the term fni); {Q} = vector for nodal reactive force.

On inversion of the flexibility matrix, we have

{Q} = a0πEs

(1 − νs)2
[Ks] {w} (4.9.6)

where [Ks] = stiffness matrix of the soil = [fs]−1.
For external load vector {P} acting at the plate nodes with a net reaction {Q}, the

stiffness can be defined (Cheung and Nag 1968) as

{P} − {Q} = D
15a0b0

[Kp]{w} (4.9.7)

in which [Kp] = the stiffness matrix of the plate element, and

D = Eph3/12(I − ν2
b) (4.9.8)

where Ep = elastic modulus of the plate element; h = thickness of the plate; νb =
Poisson’s ratio of the plate material.
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Substituting the value of {Q} above we have

{P} = D
15a0b0

[[Kp] + γ ∗ [Ks]]{w} (4.9.9)

Considering {P} = [Ksp] {w} we have

[Ksp] = [[Kp] + γ ∗ [Ks]] (4.9.10)

where [Ksp] = combined stiffness matrix of the plate element and the soil.

γ ∗ = 180πa2
0b0

h3

(
1 − ν2

b

)
(
1 − ν2

s
) Ep

Es
(4.9.11)

Thus once the stiffness matrix of the combined plate and soil is obtained it can
be assembled in the usual way based on matrix analysis of structure and for the
external load imposed on it can be solved for the displacement and stress (Weaver
and Gere 1986).

4.10 FINITE GRID METHOD/EQUIVALENT BEAM ELEMENT,
THE UNSUNG WORK HORSE

For engineers inclined mathematically this method may not look appealing for it does
not appear so mathematically elegant. For followers of classical finite element analysis,
the method may also look somewhat crude. But from the point of view of practi-
cal application and simplicity as well as fit for purpose engineering this method has
possibly been most successful.

We had already discussed in previously some of the merits and practical advantages
in using beams to model the raft (Figure 4.10.1) which in turn is connected to Winkler
springs.

In this method the raft instead of plate is broken up into equivalent beam elements
and each of the beam elements have degrees of freedom as shown in Figure 4.10.2.

NNoodd ee ii NNoodd ee jj

SS ooii ll SS pp rr iinn gg KK ii SSooii ll SS pp rr iinn gg KK jj

Figure 4.10.1 Equivalent beam element connected to soil springs.
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2 4

1 1 3 2

Figure 4.10.2 Mathematical model of the equivalent beam element.

Based on matrix analysis of structure the element stiffness for this element is
given by

[Kbeam] = EIz
L3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12 6L 0 −12 6L 0

6L 4L2 0 −6L 2L2 0

0 0
IxL2

2Iz(1 + ν)
0 0

−IxL2

2Iz(1 + ν)

−12 6L 0 12 6L 0

6L 2L2 0 6L 4L2 0

0 0
−IxL2

2Iz(1 + ν)
0 0

IxL2

2Iz(1 + ν)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.10.1)

The displacement vector is given by

{δ} = 〈δ1 θ1 θ2 δ2 θ3 θ4〉T (4.10.2)

When the soil spring are added to the nodes the overall stiffness becomes

[
K ′

beam

]

= EIz
L3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
12 + L3Kii

EIz

)
6L 0 −12 6L 0

6L 4L2 0 −6L 2L2 0

0 0
IxL2

2Iz(1 + υ)
0 0

−IxL2

2Iz(1 + υ)

−12 6L 0

(
12 + L3Kjj

EIz

)
6L 0

6L 2L2 0 6L 4L2 0

0 0
−IxL2

2Iz(1 + υ)
0 0

IxL2

2Iz(1 + υ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.10.3)

where [K′
beam] = combined stiffness matrix for the beam and the spring; Kii = Kjj =

spring values of soil at node I and node j of the beam respectively.
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Once the combined stiffness of beam and spring element is obtained at element level
the overall stiffness matrix of the raft can be assembled globally and solved for the
displacement and stresses for the imposed loads.

The main objections rose for the equivalent beam method by many engineers is that

• It is less accurate than FEM based on plate elements, for the slab looses it
continuum character.

• The discrete nature of the of the Soil springs.

Actually there is hardly any evidence that FEM based on plate elements are more
accurate than equivalent beam method.

It has been found by some authors that results are very nearly matching when
compared for the same problem by the two methods.

“To cater to the coupling effect of the soil it has been suggested by Bowles (1988)
to double the value of the edge springs during computations of the soil springs to give
better correlation with the field observations.”

Over and above, less handling of the input and output data getting results which are
easily interpretable and can be directly used for design, This method still remains the
most popular mathematical model in application in the design offices in the industry.

4.11 FEM APPLICATION FOR PROBLEMS OF CLASS 2D

There are certain classes of problems in 2D where the solution, based on FEM, is
possibly unmatched and possibly furnishes the most realistic value.

Consider the following type of problems:

Example 4.11.1

Effect of Building Structure on the Box Culvert below Ground shown in
Figure 4.11.1.

Building

Dense Sand

G.L.

Medium Stiff Clay

Box Culvert    Medium Dense Sand

Figure 4.11.1 Effect of building structure on the box culvert below ground.
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Example 4.11.2

Vertical cuts in soil with horizontal struts to support the excavation shown in
Figure 4.11.2.

Ground Level 
Bldg.

Loose to medium Sand 

Excavation 

Silty Clay with sand

Struts 

Stiff Clay 

Sheet Piles (typ.)

Compacted Sand with Gravel 

Figure 4.11.2 Vertical cuts soil with horizontal struts to support the excavation.

Solution:

On observing the two problems as mentioned above, it does not take super
intelligence to realize that because of the layered nature of the soil solution
based on conventional method will not be possible.

The reason are as follows

• Due to layered nature of the soil conventional pressure diagram is not
valid.

• The building at the site induces overburden pressure. But the stress induced
due to it in the soil cannot be evaluated based on Westergaard’s analysis
for the evaluation of stress in elastic medium is valid only for homogenous
isotropic material only.

• It is not possible to evaluate the effect it will have on the surrounding when
sheet piles are driven in the ground and soil is excavated with progressive
strutting of the walls are taking place.

Based on the conventional analysis the pressure on the sheet pile walls due to earth
is given by the following expressions (Terzaghi and Peck 1967, Tschebotarioff 1973)
[Figure 4.11.3].
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Here,

γ = Density of soil in kN/m3;
pa = γ HKA; for δ = 0 to 20◦ < φ

pa = 0.8γ HKA; KA = tan2(45 − φ/2)

(Here φ = internal angle of friction of the soil).
For cohesive soils the pressure diagram is as shown in Figure 4.11.4.
Based on the above formulation it is obvious that none of the formulation can be

applied directly because of the heterogeneous property of the soil.
Since we cannot apply formulations based on conventional closed form expressions

the obvious choice would to seek an approximate solution based on FEM.
Here we will discuss Example 4.11.2 in detail since a similar problem like

Example 4.11.1 has already been solved in Chapter 2 (Vol. 1) dealing with FEM.

0.1H
0.2H                                         0.2H

pa     0.6H                                  pa       0.8H                                pa   0.7H

0.2H
0.2H

Dense Sand13 Loose Sand13 Sand14

Figure 4.11.3 Pressure diagram on sheet piles for cohesionless soil.

0.3H    

                       0.75H   
-4c              0.55H                               0.3γh

0.25H 

0.5γH 0.5γH

0.15H    

γH    

Clayey soil Temp support in stiff clay Perm support in clay

0.375γH0.4H

0.6H

Figure 4.11.4 Pressure diagram on sheet piles for cohesive soil.
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Before we go into the detail of selection of the various elements it would possibly be
worth to recapitulate the state of equilibrium of an elastic medium in 2D.

4.12 PLANE STRESS AND PLANE STRAIN CONDITION

The equilibrium of a body under the application of external loads has been categorized
based on theory of elasticity (Timoshenko and Goodier1970), into two states;

• Plane stress condition
• Plane strain condition

4.12.1 Plane stress condition

As shown in Figure 4.12.1 is a thin plate loaded by an UDL in the XY plain only. As
the plate is very thin the variation of stress in Z-direction (i.e. perpendicular to the
plane of the paper) is ignored. Based on the above we have, σz = 0; τxz = 0; τyz = 0;
the stress in the body is completely defined by σx, σy, τxy. The relation between the
stress and strain is defined by the following matrix

{σ } = [D] {ε} (4.12.1)

where, {σ } = the stress vector; [D] = the material or elasticity matrix; {ε} = strain
vector.

In matrix form the constitutive relation for plane stress case becomes

⎧⎨
⎩
σx
σy
τxy

⎫⎬
⎭ = E

1 − υ2

⎡
⎣1 υ 0
υ 1 0
0 0 1−υ

2

⎤
⎦
⎧⎨
⎩
εx
εy
γxy

⎫⎬
⎭ (4.12.2)

Here, E = Young’s modulus of the material; ν = Poisson’s ratio of the material.

w kN/m

Y  

X

L

Figure 4.12.1 A thin plate subjected to load in x-y plane.
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Y
Z

X

 Long Strip Footing                                                                             Embankment  

Figure 4.12.2 Plane strain situations.

4.12.2 Plane strain condition

In contrast to plane stress problem there are case in the other extreme where the length
of the system is large in the Z direction like a continuous strip footing, embankments
dams etc. as shown in Figure 4.12.2.

In this case as the Z-direction is large it is assumed that the displacement component
of the body in Z direction is zero at every cross section and the strain component εzz,
γyz and γzx will vanish and the remaining non zero components will be given by:

εx = ∂u
∂x

; εy = ∂v
∂y

; γxy = ∂u
∂y

+ ∂v
∂x

(4.12.3)

The constitutive law for plane strain element is as given hereafter:

⎧⎨
⎩
σx
σy
τxy

⎫⎬
⎭ =

⎡
⎣1 − ν ν 0

ν 1 − ν 0
0 0 1−2ν

2

⎤
⎦
⎧⎨
⎩
εx
εy
γxy

⎫⎬
⎭ (4.12.4)

The thickness considered in the Z-direction in this case is always the unit length.

4.13 FEM MODEL FOR THE VERTICAL CUT PROBLEM

Based on the above logic it is evident that the in sheet pile problem the soil can be
modeled as a 2D plain strain problem for the cut soil tends to large distance in Z
direction. The element to be chosen from the FEM library of the software in use
should have a bilinear polynomial function6 or an incompatible element subjected to
Taylor’s correction.

The total model including the point to which its boundary should extend is shown
hereafter.

As shown in Figure 4.13.1, the different elements of the whole system is broken up
into various structural elements like

6 Refer Chapter 2 (Vol. 1) to find why bilinear polynomial function should be used for this elements.
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• Truss element (for the struts)
• Beam elements (one meter width in Z direction) for the sheet pile
• The soil as plain strain element.

One of the major advantage here is that due to layering of the soil no approximation
is required and all one has to do is define three material card sets and define the plain
strain element accordingly while furnishing the input to the software.

It is evident that the extent to which the boundary shall extend in both X and
Y direction should be significant enough as not to have any distortion effect on the
problem in hand. The depth beyond the cut to which one should usually go is 1.5 to
2B in direction, where B is the width of the cut.

This is surely one disadvantage with FEM in infinite domain problems especially
under time dependent force.

In order to cater for the infinite boundary condition on has to go substantial distance
from the point of interest to ensure no spurious deflections effect the system.

Load from Structure

Truss element (typ)

Beam element (typ.)

45+ /2

Y ax is

X      

Figure 4.13.1 Finite element model of sheet pile with vertical cut.
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This obviously makes the problem big, time consuming and at times expensive in
terms of man-hours spent in preparation of data input, debugging the input, review
of the model and output interpretation.

At the boundary of the model at every node we provide supports on roller. This
helps the soil medium to deform on its own without any distortion and simulate the
correct field condition.

4.14 INFINITE FINITE ELEMENT A LOGICAL PARADOX. . .

On reading the definition itself the reader might say “OOPS”. For, surely the ter-
minology looks like a riddle. But in the Swansean world of finite element analysts,
the element appears perfectly sane and at times worshipped as the Virgin Mary
itself.

Any FEM package supporting this element saves a lot of time energy of the user and
makes his life much simpler.

Based on such raving review given above, the reader might by this time be a bit
curios to know as to

• What constitutes this paradox?
• How does it make life easy for us?

We had discussed above that one of the major disadvantage in FEM of solving
infinite domain problem is that to ensure proper field condition, we usually take the
boundary at a large distance from the point of interest and in the process makes the
problem in hand big, thus laborious and at times expensive.

Let us for instance take the case of Boussinesq’s equation of point load Q on an
elastic medium where the vertical stress is given by:

σz =
[

3Q
2πz2

]
1(

1 + ( r
z

)2)5/2 (4.14.1)

It is quite evident that as z → ∞ σz → 0.
Thus if we are doing a FEM analysis of this problem by intuition we can

say that limit of σz will approach the value zero when the distance will be very
large7.

To cater to this we have seen earlier how the problem tends to become voluminous
in terms of input data.

Suppose now we find an element which can be attached to the finite element at a
finite depth and whose mathematical formulation can define the condition that εz and
σz tends to zero as z tends to infinity. We surely can drastically reduce the magnitude
of the problem.

7 Of course the question remains as to what is the definition of this very large distance?
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P

1
6

2
3  5

4

Infinite finite element

Figure 4.14.1 Soil foundation modeled with infinite finite element.

The above is explained by an example as shown in Figure 4.14.1. We try to model a
foundation subjected to a point load P. Now for the first two rows, we apply standard
finite elements and for the third row we provide an element whose mathematical
formulation defines condition of stress and displacement approaches the value zero at
infinity we get a model as shown above. By providing these special elements we have
surely bypassed the problem of extending the boundary to a large distance.

This is no more required for the intrinsic mathematical property of the infinite finite
element satisfies the boundary condition implicitly.

Elements 1 to 6 as shown above are element of this kind and are called infinite finite
element (Bettes 1977, Beer and Meek 1981).

4.15 BASIS OF FORMULATION OF THE INFINITE ELEMENT

The mathematical logic behind the element stiffness generation is simple and intuitive.
We know that the basis of generation of stiffness matrix based on virtual work for
any element is based on selecting a suitable polynomial function for the displacement
function which is complete and continuous.

We now describe an element whose nodal displacement term, u is defined by a
polynomial

u = α1

x
+ α2

x2 + α3

x3 + α4

x4 + · · · · · · · · · · · · (4.15.1)

where, u = displacement at a particular node; α1,α2,α3,α4 . . . . . . = constants; x =
polynomial of nth degree, defining the displacement u.

4.15.1 What does it really mean?

This means that the polynomial function is decaying exponentially and approaches
zero when x tends to infinity.
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We will see here how the above concept is adapted in generating the element stiffness.
The concept though above looks simple but while implementation of the same based
on polynomial function as mentioned above generates two basic problems:

• At what order of x we truncate the polynomial?
• What would be the error induced due to this truncation?

It is quite obvious that theoretically, x → ∞, but while defining the polynomial, we
have to cut off at some finite value which could be quite high say 1/x100.

But x100 though could be a high value it is surely not infinity and would surely
induce some truncation error.

Secondly using a polynomial of such high order would increase the computational
effort significantly.

To by-pass the above difficulties polynomial function is generated based on mapping
system as shown below.

The mapping is first generated in term of one co-ordinate and is then extended to
two-dimension.

Let us consider a line (Figure 4.15.1), with points C, P, Q and R where R is an
imaginary point at infinity.

In Cartesian co-ordinate system the co-ordinates of each of the point are as
mentioned hereafter:

C = (xc, 0); P = (xp, 0)

where, xp = (xq + xc)/2; Q = (xq, 0) and R = (∞, 0).
Suppose we impose an arbitrary co-ordinate system ξ − η such that the co-ordinate

of point P, Q and R becomes

P = (−1, 0); Q = (0, 0); R = (1, 0)

Then any point x on the line C, P, Q, R can be expressed as in term of ξ as

x = − ξ

1 − ξ
xc +

(
1 + ξ

1 − ξ

)
xq (4.15.2)

(xc,0)                                          (xp,0)                                  (xq ,0) ∞→x

C                                              P (-1,0)                            Q (0,0)                          R (1,0)

Figure 4.15.1 Mapping co-ordinate in one dimension.
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Thus we find that for ξ = 0 we have, x = xq
For ξ = −1 we have, x = (xq + xc)/2
For ξ = 1 we have x = ∞.
The point C is here very significant for it is the origin of disturbance or the point

from which the stress propagates.
Now suppose we designate r as the radius vector from point C then

r = x − xc (4.15.3)

Now based on the expression of x in terms ξ as mentioned above, on solving for ξ
we have

ξ = 1 − xq − xc

x − xc
⇒ ξ = 1 − xq − xc

r
(4.15.4)

Now suppose we define the displacement function in terms ξ as:

u = α0 + α1ξ + α2ξ
2 + α3ξ

3 + · · · · · · · · · · · · (4.15.5)

on replacing ξ in term of xq, xc and r we find that the shape function takes the form
of exponential decay with u → 0 as r → ∞.

Based on the expressions deduced above one basic question still remains unan-
swered?

4.15.2 Why did we transform the co-ordinate
and what did we gain out of it?

The answer to this is that based on the virtual work principle the stiffness matrix of
any finite element is given by8

[K] =
∫
A

[B]T [D] [B] dA (4.15.6)

where [B] = f (u)
Now for the above line element it is obvious that integral becomes indefinite for the

limits in X-Y co-ordinate are

[K] =
x=∞∫

x=xc

[B]T [D] [B] dA (4.15.7)

Now as the integration has to be done numerically it is not possible to integrate
between ∞ and xc. When the reference co-ordinate is changed the above expression
gets converted to

8 Refer Chapter 2 (Vol. 1) for derivation of the expression.
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[K] =
ξ=1∫

ξ=−1

[B]T [D] [B] dA (4.15.8)

This is a definite integral between the boundary −1 and 1 and numerical integration
of the function between the specified boundary is possible.

For two dimensional element we can introduce another function η where

η = 1 − yq − yc
y − yc

with its boundary values lying between 1 and −1. (4.15.9)

Now based on the problem in hand we can select the functions

u = α0 + α1ξ + α2η

v = α4 + α5ξ + α6η
(4.15.10)

and derive the stiffness matrix based on the expression

[K] =
ξ=1∫

ξ=−1

η=1∫
η=−1

[B]T [D] [B] dξdη (4.15.11)

This element (if available in the finite element library of the software in hand) is one
of the most powerful tool in reducing the problem size of an infinite domain problem.
Since element satisfies the boundary condition at infinity it is called the infinite finite
element.

4.16 MATERIAL PROPERTY AFFECTING THE MODEL

As we had seen earlier that Winkler springs values are dependant on the sub-grade
modulus property of the soil, similarly for Finite element the material property which
on which it is dependent are:

E = Modulus of Elasticity of the material; ν = Poisson’s Ratio.
For concrete this value is usually taken as (IS-456), Econc = 5700

√
fck N/mm2;

ν = 0.3.

Because concrete is generally man made and manufactured under controlled condi-
tion there is not much variation in the quality, and in majority of the cases the value
of Econc will be near around the value as mentioned above.

Moreover laboratory techniques for evaluation of Modulus of elasticity of concrete
are sufficiently advanced to evaluate its value (Neville 1981), accurately.

When it comes to soil the problem becomes complicated because:

• For cohesion less soil collecting undisturbed sample form the field is very difficult
(if not impossible)
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Table 4.16.1 Equation of Es by several test methods. [after Bowles (1988)]

Sl. No. Soil SPT CPT

1 Sand (Normally Consolidated) Es = 500(N + 15) Es = 2 to 4 qc
Es = (15000 to 22000) logeN

2 Sand (Saturated) Es = 250(N + 15)
3 Sand (over-consolidated) Es = 18000 + 750N Es = 6 to 30 qc
4 Gravelly sand and gravel Es = 1200(N + 6)
4.1 Es = 600(N + 6) for N ≤ 15
4.2 Es = 600(N + 6) + 2000 for N ≥ 15
5 Clayey sand Es = 320(N + 15) Es = 3 to 6 qc
6 Silty sand Es = 300(N + 6) Es = 1 to 2 qc
7 Soft clay Es = 3 to 8 qc

Here value of Es is in kPa, N = No. of blows in a SPT test.

• For cohesive soil though samples can be collected in sampler, due to the thixotropic
changes during collection of samples the sample undergoes re-distribution in its
shear strength and as such laboratory results of modulus of soil may vary greatly
with the actual field condition.

It is for this it is preferable that Elasticity modulus of soil (Es) be measured in-situ.
Menard pressure meter test (Murthy 1991) is one such test where it is possible to

measure the in-situ modulus of soil in the field. One of the disadvantages of this test is
that the probing rod placed inside a vertical hole gives the modulus in lateral direction.
If the soil is not isotropic in nature the value in the vertical direction will not be the
same as in the lateral direction.

Because of the difficulty in obtaining the value of Es in laboratory and also due
to the limitation in application of pressure meter test, Modulus of elasticity is usu-
ally obtained from co-relation to various field tests carried out in the field like
Standard Penetration Test (SPT) for sand and Cone penetration Test (CPT). The
relation between Es and various test methods for various kinds of soils are given
in Table 4.16.1.

4.17 RELATION BETWEEN SUB-GRADE MODULUS
AND MODULUS OF ELASTICITY

It is also possible to obtain the modulus of elasticity from the sub-grade modulus value.
The relationship is given by (Vesic 1961)

k′s = 0.65 12

√
EsB4

Ef If
Es

1 − υ2 (4.17.1)

where ks = k
′
s/B, Es, Ef = modulus of soil and footing in consistent units; B, If =

footing width and moment of inertia based on cross section in consistent units.
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Since the twelfth root of any value multiplied by 0.65 is very near to 1, for all
practical purposes, the equation can be modified to

ks = Es
B(1 − ν2)

(4.17.2)

4.18 SELECTION OF POISSON’S RATIO

The Poisson’s ratio for soil usually varies between 0.3 and 0.5.
Considering ν = 0.4 shall serve the purpose for most of the practical problems.

4.19 LIMITATION AND ADVANTAGES OF FINITE
ELEMENT METHOD IN STATIC SOIL STRUCTURE
INTERACTION PROBLEM

Biggest advantage of the finite element method is its versatility to cater to varying
boundary condition.

• Soil is a heterogeneous medium any closed form solution is at best an approxima-
tion. We had shown in our example of vertical cut as to how FEM can overcome
this problem.

• Though out of scope in this treatise it is possible to solve non-structural prob-
lems like consolidation, seepage heat mass transfer etc., based on variational
formulation of the differential equation and seek a solution based on appropriate
boundary condition.

• Material non-linearity, plastic flow and crack propagation problems are now
routinely solved by FEM.

But this is not without its pitfall. For the major danger lies in the present trend of
using a FEM software as a black box with many a times the end result tantamounting
to “Garbage in and Garbage Out”.

FEM is surely a powerful tool for analysis but when gets into the hand of an inexperi-
enced user or a user with inadequate theoretical knowledge it is as good as performing
a Hara-Kiri9.

Leaving aside the philosophical aspect of the disadvantage FEM, one of the major
debate which is still on as far as Geo-technical Engineering is concerned, is that one
of the major constituent of the FEM analysis is the material matrix (Made up of
Es and ν).

As there exists a major problem in correct estimation of these values. . .

9 If the reader is unaware of the terminology “Hara-Kiri” he is advised to see Bruce Lee’s movie ‘Enter
the Dragon’.
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• What is the sanctity of using such a sophisticated analysis?
• How accurate will be results where basic parameter could quite be suggestive?

Based on this we still find many engineers10 quite skeptical about the usage of FEM
specially to problems related to Foundation Engineering.

It is not without any semblance of truth. It is for this at times it is worth run-
ning a problem for a certain range of data pertaining to a certain kind of soil and
use our judgement to arrive at the best design figure. Finally the importance of field
observations like load testing should not be undermined.

The analyst is sitting in the design office far away from the site and selecting his
parameters based on his judgment and from the soil report on his desk (which could
also be erroneous due to wrong field reading or faulty instrumentation too).

Based on the load testing of a similar foundation at site if the results vary then
what his theoretical predictions say, he should re-modify his parameters to suite the
field reading and re-analyze. He may be spending some more hours in his engineering
design11 but at the end may end up with saving a lot of money in terms of damage
management and repair of faulty foundation and structures.

For just to remind the readers we end with Terzaghi’s12 famous quotation.

“Foundation can appropriately be described as a necessary evil. If a building is to
be constructed on an outcrop of sound rock, no foundation is required. Hence in
contrast to the building itself which satisfies specific needs, appeals to the aesthetic
sense, and fills its matters with pride, the foundation merely serve as a remedy for
the deficiencies of whatever nature has provided for the support of the structure
at the site which has been selected.

On account of the fact that there is no glory attached to the foundations and
that the sources of success or failures are hidden deep in the ground, building
foundations have always been treated as step children and their acts of revenge
for the lack of attention can be very embarrassing”.

10 Specially the Geo-technical specialists of orthodox school, who think FEM is a rude intrusion by the
structural engineers in their domain of semi-empirical approach.

11 And might get a bit of kick in his butt from his boss for over-running the man-hours.
12 The Influence of Modern Soil Studies on Design and Construction of Foundations – Dr. Karl Terzaghi

International Conference of Soil Mechanics & Foundation Engineering ,Opening Lecture 1951.





Chapter 5

Concepts in structural and soil
dynamics

5.1 INTRODUCTION

This section focuses on different theories of Structural Dynamics. Here we have empha-
sized on the modal response technique and step-by-step integration that forms the
backbone of analysis of most of the structures.

Advance techniques like random vibration, non-linear dynamics and probabilistic
analysis have not been dealt here. For study of this more advanced topic you may go
through the reference list furnished at the end of the chapter. While introducing this
chapter we have tried to focus on the fundamental concepts and designed the numeri-
cal problems accordingly. We have deliberately restricted to matrices of the second
and third order in most of the cases, so that one may follow the essence using a simple
calculator.

5.2 A BRIEF HISTORY OF DYNAMIC
ANALYSIS OF STRUCTURE AND
FOUNDATION IN CIVIL ENGINEERING

Though civil engineering as a profession itself has been in existence from the early dawn
of civilization, yet even fifty years ago civil engineers did not use dynamic analysis as
an essential tool as a part of their daily work.

Most of the analyses were done based on equivalent static methods. Any dynamic
effect due to movements of cranes or operation of machines were catered to in the
static analysis by considering an impact factor, or an arbitrary magnification factor.
Unlike aircraft or shipping industry where engineers were extensively using various
analytical tools for dynamic response of structure in flight or in motion on sea, the
civil engineers were quite content with there approach of designing there buildings
and structures based on their method (which can be stated in today’s terminology) of
a crude form of pseudo-static analysis.

Then four things happened almost simultaneously after the Second World War . . .

• A big boom in high rise building in USA.
• A big demand in energy sector specially power plants in war ravaged Europe and

USA, (both thermal and nuclear) generating requirements of supporting heavy and
high speed machines.
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• Tehachapi Earthquake in California USA in 1952.
• IBM coming up with business machines capable of doing automatic calcula-

tions.

The damages occurred during the 1952 earthquake brought civil engineers out of
their slumber and it was realized that the traditional tools used for designing the
structure that were the order of the day were inadequate.

Tehachapi earthquake clearly demonstrated the seismic vulnerability of a number
of traditional structures.

The potential of a severe earthquake hitting a major populated area and the catas-
trophe it can create looming large over their head, the civil engineers had no other
option but to take stock of the analytical tools they had in their hand and went back
to the hallowed domain of academics to understand and harness the most complex
and the fearful force that the nature has ever created.

An intensive research work started in a number of American Universities namely,
the University of California at Berkley, California Institute of Technology, and Mas-
sachusetts Institute of Technology under the leadership of the likes of R S Bisplinghoff,
Ray W Clough, Edward L Wilson and S H Crandall and a number of interesting results
came out from their research.

Dynamic analysis was then restricted to finding out the frequencies and mode shapes
of the first few modes based on manual calculations. Engineers in design offices still
abhorred dynamic analysis for the laborious and intense calculation it demanded.

It was in the late fifties that an engineer by the name of Gabriel Kron who was
working with the IBM developed a logic based on his indigenous method of diakop-
tics1 and showed how matrix operations can be manipulated through computers2.
Engineers working in area of dynamic analysis quickly realized the potential and the
development of software for analysis of structures with a large number of degrees of
freedom soon became a reality.

In the meantime engineers working in the energy sector were going through a tough
time. With more and more demand for power, manufacturers were churning out
more and more heavy machines with progressively increasing operating speed. It was
observed that in many cases the rule of thumb in vogue to provide a support or foun-
dation having weight 2 to 2.5 times weight of the machine were not working all the
time. In many cases the machines malfunctioned due to excessive vibration, the foun-
dations cracked and there were repeated breakdowns resulting in poor output and
productivity.

During this time Gregory P Tschebotarioff migrated to USA from erstwhile USSR.
He published some papers prepared by one of his Russian colleague, Dominic D Barkan
where it was shown in a systematic way that the problem of foundations supporting
the rotating machines could be solved. Tschebotarioff on his own initiative translated
all the works in English from Russian and got it published in the form of a book
(Barkan 1962). Soil dynamics saw its first light on birth.

1 It means the method of cutting.
2 It was an era when a 17 by 17 matrix inversion roughly took about 17 hours.
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In the meantime civil engineers were building the high-rise building considering
their foundations as rigid with the earthquakes inducing a base motion to it. The tall
buildings, which are identified as potential earthquake hazard, were slender, flexible
and were mostly resting on firm ground. The fixed based assumptions the engineers
made for these tall buildings were valid for most of the cases.

The analytical techniques for the calculating the dynamic response of such tall
structures was quite developed by that time. They were mostly programmed into the
computers based on matrix analysis of structure and were found to be quite efficient
in predicting the static and dynamic response of tall buildings.

The civil engineers leaned back in their chairs with a satisfied grin on their faces. ‘He
has come a long way from his days of paper, pencil, eraser and a slide rule’. Dynamic
analysis thus reached it teens.

But history has a peculiar way of changing the course and destiny of human civiliza-
tion. It forced upon human beings two issues, which catapulted the whole technology
into a new era.

The issues were . . .

• The advent of Nuclear power plants
• Two earthquakes one in Mexico and the other in Turkey

With the fast depletion of conventional energy sources like coal and the environ-
mental hazard it created, many developed countries like USA, France, Germany and
others resorted to Nuclear Power Plants as an alternate source of energy.

The dynamic analysis techniques that were developed as mentioned above when
applied to the structures related to Nuclear Power Plant (N.P.P.) were found to be
insufficient.

For from functional and other safety requirements, most of the structures pertaining
to N.P.P. were massive and rigid in nature. It was realized that considering them as
lightweight and flexible structures were not valid. Moreover from the point of view of
economy and technical feasibility of the project many of them were to be built on soft
soil. It became clearly apparent that the response of such massive and stiff structures
resting on soft soil would induce significant dynamic deformation of the foundation
system. This in turn will alter the dynamic response of the structure.

The two earthquakes (in Mexico and Turkey) as mentioned above, resulted in
extensive damage to the buildings though most of them were designed for earthquake
considering them as fixed base flexible structures.

Study revealed that the underlying soil condition played a major hand in their
damage resulting in amplification of the earthquake response.

Realization of these facts has brought a new era in the dynamic analysis of struc-
tures pertaining to Civil Engineering termed Dynamic Soil-Structure Interaction, where
conventional techniques applied in structure and soil dynamics are coupled together
to understand the overall response of the system (by the word system we mean
here to constitute both the structure and the supporting soil medium). Dynamic soil
structure interaction is by far the most complex analysis in the annals of civil engi-
neering and research is still on to understand the phenomenon properly and minimize
the uncertainties, which dogs it.
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5.2.1 Basic concepts

In Chapter 3 (Vol. 1) while introducing you to the theory of mechanical vibration
we stated that vibration/dynamics as a topic got inducted in civil engineering quite
late (sometimes around 1950). In the pre-computer era when engineers were restricted
to hand computations or mechanical computers (at best), the objective was- trying
to find out the first few modes or at least the fundamental mode of vibration of a
system.

For this, many structures were mathematically modeled as a system with single
degree of freedom to determine their dynamical characteristics. In this process engi-
neers initially depended heavily on the spring lumped mass model as cited earlier in
Chapter 3 (Vol. 1). To give you some further idea let us consider the portal frame as
shown in Figure 5.2.1(a) and we are interested in determining the fundamental time
period in the horizontal and vertical directions. For a quick calculation, considering
single degree of freedom, we first need to establish the mass (m) and equivalent spring
(k) for the system3.

In the vertical direction for each column the spring stiffness can be stated to
be EA/L. Here E = Young’s modulus of the column material, A = cross sec-
tional area and L its length4. Considering two columns of the frame and these
being in parallel the net spring stiffness is 2EA/L. Considering self weight of
column and beam and whatever is the superimposed load, we can arrive at
the effective lumped mass, m. Thus in effect, the real structure as shown in
Figure 5.2.1(a) has now been idealized as an equivalent spring and mass as shown
in Figure 5.2.1(b).

Similarly for lateral direction it can be shown that equivalent spring for the system
is 24EI/L3. Here I = Moment of inertia of the column and again the system can be
idealized as a spring mass system as shown in Figure 5.2.1(b).

Though apparently this may look to be a crude procedure, yet is a very effective
and realistic tool even today as the first step to asses the dynamic behavior of a body
under vibrating force and thus it becomes an important topic of study.

5.2.1.1 Vibration of systems having single degree of freedom

A structure having single degree of freedom under vibration can be mathematically
modeled as a lumped mass connected to a spring where the spring data is obtained
from the elastic property of the system is as shown in Figure 5.2.1(b). The mathe-
matical derivation being same as that developed in Chapter 3 (Vol. 1) we will not
derive them in detail herein but for quick recapitulation would only present the basic
essence5.

3 Since time period is given by the expression T = 2π
√

m/k.
4 Refer Table 5.1.1 where equivalent spring stiffness for beams with various boundary conditions are

furnished.
5 For those who have skipped Chapter 3 (Vol. 1), would find it beneficial to go through the analysis of

single degree of freedom as elaborated there.
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Figure 5.2.1a Single storey portal frame with two translational degrees of freedom per node.
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Figure 5.2.1b Mathematical model and the free body diagram.

5.2.1.2 Calculation of natural frequency

For the applied load the free body diagram is as shown and applying D’Alembert’s
principle we have the equation of equilibrium as

mẍ + kx = P0 sinωmt (5.2.1)

Considering ω2
n = k/m for the homogenous equation, we have

ẍ + ω2
nx = 0; → x = A sinωnt + B cosωnt (5.2.2)

Where, ωn = the natural frequency of the structure.
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Differentiating Equation (5.2.2) twice with respect to time, we have

ẍ = −Aω2
n sinωnt − Bω2

n cosωnt

For t = 0, x = 0 which implies B = 0; again for t = 0 ẍ = 0 which implies
sinωnT = 0 and

T = 2π/ωn and T = 2π
√

m/k (5.2.3)

where T is the time period of the body defined as the time taken for the body to
complete one cycle of vibration.

5.2.1.3 Calculation of amplitude

Let x = x̄ sin(ωmt + α) be the assumed displacement function where α is the phase
difference with the exciting force P0 sinωmt. Then ẍ = −x̄ω2

m sin(ωmt + α) and
substituting the value in Equation (5.2.1), we have

x̄ sin(ωmt + α) = P0 sin(ωmt)/(k − mω2
m)

For maximum value of x, taking sin(ωmt + α) = 1 and sin(ωmt) = 1, and we have

x̄ = P0/(k − mω2
m) (5.2.4)

Now since ω2
n = k/m, and using, r = ωm/ωn, we have

x̄ = P0/k
(1 − r2)

, (5.2.5)

It may be noted that when ωm = ωn, r = 1 which gives the value of x̄ infinity.
This means that when the natural frequency of the system has the same frequency

of the exciting force, for an un-damped system the displacement is infinite.
This is known as the resonant condition of the system and is a very important factor

for further study.
The system shown above is known as an un-damped system. By this, what happens

is that a system once starts vibrating will continue to be in motion, indefinitely6.
For instance a simple pendulum once starts moving to and fro from its mean position

will continue to do so and will never stop.
But things do not happen so in nature, “like all good things comes to an end”, a

motion once starts also stops after a certain period of time.

6 This is called perpetual motion.
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k c

Figure 5.2.2 Mathematical model of single degree damped system.

5.2.1.4 Why does it happen so?

This happens because nature has built in our system a retarding property, which
implicitly acts against motion from the very advent of the motion and brings it to a
stop. This is known as the damping of a system.

Damping is indeed a difficult concept. While the physicist are still in quest to under-
stand the mechanics behind the concept as to how exactly it works and quantify its
value, the Mathematicians and Numerical Analysts despise it for it makes a mess of a
lot of their elegant looking equations and complicates the issue7.

There are different kinds of damping like material damping, radiation damping,
hysteretic damping etc.

We will see this in more detail later and for the time being let us assume that it
is mathematically represented by a dash-pot where the force induced is expressed as
Fc = cẋ.

The system is mathematically shown in Figure 5.2.2.
The differential equation of motion is given by

mẍ + cẋ + kx = P0 sin(ωmt) (5.2.6)

For the homogeneous equation, the solution is usually taken as x = est and substi-
tuting this value in Equation (5.2.6), we have (ms2 + cs + k)est = 0, which is satisfied
for all values of, t, when

s2 + cs/m + k/m = 0

On solution of the above quadratic equation, we have,

s1,2 = −c/2m ±
√

[(c/2m)2 − k/m].

7 But that is how mother nature is built . . . . And one has to learn to live and solve the riddles she possesses.
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Hence the general solution is given by

x = Aes1t + bes2t (5.2.7)

where A and B are constants to be evaluated from the initial conditions x(0) and ẋ(0).
On substitution of the value of s1 and s2 we have

x = e−(c/2m)t[Ae
√

{(c/2m)2−k/m}t + Be−
√

{(c/2m)2−k/m}t] (5.2.8)

The first term e−(c/2m)t is simply an exponentially decaying function of time. The
behavior within the parenthesis however will depend upon numerical value within the
radical i.e. if it is negative, zero or positive.

Case-1
√[(c/2m)2 − k/m] ≥ 0 : (c/2m)2 > k/m, the exponent in the above

equation is a real number and no oscillation is possible. This case is termed as over
damped system.

Case-2
√[(c/2m)2 − k/m] = 0 : (c/2m)2 = k/m, this is known as critically damped

case.
In this case the damping is represented by c = cc as such (cc/2m)2 = k/m = ω2

n

which, on simplification gives cc = 2
√

km = 2mωn. It is convenient to express the
value of any damping in terms of the critical damping as a ratio D = c/cc and is known
as the critical damping ratio.

Case-3 when
√[(c/2m)2 − k/m] ≤ 0 : (c/2m)2 < k/m the case is known as under

damped case. The factor c/2m in terms of D can be written as, c/2m = Dωn.

Then the general solution becomes

x = e−Dωnt(Aeiωdt + Be−iωdt) (5.2.9)

where ωd = ωn
√

1 − D2 is known as the damped natural frequency.
Now using the identity eiθ = cos θ + i sin θ , e−iθ = cos θ − i sin θ and applying these

expressions in Equation (5.2.9), we have

x = e−Dωnt[(A + B) cosωdt + i(A − B) sinωdt]
➔ x = e−Dωnt[C1 cosωdt + C2 sinωdt] (5.2.10)

where C1 and C2 are arbitrary constants and the expression above is the solution to
the homogenous equation.
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5.2.1.5 Solution to the Particular Integral

Let the solution be, x = x̄ sin(ωmt − ϕ), then we have

ẋ = x̄ωm cos(ωmt − φ) and ẍ = −x̄ω2
m sin(ωmt − ϕ).

Substituting the above in Equation (5.2.6), we have,

x̄[(k − mω2
m) sin(ωmt − φ)+ cωm cos(ωmt − ϕ)] = P0 sinωmt

Using θ = ωmt−ϕ and A = (k − mω2
m) and B = cωm, the above equation reduces to

x̄(A sin θ + B cos θ) = P0 sinωmt

➔ x̄ = P0 sinωmt
A sin θ + B cos θ

Again, x̄ = x̄max and dx̄
dθ = 0 give, x̄max = [P0 sinωmt]/√[(k − mω2

m)
2 + c2ω2

m]
which on simplification becomes

x̄max = (P0/k) sinωmt√[(1 − r2)2 + (2Dr)2]
(5.2.11)

where r = ωm/ωn and D = c/cc; cc = critical damping of the system and is 2
√

mk.
Thus the complete solution is

x = e−Dωnt (Aeiωdt + Be−iωdt)+ (P0/k) sinωmt√[(1 − r2)2 + (2Dr)2]

where, ωd = ωn

√
[1 − D2]. (5.2.12)

In the above equation the first part is known as the transient response and the second
part is known as the steady state response.

The transient response dies down after initial first few cycles while the steady state
response continues and becomes the main factor.

Above is a very important expression and it will be seen that time and again we
would be utilizing this expression for both structures and foundations of both single
and multi-degree of freedom.
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Figure 5.2.3 A two-storied building resting on ground.

5.2.1.6 Vibrations of systems with two/multi-degree of freedom

This is also known as modal response method and is one of the most popular methods
in design offices for dynamic analysis of structure and foundation.

Two understand the principle of vibration of a structure with n degrees of freedom
we start as a pre-requisite to understand the concepts of a structure with two degrees
of freedom in matrix form.

As a 2 × 2 matrix is amenable to hand calculation the underlying concepts are
easy to understand. Based on these concepts we will extend the techniques to dynamic
analysis of structures and foundations having a large number of degrees of freedom
and its computer implementation.

Shown in Figure 5.2.3 is a two storied building with two degrees of freedom in
x directions. The slabs connected to transverse beams are assumed to act as deep
diaphragm and induces infinite stiffness to beams by virtue of which the flexural mode
of the beam is ignored and the frame is assumed to act as a shear frame8.

The equivalent two storied frame is converted into a stick model as shown in Figure
5.2.4. In the model, the weight in each floor is converted to equivalent mass and
is lumped as shown. While the stiffness constitute of summation of the individual
stiffness of columns on each floor, we neglect the damping effect for the time being
and presume the system to be subjected to an un-damped free vibration.

The free body diagram is as shown in Figure 5.2.5, is based on D’Alembart’s
equation.

Then taking
∑

Fx = 0 we have for mass m2

m2ẍ2 + k2(x2 − x1) = 0 (5.2.13a)

8 In fact this is the basic assumption for dynamic analysis of all multistoried buildings where for calculation
of eigen-values shear type of frames are found to be quite sufficient.
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Figure 5.2.4 Stick model. Figure 5.2.5 Free body diagram.

and from the free body diagram of mass m1 we have

m1ẍ1 + k1x1 − k2(x2 − x1) = 0, (5.2.13b)

re-arranging the above two equations in matrix form we have

[
m1 0
0 m2

]{
ẍ1
ẍ2

}
+
[
k1 + k2 −k2

−k2 k2

]{
x1
x2

}
= 0 (5.2.14)

The above constitute the equation of free vibration for a two storied building as
shown above. In matrix form the above is usually represented as

[M]{Ẍ} + [K]{X} = 0 (5.2.15)

where, [M] = a square matrix of the order 2; [K] = a square matrix of size (2 × 2)
and X = a column matrix of size (2 × 1).

It should be noted here that

• The mass matrix is a diagonal matrix having all off diagonal elements as zero.
• The stiffness matrix is a 2 × 2 matrix and is symmetric i.e. [K]T = [K].

5.2.1.6.1 Determination of the natural frequency

For calculation of natural frequency let us assume

{X} = xi sin(ωnt − α) (5.2.16)

where i indicates the total degrees of freedom (here 2).
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Now {Ẍ} = −{X}ω2sin(ωt − α) and on substitution of the same in the equation of
free vibration we have

−[M] ω2sin(ωt − α){X} + [K]{X}sin(ωt − α) = 0 (5.2.17)

which on simplification gives

[K] − [M]ω2 = 0 (5.2.18)

The above is mathematically known as the eigen value problem of a matrix of order
n × n where on simplification it yields a polynomial of order n. The n roots of the
equation are known as the eigen values of the system and the corresponding vectors
spanning the n space is known as the eigen vectors. We will devote more on eigen values
and different computer techniques adopted for solving the same while discussing the
solution of dynamic problems with large degree of freedom.

For the time being let us see how the eigen values effect the overall dynamic analysis
procedure based on a 2 × 2 matrix which is amenable to hand calculation.

Based on the above explanation the second order differential equation for the two
storied building becomes

[
k1 + k2 − m1λ −k2

−k2 k2 − m2λ

]
= 0 where λ = ω2 (5.2.19)

Now considering, k1 + k2 = A and k2 = B we have

[
A − m1λ −B

−B B − m2λ

]
= 0 (5.2.20)

on expansion of the above we have

(A − m1λ)(B − m2λ)− B2 = 0, (5.2.21)

on simplification it becomes m1m2λ
2 − (m1B + m2A)λ+ (AB − B2) = 0, resulting in

λ1,2 = (m1B + m2A)±√[(m1B + m2A)2 − 4m1m2(AB − B2)]
2m1m2

(5.2.22)

in which, ω1 = √
λ1 and ω2 = √

λ2 , where ω1 and ω2 are the natural frequency of the
structure.
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We know that, T = 2π/ω, so for converting the values of ω1 and ω2, one can
find the fundamental time periods T1 and T2 of the two storied building. Once the
value of λ1 and λ2 are obtained we substitute the values in the matrix equations
to have

[
A − m1λ1 −B

−B B − m2λ1

]{
x1

x2

}
= 0 for the first mode, and

[
A − m1λ2 −B

−B B − m2λ2

]{
x1

x2

}
= 0 for the second mode. (5.2.23)

For the first mode, on expanding, we have

− Bx2 + (A − m1λ1)x1 = 0 and

− Bx1 + (B − m2λ1)x2 = 0, (5.2.24)

the above being a homogenous equation having zero in the right hand side of both the
equations a unique solution is not possible; as such presuming one value as unity or
any arbitrary value the other term may be obtained.

For the first mode considering, x1 = 1, x2 = (A − m1λ1)/B, and for the second
mode with, x1 = 1, x2 = (A − m1λ2)/B.

It will be observed that the other equations in the first and second mode are
automatically satisfied.

We will now explain the above theory based on a suitable numerical example.

Example 5.2.1

The plan view of a two storied R.C.C. building is as shown in Figure 5.2.6. The

building has following data

1 Thickness of roof slab = 150 mm
2 Thickness of floor slab = 200 mm
3 Size of roof beams = 600 × 750
4 Size of floor beams = 600 × 900
5 Size of columns = 600 × 600
6 Wall thickness at first floor = 250 mm
7 Live load on roof slab = 1 kN/m2

8 Live load on floor = 1.5 kN/m2

9 Equipment load on floor = 500 kN
10 Unit weight of brick = 20 kN/m3

11 Dynamic modulus of concrete = 3 × 108 kN/m2

12 Unit weight of concrete = 25 kN/m3
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Calculate the natural frequency, time period and the modal shapes for each
mode.

6500   7300  
A

4200

APlan of building per floor 

3000

4000

3000

4000

SEC A-A

Figure 5.2.6 Two storied R.C.C. building.

Solution:

Mass calculation per floor:

Sl. No. Roof/system Calculation Load/9.81 CF2 CF1 M2 M1

1 Slab 14.4 × 4.8 × 0.15 × 26.422 1 0 26.42 0
25 = 259.2

1.1 Beam 36 × 0.6 × (0.75−
0.15) × 25 = 324

33.03 1 0 33.03 0

1.2 Column 0.6 × 0.6 × 3 ×
25 × 6 = 162

16.51 1/3 2/3 5.50 11

1.3 Live load 14.4 × 4.8 × 1.0 = 69 7.03 1 0 7.03 0
2 Floor/System
2.1 Slab (259.2/0.15) ×

0.2 = 345.6
35.229 0 1 0 35.23

2.2 Beam 36 × 0.6 × (0.9−0.2) ×
25 = 378

38.53 0 1 0 38.53

2.3 Equipment
load

500 50.97 0 1 0 50.97

2.4 Live load (69/1.0) × 1.5 = 103.5 10.55 0 1 0 10.55
2.5 Brick-wall 36 × 0.25 ×

(3−0.375−0.45) ×
20 = 391

39.908 1/3 2/3 13.3 26.6

2.6 Column 0.6 × 0.6 × 4× 6 ×
25 = 216

22.02 0 1/3 0 7.34

85.31 180.22

Note: Here CF1 and CF2 are contributing factors of mass to the floor level and roof level.
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Calculation of stiffness

For floor level

k1 =
6∑
1

12EI

L3
1

where I = (0.6)4

12
= 0.0108 m4

∴ k1 = 6 × (12 × 3 × 108 × 0.0108)/(4)3 = 3645000 kN/m;

k2 = 6 × (12 × 3 × 108 × 0.0108)/(3)3 = 8640000 kN/m

The stiffness matrix is given by

[K] =
[
3645000 + 8640000 −8640000

−8640000 8640000

]
, while mass matrix is

[M] =
[
180 0

0 85

]

Thus, the characteristic equation of the system as mentioned above is given
by the determinant of

[
122850000 − 180λ −8640000

−8640000 8640000 − 85λ

]
= 0

The solution to the same is given by the equation

λ1,2 = (m1B + m2A)±√[(m1B + m2A)2 − 4m1m2(AB − B2)]
2m1m2

where, m1 = 180; m2 = 85; B = 8640000 and A = 122850000.

Substituting the above mentioned data, we have

λ1 = 93365.32 and λ2 = 690781.7 ➔ ω1 = 306 rad./sec and

ω2 = 831 rad/sec.

Knowing T = 2π/ω, we have T1 = 0.02 sec and T2 = 0.0075 sec.

Mode shapes

For the first mode,

[
122850000 − 180 × 93365 −8640000

−8640000 8640000 − 85 × 93365

]{
x1
x2

}
= 0
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On expansion, we have,

106044300x1 − 8640000x2 = 0

−8640000x1 + 703975x2 = 0

Thus, assuming x1 = 1.0 we have, x2 = 106044300
8640000 = 12.2736

Thus the mode shape for the first mode is{
x1
x2

}
=
{

1.0
12.2736

}

Similarly for the second mode

[
122850000 − 180 × 690781.7 −8640000

−8640000 −8640000 − 85 × 680781.7

]{
x1
x2

}
= 0

On expansion, the above equations give

−14907060x1 − 8640000x2 = 0; −8640000x1 − 66506444x2 = 0

Substituting, x1 = 1.0, we have x2 = −14907060/8640000 = −0.1725362.
Thus, the mode shapes for the second mode is

{
x1
x2

}
=
{

1.0
−0.1725632

}

The mode shapes are shown in Figure 5.2.7.

Thus, under any arbitrary loading, the displacements x1 and x2 will be a
multiple of the modal values.

Second Mode 

First Mode

Figure 5.2.7 Eigen vectors or modeshapes of the building.
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Based on the above problem we have come to realize that the evaluation of eigen
values and eigenvectors are in essence evaluation of the natural frequency and mode
shapes of a system. As such, before we proceed further, it would be worth to
understand the physical as well as mathematical concepts underlying it.

5.2.1.7 Concepts of eigen value analysis

The eigen value problem in terms of matrix algebra (Ayres 1962) is defined as follows:
If there exists a matrix [A] and {X} such that

• [A] {X} = [λ] {X}, then problem is said to be an eigen value problem; where λ is
the eigen value.

• The matrix expression as mentioned above on expansion gives a polynomial
equation, and the order of the polynomial is same as the size of the matrix [A]
and {X} (i.e. if the size of the matrix is 2 × 2 the polynomial equation will be a
quadratic equation, if the size is 3 × 3 it will be a cubic equation and so on. . .).
The characteristic roots of the polynomial give the eigen value solution (λ) of the
problem.

• For each definite value of λ we get a set of homogeneous equation in terms of
X and the same can be expressed in terms of the other and are known as the
eigenvectors.

• For any particular mode j, the term
∑3

k=1 ak[[M]−1[K]]k = is known as the eigen
pair for the jth mode. This is elaborated later in Equation (5.2.30).

The definition mentioned above looks fine but reads more like a lecture in the
graduate course in mathematics. But engineers though use mathematics as a day to
day tool in their regular work prefers to first comprehend the physical concept behind
the problem rather than the obscure abstractions which mathematicians prefer at times.

So the question boils down to. . .

5.2.1.8 What is the physics of the eigen value?

To understand the physical concept behind it for the time being we digress from our
present topic and go back to some fundamentals of elasticity and strength of materials.

Shown in Figure 5.2.8 is an element cut out from a 2D body subjected to bi-axial
stress. We know that the stress tensor in plane subtending an angle φ with vertical is
represented by

[
σx τxy
τxy σy

]{
l
m

}
=
{

X
Y

}
(5.2.25)

where � and m are direction cosines X and Y are the external forces.
We also know (Timoshenko and Goodier 1970) if s is the principal stress then the

same is represented by the expression

s1,2 = (σx + σy)/2 ±
√
([σx − σy]/2)2 + (τxy)2 (5.2.26)
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Figure 5.2.8 Plane stress at a point.

Here the principal stress is defined as a set of unique stresses in a plane where the
shear stress, τ vanishes and the total stress tensor is represented by two complimentary
forces one with positive and the other with negative sign and is given by

s1 = (σx + σy)/2 +
√
([σx − σy]/2)2 + (τxy)2;

s2 = (σx + σy)/2 −
√
([σx − σy]/2)2 + (τxy)2

The forces represented by σx, σy and τxy are transformed into a different co-ordinate
system (X′Y′) which we can attribute as a change of basis and represent them in terms
of the two stress parameters s1 and s2.

Substituting X = S · � and Y = S · m, we can write equation (5.2.25) as

[
σx − S τxy
τxy σy − S

]{
�

m

}
= 0, since � and m is not equal to zero

hence[
σx − S τxy
τxy σy − S

]
= 0, and on expansion we may get

S2 − (σx + σy)S + (σxσy − τ2
xy) = 0

➔ S1,2 = (σx + σy)/2 ±
√
([σx − σy]/2)2 + (τxy)2 (5.2.27)

We see that principal stresses are actually the eigen values of the stress matrix and
can be represented as [σx,y]{φ} = [S] {φ}.
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Thus we can conclude that . . .
A system of forces spanning a space of n dimension and represented by a matrix of

order n × n can be subjected to transformation of basis and converted into n number
of unique values.

These unique values on the change of the basis from its original form gets de-coupled
and are known as the eigen values of the system and the space it spans are termed as
the eigen vectors.

5.2.1.9 Eigen value problem in dynamics

First let us see how the second order linear differential equation of motion can be
converted to a standard eigen value problem. We know that

[M]{Ẍ} + [K]{X} = 0 (5.2.28)

Considering {X} = {ϕ} sin(ωt − α), we may write {Ẍ} = −{ϕ}ω2 sin(ωt − α)

Substituting the value of {Ẍ} in the equation of motion we have

−[M]ω2{ϕ} sin(ωt − φ)+ [K]{ϕ} sin(ωt − α) = 0

→ [K]{ϕ} = ω2[M]{ϕ} → [K][M]−1{ϕ} = ω2{ϕ}

➔ [A]{ϕ} = λ{ϕ} (5.2.29)

which is the standard eigen value format.

5.2.1.9.1 What does eigen value signify in dynamics?

Based on the previous discussion it would perhaps be not too difficult to conceive now
the physical concept underlying eigen value problem in dynamics.

A structure or a foundation as we have seen earlier is an assemblage of individual
elements. In terms of dynamic analysis, it is actually an assemblage of a complex
system of idealized springs and lumped masses and we assemble them to form global
matrix and perform the analysis.

Shown in Figure 5.2.9, is a system of space truss assembled as a mathematical model
of springs and lumped masses.

While performing the eigen value analysis we transform it into a different co-ordinate
system and define the parameters in terms of a set of distinct value λ.

[λ] = [K] [M]−1 = [K]
[M] (5.2.30)

Here we are actually breaking up the complex system into individual sets of spring
and lumped mass of ‘single degree of freedom’ and try to analyse the behaviour in the
transformed axes.
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Equivalent spring lumped mass model

Figure 5.2.9 Space truss.

The term ‘λ’ actually measures stiffness per unit mass i.e. it gives us a measure of
how stiff or how flexible is the structure/foundation and the eigen vectors give us a
physical idea of how it will deform on application of a time dependent load.

5.2.2 Orthogonal transformation or the transformation
basis

We had mentioned while explaining the eigen value that the transformation of
co-ordinate de-couples the matrix into an independent distinct set of data.

This transformation is known as the orthogonal transformation and we discuss here
some of the fundamental concepts regarding the same.

5.2.2.1 What is orthogonal transformation?

By orthogonal transformation we mean that the scalar product of two vectors is zero.
Suppose

Â = Axi + Ayj + Azk and B̂ = Bxi + Byj + Bzk

are two vectors then the scalar product of the two vectors are given as, [A] [B]T, in
which using i2 = j2 = k2 = 1, and ij = jk = ki = 0, the scalar product the vectors [A]
and [B] is given by

[A] · [B]T = AxBx + AyBy + AzBz, (5.2.31)

and this is said to be orthogonal, when AxBx + AyBy + AzBz = 0.
For a matrix of order n × n having n numbers of eigen pairs

∑n
i=1(λi,φi), the eigen

vectors are orthogonal to each other.
We prove this by a suitable numerical example.
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Example 5.2.2

Let [A]{φ} = [λ]{φ} where [A] =
[

30 10

10 30

]

Then for eigen value analysis we have

[
30 − λ 10

10 30 − λ

]{
φ1

φ2

}
= 0, since{ϕ} �= 0 we have (30 − λ)2−(10)2= 0

or, λ1 = 40 and λ2 = 20.
Then for first mode we have; −10φ1 + 10φ2 = 0 and 10φ1 − 10φ2 = 0 which

gives, for φ1 = 1 → φ2 = 1.
Similarly for second mode substituting the value of λ = 20 in the above matrix

we have φ1 = 1 and φ2 = −1 which gives us the two eigen vectors for the two
modes.

Thus the two eigen vectors are represented by

{ϕ}1 =
{

1
−1

}
and {ϕ}2 =

{
1

−1

}
when we have

[ϕ]T1 [ϕ]2 = [1 1
] [ 1

−1

]
= (1 × 1 + 1 × (−1)) = 0

Thus, we see that the eigen vectors are orthogonal to each other9.

Based on the above orthogonal property let us see how we transform the basis of
the equation of motion and what happens after the transformation.

We have seen earlier that the equation of motion under undamped free vibration is

[M]{Ẍ} + [K]{X} = 0 (5.2.32)

Where the relationship between the global co-ordinate of the structure and the
transformed co-ordinate is given by

{X} = {ϕ}{ξ} (5.2.33)

We had also seen earlier that the above equation of motion can be written as

[K][ϕ] = ω2[M][ϕ] (5.2.34)

9 Here for clarity of calculation we have selected a simple matrix but the reader may check the ortho-
gonality with the Example 5.2.1 and will still see that the scalar product of the eigenvectors become
zero.
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Now substituting the value of {X} in the equation of motion based on the
transformed co-ordinate we have

[M][ϕ]{ξ̈} + [K][ϕ]{ξ} = 0, (5.2.35)

pre-multiplying [ϕ]Ton both sides, yields

[ϕ]T [M][ϕ]{ξ̈} + [ϕ]T [K] [ϕ]{ξ} = 0

Since [K] [ϕ] = ω2[M] [ϕ] on substitution, it results in

[ϕ]T [M] [ϕ] {ξ̈} + [ω2][ϕ]T [M] [ϕ]{ξ} = 0.

Taking [ϕ]T [M] [ϕ] as common from the both term we have

[ϕ]T [M] [ϕ]
〈{
ξ̈
}+ [ω2] {ξ}

〉
= 0 (5.2.36)

As [M] is a diagonal matrix, using the orthogonality relationship, we have

[ϕ]T [M][ϕ] = 〈φ1 φ2 . . . φn〉

⎡
⎢⎢⎢⎢⎢⎢⎣

m1
m2

m3
.

.
mn

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

φ1
φ2
.
.
.
φn

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= 〈φ1m1 φ2m2 . . . φnmn〉〈φ1 φ2 . . . φn〉T

= φ1m2
1 + φ2m2

2 + φ3m2
3 + . . . φnm2

n = mr (5.2.37)

As the off-diagonal elements of [ϕ]T [M] [ϕ] are zeroes, because of the orthogonal
relationship, the equation [ϕ]T [M][ϕ]〈{ξ̈} + [ω2]{ξ}〉 = 0 therefore gets uncoupled into
n number of independent equations where the rth equation can be written as

mr〈{ξ̈r} + [ω2
r ]{ξr}〉 = 0,

➔ 〈{ξ̈r} + [ω2
r ] {ξr}〉 = 0, (5.2.38)

the solution for the above equation is

ξr = Ar sinωrt + Br cosωrt
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Thus, an n-degree freedom system is represented by

[M]{Ẍ} + [K]{X} = 0 (5.2.39)

is reduced to n single degree freedom system of equations represented by

〈{ξ̈r} + [ω2
r ]{ξr}〉 = 0, (5.2.40)

using the transformed co-ordinates.
As the transformation uses the orthogonal properties of the eigen vectors this method

of transforming the matrix into n-uncoupled equations are known as orthogonal
transformation.

The advantage now is that we know the closed form solution of an un-damped
system of motion for single degree of freedom and can be solved easily.

Once the values of displacement are obtained they are again back transferred to the
global co-ordinate of the structure.

The theory as explained above is now explained with reference to the extension of
Example 5.2.1.

Example 5.2.3

For the two storied building frame as shown in Example 5.2.1 and Figure 5.2.10,
a compressor having an unbalanced force of 500 sin 600 t kN is under operation
at the first floor level.

• Determine amplitude of vibration
• Shear forces at each floor.
• How would the amplitude and shear force change if we put this compressor

on roof?

Solution:

Case-1

We had seen earlier that the equation of motion for the two storied building is
given by

[
180 0

0 85

]{
ẍ1
ẍ2

}
+
[
122850000 −8640000
−8640000 8640000

]{
x1
x2

}
= 0

Under the forced vibration the equation of motion becomes
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3000 

500 Sin 600t

4000 

Figure 5.2.10

[
180 0

0 85

]{
ẍ1
ẍ2

}
+
[
122850000 −8640000
−8640000 8640000

]{
x1
x2

}

=
{

500 sin 600 t
0

}

We had seen earlier that for free vibration based on eigen value analysis

λ1 = 93365 → ω1 = 305 rad/sec; λ2 = 690781 → ω2 = 831 rad/sec.

The eigen vectors are

{φ1} =
{

1.0
12.273639

}
and {φ2} =

{
1.0

−0.172536

}

For the first mode

{φ1}T [M]{φ1} = 〈1.0 12.273639〉
[
180 0

0 85

]{
1.0

12.273639

}

= 12984.5882

Therefore the scaling factor (SF) = √
12984.5882 = 113.9499373.

The normalized eigen vector for the first mode is given by

[φn1] =

⎧⎪⎨
⎪⎩
φ11

SF
φ12

SF

⎫⎪⎬
⎪⎭ =

{
0.008775783

0.1077108

}
.
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For the second mode

{φ2}T [M] {φ2} = 〈1.0 −0.172536〉
[
180 0

0 85

]{
1.0

−0.172536

}

= 182.5701922

Therefore scaling factor (SF) = √
182.5701922 = 13.51185377.

The normalized eigen vector for first mode is given by

[φn2] =

⎧⎪⎨
⎪⎩
φ21

SF
φ22

SF

⎫⎪⎬
⎪⎭ =

{
0.074009089

−0.012769232

}
.

The normalized eigen vector matrix is given by,

[φ] =
[
0.008775783 0.074009089

0.1077108 −0.012769293

]
.

The equation of motion for the frame is given by

[M] {Ẍ} + [K] {X} = {P0} sinωmt

In the transformed co-ordinate, {X} = [ϕ] {ξ}, we have, [M] [ϕ]{ξ̈} +
[K] [ϕ]{ξ} = {P0} sinωmt

Multiplying the above equation by [ϕ]T
[ϕ]T [M] [ϕ] {ξ̈} + [ϕ]T [K] [ϕ] {ξ} = [ϕ]T{P0} sinωmt and this gets de-coupled

into two equations

{ξ̈1} + [λ1] {ξ1} = {p1} sinωmt; {ξ̈2} + [λ2] {ξ2} = {p2} sinωmt

Multiplying {P0} sinωmt by [ϕ]T

[ϕ]T{P0} sinωmt =
[
0.008775783 0.1077108
0.074009089 −0.012769293

]

×
{

500
0

}
sin 600 t

=
{

4.385
37

}
sin 600 t
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Thus the two de-coupled equation of motion becomes

{ξ̈1} + 93365{ξ1} = 4.385 sin 600 t; {ξ̈2} + 690781{ξ2} = 37 sin 600 t

Therefore,

ξ1 = p1/k1

(1 − r2)
sin 600 t = 4.385/93365

1 − (600/305)2
sin 600 t

= −1.63757 × 10−5 sin 600 t

ξ2 = p2/k2

(1 − r2)
sin 600 t = 37/690781

1 − (600/831)2
sin 600 t

= 1.11909 × 10−4 sin 600 t

As {X} = [ϕ]{ξ}, we have for the first mode

{
x1
x2

}
=
{

0.00877
0.10771

}
(−1.6445 × 10−5 sin 600 t); or

{
x1
x2

}
=
{ −1.4371
−17.6384

}
× 10−7 sin 600 t m.

Shear forces/per floor in first mode is given by

{Vi}1 =
[
12285 −864
−864 864

]
×
{ −1.4371
−17.6384

}
× 10−3 sin 600 t

➔ {Vi}1 =
{ −2.415
−13.997

}
sin 600 t

The second mode

{
x1
x2

}
=
{

0.074
−0.0127

}
× (1.11909 × 10−4 sin 600 t)

➔

{
x1
x2

}
=
{

8.2823
−1.428

}
× 10−6 sin 600 t m.
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Therefore, shear force/per floor in the second mode is given by

{Vi}2 =
[
12285 −864
−864 864

]
×
{

8.30
−1.428

}
× 10−2 sin 600 t

=
{

1029.82
−83.9

}
sin 600 t

Case-2

Compressor located on roof

When the compressor is located on the roof the force vector gets modified to

{P} =
{

0
500

}
sin 600 t.

Multiplying the above by [ϕ]T , we have

[ϕ]T{P0} sinωmt =
[
0.008775783 0.1077108
0.074009089 −0.01276929

]

×
{

0
500

}
sin 600 t

=
{

53.855
−6.385

}
sin 600 t

The two equations of motion are

{ξ̈1} + 93365{ξ1} = 53.855 sin 600 t;

{ξ̈2} + 690781{ξ2} = −6.385 sin 600 t

Therefore

ξ1 = p1/k1

(1 − r2)
sin 600 t = 53.855/93365

1 − (600/305)2
sin 600 t

= −2.01 × 10−4 sin 600 t

ξ2 = p2/k2

(1 − r2)
sin 600 t = −6.385/690781

1 − (600/831)2
sin 600 t

= −1.931 × 10−5 sin 600 t
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For the first mode,

{
x1
x2

}
=
{

0.00877
0.10771

}
(−2.01 × 10−4 sin 600 t)

➔

{
x1
x2

}
=
{−1.76
−21.6

}
× 10−6 sin 600 t m.

Therefore shear force/per floor in first mode is given by

{Vi}1 =
[
12285 −864
−864 864

]
×
{−1.76
−21.6

}
× 10−2 sin 600 t

=
{−29.64
−171.8

}
sin 600 t.

For the second mode

{
x1
x2

}
=
{

0.074
−0.0127

}
(−1.931 × 10−5)

➔

{
x1
x2

}
=
{−1.429

0.2465

}
× 10−6 sin 600 t m.

Therefore shear force/per floor in the second mode is given by

{Vi}2 =
[
12285 −864
−864 864

]
×
{−1.429

0.2465

}
× 10−2 sin 600 t

=
{−177.7

14.476

}
sin 600 t

It is to be observed that based on application of the force, the amplitude and
shear force become completely different for the two cases.

5.2.2.2 Vibration of damped multi-degree freedom system

Its time we introduce the damping . . .
As we had stated earlier that damping is an inherent property of the system by which

there is a progressive decay in the amplitude and the system ultimately stops.
The mechanics of damping of how it works is still a matter of research and to

dynamic analyst a source of headache and discomfort . . .
The reasons that can be attributed to the same are

• It makes a mess of his elegant looking equations.
• After all the eigen value and matrix algebra, he is forced to guess certain values

which is judgmental.
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• The correctness of these assumptions cannot be validated beforehand.
• For coupled analysis like soil-structure or fluid-structure interaction either he has

to deal with the problem completely differently based on direct integration method
or else has to live with his guess-estimated values.

This is surely not a happy state of affair.
We will study this subject subsequently and see what dogs the phenomenon quite

in detail.
For the time being let us see what happens when we introduce the damping in our

equation of motion of a system of multi-degree of freedom.
The equation of motion of a damped free vibration may be written as

[M]{Ẍ} + [C]{Ẋ} + [K]{X} = 0 (5.2.41)

where, [M] = the mass matrix having masses lumped along the diagonal of the matrix;
[C] = the damping matrix of the system; [K] = the stiffness matrix, symmetric
in nature; {Ẍ}, {Ẋ}, {X} are the acceleration, velocity and displacement vectors
respectively.

We had shown earlier that on orthogonal transformation the mass matrix becomes
an identity and the stiffness matrix gets diagonalised into the square of the natural fre-
quency. Based on a numerical example cited earlier we had also shown the advantage
we get in such orthogonal transformation when a multi-degree freedom system (of
order n × n) gets decoupled into n number of independent equations of single degree
of freedom making our calculations spectacularly simple. So while trying to fit in the
damping people obviously wondered.

What happens when we do the operation [ϕ]T [C] [ϕ]?
For a single degree of freedom we have the equation of motion as

mẍ + cẋ + kx = 0 (5.2.42)

On dividing each term by m we have

ẍ + c
m

ẋ + ω2x = 0 (5.2.43)

Now the damping ratio D is defined as D = c/cc where cc is the critical damping
(2

√
mk), and c = Dcc which results in c = 2D

√
mk and c/m = 2D

√
k/

√
m = 2Dω.

Thus based on the orthogonal transformation if the mass matrix get transformed
to an identity matrix and the stiffness matrix get transformed to a diagonal matrix
whose diagonal terms are the eigen value then by mathematical symmetry we can argue
that the operation [ϕ]T [C][ϕ] will transform it into a matrix whose diagonal term will
be 2Dω.

Thus on orthogonal transformation of a matrix of size n × n will yield n numbers
of uncoupled equations
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{ξ̈1} + 2D1ω1{ξ̇1} + [ω2
1]{ξ1} = 0; {ξ̈2} + 2D2ω2{ξ̇2} + [ω2

2]{ξ21} = 0;

{ξ̈3} + 2D3ω3{ξ̇3} + [ω2
3]{ξ31} = 0; ....., {ξ̈n} + 2Dnωn{ξ̇n} + [ω2

n]{ξn} = 0.

(5.2.44)

Thus, for any time dependent forcing function we can now solve these equations as
single degree freedom and solve for the amplitude.

Apparently, though the transformation of the equation of motion with damping
included looks quite fine, but there is a serious catch in it.

The catch is that the equation will uncouple only on orthogonal transforma-
tion provided that the damping matrix is proportional to the mass and stiffness
matrices.

Unfortunately in many cases it has been found that the matrix is non-proportional.
Some of the classic examples of non-proportional damping are when soil and

structure vibrates together (e.g. machine foundation, analysis of building with soil
deformations), vibration of structures submerged in fluid (e.g. off-shore structures,
vibration of jetty piles under earthquake) etc.

Moreover even if the damping matrix is proportional to the stiffness and
mass matrices, we have to guess the damping ratio D for the modes under
consideration.

The damping ratio can only be guessed from experience and there exists no rational
basis for prior evaluation of the same.

Even if the matrix is proportional to the mass and stiffness matrix, we are only
considering what is known as the material damping of the system.

There exists other kinds of damping too like radiation damping, geometric damping
etc. and we are yet to have a realistic model for the same.

5.2.2.3 Proportional or Rayleigh damping

This is by far the most popular form of representing the damping where the damping
matrix is represented by a form

[C] = α[M] + β[K] (5.2.45)

where α and β are two arbitrary coefficients to be determined from two unequal
frequencies of vibration.

Now let us see what happens when we perform the orthogonal transformation of
the matrix [C].

[ϕ]T [C][ϕ] = α[ϕ]T [M][ϕ] + β[ϕ]T [K][ϕ]

➔ 2[Di] [ωi] = α + β[ω2
i ] (5.2.46)

Thus, for two different modes we have
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2[D1][ω1] = α + β[ω2
1]; 2[D2][ω2] = α + β[ω2

2] (5.2.47)

Solving these two equations we can get the value of α and β.
Once α and β are known, we form the damping matrix from the expression [C] =

α[M} + β[K].
In Equation (5.2.47), we see that ω1 and ω2 can be obtained from free undamped

equation but to obtain α and β we have to guess the values of the damping ratio.
We will now explain this with a numerical problem.

Example 5.2.4

For the two storied building analyzed in Example 5.2.1.

• Form the damping matrix for damping ratio of 10% and 15% for the first
two modes.

• Show that the matrix does not de-couple for any other symmetric matrix?

Solution:

For the present problem, D1 = 0.10 and D2 = 0.15.
We had deduced in Example 4.1 that the natural frequency and the eigen

values (ω2) are given as

ω1 = 305, ⇒ ω2
1 = 93365 and ω2 = 831, ⇒ ω2

2 = 690781

and the mass matrix [M] =
[
180 0

0 85

]
while the stiffness matrix is

[K] =
[
12285 −864
−864 864

]
× 104

Based on the Rayleigh damping factors the equations are

2D1ω1 = α + βω2
1; 2D2ω2 = α + βω2

2

Substituting the value the frequencies and damping ratio @ 0.10 and 0.15
we have

α + 93365β = 61; α + 690781β = 249.3

The solution of the above two equations gives

α = 31.572 and β = 3.152 × 10−4
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Considering [C] = α[M] + β[K] we have

[C] = 31.572
[
180 0

0 85

]
+ 3.152 × 10−4

[
12285 −864
−864 864

]
× 104

=
[
5682.96 + 38722 −2723

−2723 2683 + 2723

]

[C] =
[

44405 −2723
−2723 5406

]
; which is the required damping matrix.

Thus we see that provided we can guess the damping ratios correctly it is
possible to form a damping matrix which is orthogonal.

Now let us see what happens if we try to deal with an arbitrary damping
matrix which has been pre-selected based on material property10.

Let [C] =
[

10000 −5000
−5000 40000

]
say.

Then based on the definition of Rayleigh damping we have

α

[
180 0

0 85

]
+ β

[
12285 −864
−864 864

]
× 104 =

[
10000 −5000
−5000 40000

]

i.e.
[
0.018α + 12285β −864β

−864β 0.0085α + 864β

]
=
[

1 −0.5
−0.5 40

]
.

On expansion, we find three equations

0.018α + 12285β = 1

0.00885α + 864β = 40

−864β = −0.5

Now solving the first two equations, we have β = 8 × 10−3; α = 5515.56.
But when we substitute this value in the third equation we find that the value

of β does not satisfy this equation.

➔ This proves that the orthogonal relationship is NOT satisfied.

Thus in the above example it was shown that to de-couple the equations with
damping effect we have to

• Guess a value of the damping ratio.

10 A common thing when we induce dynamic soil springs and damping in a structural system.
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• Evaluate the Rayleigh coefficients α and β to de-couple the damping matrix.
• The de-coupling does not take place for any other damping matrix even if

it is symmetric.

For a two-degrees of freedom system evaluation of α and β is simple. For, on
expansion of matrices, we get two unknown equations with α and β and solving
the two equations, we get two values of the Rayleigh coefficients.

But when the degree of freedom of structure is more than 2, the question arises
as to which two equations to use?

An effective way to arrive at a meaningful value for the Rayleigh coefficient is
described hereafter.

5.2.2.4 Selection of α and β for systems with large degrees
of freedom

In almost all general-purpose FEM software like SAP, GTSTRUDL, ANSYS etc.
provisions are there to give direct input for the Rayleigh coefficient α and β.

We have shown previously that when the structure has two degree of freedom it is
simple to obtain the value of α and β from the equations

2[D1][ω1] = α + β[ω2
1]; 2[D2][ω2] = α + β[ω2

2] (5.2.48)

We simply solve the two simultaneous equations to obtain the values of α and β.
However when we are solving a system having a large degrees of freedom having

say 400 or 1000 equations the obvious question which comes to mind is which two
equations to use to obtain α and β which will be valid for all significant modes?

Surely there is no straight forward solution to arrive at these values and an iterative
solution is only possible which would arrive at a possibly best fit value of α and β for
a particular system.

We describe below this method (Chowdhury and Dasgupta 2004) which we hope
would eradicate a lot of confusion in selection of this particular data in solving practical
problems.

We have seen previously that orthogonal transformation of the damping matrix is
done by

[ϕ]T [C][ϕ] = α[ϕ]T [M][ϕ] + β[ϕ]T [K][ϕ] ➔ 2[Di][ωi] = α + β[ω2
i ],

this on simplification reduces to

[Di] = α

2ωi
+ βωi

2
, (5.2.49)

meaning thereby that the damping ratio is in someway proportional to the natural
frequency. We now show two typical plots of the equation α

2ωi
+ βωi

2 for frequency
having ranges

• 2 to 13.5 rad/sec and 10 to 23.5 rad/sec.



538 Dynamics of Structure and Foundation: 1. Fundamentals

The two curves in Figures 5.2.11 and 12, show some very interesting result.
For the first case (frequency range 2–13.5 rad/sec) the curve shows marked non-

linearity at the start and after frequency of 6.35 rad/sec (step 92) is almost linearly
varying.

While for the second case (having frequency range of 10 to 21.35 rad/sec) the
equation is practically linearly varying with x.

From this we can conclude that when x is small, the first term a/x dominates at the
initial stage and as x increases the value a/x diminishes and approaches zero and the
term b/x starts dominating the equation.

In other words if a structure is very flexible and have a very low fundamental fre-
quency will show non linear damping properties at the start with respect to frequency
and would converge to a linear proportionality with frequency as the eigen value
increases with each subsequent mode.

Flexible antennas, very long piles, or tall chimney (height >275 m) would possibly
show this type of behavior at the outset.

However most of the civil engineering structures are usually designed to have a
reasonable rigidity and would have a much higher value of the frequency when the
βx/2 will usually pre-dominate.
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Figure 5.2.11 Plot of curve a/2x + bx/2 for frequency range 2 to 13.5 rad/sec.
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Figure 5.2.12 Plot for curve ax/2 + bx/2 for frequency range 10 to 21.35 rad/sec.
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Moreover, considering the fact that the nonlinear range is very small for normal
structures it will not induce much error to assume that the damping ratio for each
mode is linearly proportional to the frequency of the system.

Thus if we have a set of value ω1,ω2,ω3 .............ωn and D1,D2, D3 ............. Dn as
the corresponding damping ratio then for ith mode the damping ratio is given by

Di = Dn − D1

ωn − ω1
(ωi − ω1)+ D1 (5.2.50)

It is a well established that even for structures having large degrees of freedom it is
only the first few modes, which contribute to the significant dynamic forces11.

Let us presume that for a particular structure having n degrees of freedom (where,
n � 6) the first six modes are significant, and having damping ratio varying between
say 0.05 for 1st mode and 0.1 for the 6th mode.

As a first step we perform the eigen value considering modes at least 2.5 times the
first significant modes i.e. 15 modes for this case.

We set the value damping ratio @ 0.05 to mode #1 and 0.1 to mode #6 and interpo-
late the values of damping ratio for mode 2 to 5 from equation (5.2.50) as mentioned
above. We also extrapolate the values for mode 7 to 15.

Now we select two ranges of values

• One between modes 1 to 6, the last significant mode.
• The other between 1 to 15 the complete range of the eigen values.

Based on the above we find two sets of α and β from the equation

β = 2Diωi − 2Dfωf

ω2
i − ω2

f

(5.2.51)

and back substitute, the value of β in Equation (5.2.49), we obtain α.
Based on the above two sets of value of α and β calculate a third set by averaging

the two values as obtained above.
Next, we plot the three sets of data and see which data fits best the curve of the

damping ratio based on linear interpolation and select the corresponding value α
and β. This is the desired Rayleigh coefficient to be given as an input, which would
give damping ratio reasonably correct for the first six (or whatever the modes con-
sidered) significant modes.

In some cases it might so happen that values will show significant variation in higher
modes but this is irrelevant so long as the values are closely matching for the first
few significant modes since the contribution of higher modes are insignificant for the
system.

We now explain the above technique by a suitable numerical problem.

11 The modal mass participation factor is a very good indicator of to what mode does the vibration is
significant. We will discuss more about it in the Chapter 3 (Vol. 2) on Earthquake engineering.
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Example 5.2.5

A structure having 100 degrees of freedom has first six values of natural fre-
quency as 3.0, 4.0, 7.0, 8.0, 12.0 and 20.0 rad/sec respectively. It is presumed
that the significant dynamic response of the system will die down within first six
modes with damping ratios varying between 5% and 15% within the first six
modes.

Select a suitable value of α and β based for the above.

Solution:

We show below the eigen values for the first 15 mode as hereafter and taking
first modal damping ratio as 5% and sixth modal damping ratio as 15% we
linearly interpolate and extrapolate the data for the full range of the eigen values
are as shown hereafter.

Natural frequency
Sl. No. (rad/sec) Damping ratio

1 3 0.05
2 4 0.055882353
3 7 0.073529412
4 8 0.079411765
5 12 0.102941176
6 20 0.15
7 25 0.179411765
8 32 0.220588235
9 38 0.255882353

10 47 0.308823529
11 62 0.397058824
12 75 0.473529412
13 110 0.679411765
14 135 0.826470588
15 140 0.855882353

For the first six modes the range values are

ω2 = 20 rad/sec and D2 = 0.15; and ω1 = 3 rad/sec and D2 = 0.05.

Based on the above values β = 2×0.15×20−2×0.05×3
400−9 = 0.01457801 and α =

2 × 0.15 × 20 − 0.01457801 × 400 = 0.16879795.

For the full range of 15 modes we have

ω2 = 140 rad/sec and D2 = 0.855882353; and ω1 = 3 rad/sec and D2 = 0.05.

Based on the above values β = 2×0.8588×140−2×0.05×3
19600−9 = 0.01221719 and

α = 2 × 0.8588 × 1400 − 0.01221719 × 19600 = 0.05549134.
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Thus, based on the above values the average values α and β are: α =
0.1121446 and β = 0.0133976.

Thus based on the above values the damping ratios are found to vary as
follows:

No. of Linear damping upto 6th Damping upto full Damping with
modes Frequency damping mode approximation range approximation average data

1 3 0.05 0.05 0.027574349 0.038787
2 4 0.055882353 0.050255754 0.031370807 0.040813
3 7 0.073529412 0.063080015 0.046723848 0.054902
4 8 0.079411765 0.068861893 0.052336987 0.060599
5 12 0.102941176 0.094501279 0.075615307 0.085058
6 20 0.15 0.15 0.123559229 0.13678
7 25 0.179411765 0.185601023 0.153824759 0.169713
8 32 0.220588235 0.23588555 0.196342165 0.216114
9 38 0.255882353 0.279203123 0.232856846 0.25603
10 47 0.308823529 0.344378843 0.287694406 0.316037
11 62 0.397058824 0.453279432 0.379180543 0.41623
12 75 0.473529412 0.547800512 0.458514739 0.503158
13 110 0.679411765 0.802557545 0.672197935 0.737378
14 135 0.826470588 0.984640523 0.824866157 0.904753
15 140 0.855882353 1.021063208 0.855401803 0.938233

On plotting the data we find the variations as given in Figure 5.2.13.
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Figure 5.2.13

It will be observed that at lower modes the six mode value and average value
matches the best. Though these shows variation in data beyond 13th mode this
may be ignored for modes beyond 6th mode is considered to have no effect.

Thus the design Rayleigh coefficient are α = 0.1121446 and β = 0.0133976.
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5.2.2.5 Other methods of evaluating damping matrix

We have shown previously how damping matrix can be established with two damping
ratios for a structure having multi-degree of freedom. When more then two values of
damping ratios are to be used, the damping matrix can be represented by series known
as Caughey Damping (Caughey 1960).

Here the damping matrix is represented as

[C] = [M]
p−1∑
k=0

ak[[M]−1[K]]k (5.2.52)

where the coefficients ak, k = 1, 2, 3 . . . . .p are calculated from p simultaneous
equations.

Now multiplying both side with the orthogonal eigen vectors we have

[ϕn]T [C][ϕ] = [ϕn]T [M]
p−1∑
k=0

ak[[M]−1[K]]k[ϕ]

or, 2{Dn}[ωn] = [ϕn]T [M]
p−1∑
k=0

ak[[M]−1[K]]k[ϕn]

Now since [K] = [M]ω2, we have

2{Dn}[ωn] = [ϕn]T [M]
p−1∑
k=0

ak[[M]−1[M][ωn]2]k[ϕn]

i.e. 2{Dn}[ωn] = [ϕn]T [M][ϕ]
p−1∑
k=0

ak[[M]−1[M][ωn]2]k

Since [φn]T [M][φ] = [I] and [M]−1[M] = [I], we may write

2{Dn}[ωn] = [I]
p−1∑
k=0

ak[[I][ωn]2]k where [I] = Identity matrix

➔ {Dn} = 1
2[ωn]

p−1∑
k=0

ak[[ωn]2]k (5.2.53)

Thus for a matrix of order n × n the above equation can be expressed as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

D1
D2
.
.

Dn

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= 1
2

⎡
⎢⎢⎢⎢⎢⎣

ω1 ω3
1 . . ω2n−1

1

ω2 ω3
2 . . ω2n−1

2
. . . . .
. . . . .
ωn ω3

n . . ω2n−1
n

.

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a1
a2
a3
a4
a5

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.2.54)



Concepts in structural and soil dynamics 543

Thus based on assumed values of damping ratio and calculated natural frequency
we put it in the above equation and find the values of a1,a2, . . . . . . . . an.

Once these values are obtained we back substitute them in the equation [C] =
[M]∑p−1

k=0 ak[[M]−1[K]]k and obtain the damping matrix of the system.

We will now explain the above with a numerical example

Example 5.2.6

A three-storied structure having stiffness and mass matrix as below is assumed
to have damping ratio of 5% in the first mode and 15% in the third mode.

The three natural frequencies of the structure are ω1 = 2.197 rad/sec, ω2 =
6 rad/sec, ω3 = 8.33 rad/sec form the Caughey damping for the structure.
Here

[K] =
⎡
⎣ 2000 −2000 0

−2000 4000 −2000
0 −2000 5000

⎤
⎦ and [M] =

⎡
⎣100 0 0

0 100 0
0 0 100

⎤
⎦

Solution:

For ω1 = 2.197 rad/sec, ξ1 = 0.05; For ω3 = 8.33 rad/sec ξ3 = 0.15
Thus based on linear interpolation we have for ω2 = 6.00 rad/sec

ξ2 = 0.05 +
[

0.15 − 0.05
8.33 − 2.197

]
× (6 − 2.197) = 0.112

Based on the previous deduction we have

⎧⎨
⎩

D1
D2
D3

⎫⎬
⎭ = 1

2

⎡
⎢⎢⎣
ω1 ω3

1 ω5
1

ω2 ω3
2 ω5

2

ω3 ω3
3 ω5

3

⎤
⎥⎥⎦
⎧⎨
⎩

a1
a2
a3

⎫⎬
⎭ or

⎧⎨
⎩

0.05
0.112
0.150

⎫⎬
⎭ = 1

2

⎡
⎣2.197 10.6 51.2

6 216 7776
8.33 57.8 40107

⎤
⎦
⎧⎨
⎩

a1
a2
a3

⎫⎬
⎭

On expansion we have the following three equations

1.1a1 + 5.3a2 + 25.6a3 = 0.05

3a1 + 108a2 + 3888a3 = 0.112

4.17a1 + 289a2 + 20054a3 = 0.15
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Solution of the above three equations gives

a1 = 0.04314; a2 = −4.49 × 10−4; a3 = 4.0857 × 10−6

The mass matrix is given by

[M] =
⎡
⎣100 0 0

0 100 0
0 0 100

⎤
⎦ ,

and the inverse is given by

[M]−1 =
⎡
⎣10−2 0 0

0 10−2 0
0 0 10−2

⎤
⎦

∴ [M]−1[K] =
⎡
⎣10−2 0 0

0 10−2 0
0 0 10−2

⎤
⎦×

⎡
⎣ 2000 −2000 0

−2000 4000 −2000
0 −2000 5000

⎤
⎦

=
⎡
⎣ 20 −20 0

−20 40 −20
0 −20 50

⎤
⎦

The damping matrix is given by [C] = [M]∑3
k=1′ ak[[M]−1[K]]k

for which we have

3∑
k=1′

ak[[M]−1[K]]k = 0.04314

⎡
⎣ 20 −20 0

−20 40 −20
−20 −20 50

⎤
⎦

− 4.49 × 10−4

⎡
⎣ 20 −20 0

−20 40 −20
0 −20 50

⎤
⎦

2

+ 4.086 × 10−6

⎡
⎣ 20 −20 0

−20 40 −20
0 −20 50

⎤
⎦

3

The above on simplification gives

3∑
k=1′

ak[[M]−1[K]]k =
⎡
⎣ 66.66 −60.58 0.63

−60.58 128.46 −61.76
0.63 −61.76 163.5

⎤
⎦× 10−2 and
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[C] = [M]
3∑

k=1′
ak[[M]−1[K]]k =

⎡
⎣ 66.66 −60.58 0.63

−60.58 128.46 −61.76
0.63 −61.76 163.5

⎤
⎦

One disadvantage of this method is that for the damping matrix to be defined, we
have to take into consideration all the n number of eigen values (where n is the total
degrees of freedom) to obtain the [C] matrix of size n×n. While this is OK with small
structures, for large structures this surely becomes computationally expensive.

While in Rayleigh damping case we can only take into consideration the first few
significant modes and on calculating the values of α and β can still produce the [C]
matrix of size n × n.

For most of the practical analysis a reasonable value of Rayleigh damping is usually
assumed based on observed material damping of various materials or from observed
data of real structures and similar level of damping is used similar/identical structure.

One disadvantage of Rayleigh damping is that it gives higher damping values at the
higher modes. However if the modal mass participation is restricted to first few modes
(which is usually true for most of the cases), Rayleigh damping gives quite reasonable
values in predicting the damped behavior of a structure.

The table hereafter gives some suggestive damping ratio for different type of mate-
rials which may be used for dynamic analysis for structure and soil foundation
system.

Suggestive damping ratio for different materials

Sl. No. Material in use Damping ratio

1 Concrete 5–10%
2 Steel 2–5%
3 Soil 10–30%
4 Timber 2–5%

In the above discussion we have shown how damping characteristic of structure
can be made proportional to the stiffness and mass matrix and can be used for modal
analysis based on orthogonal transformation.

In many analyses, the assumption of proportional damping is valid. But as stated
earlier in cases like foundation structure interaction, fluid structure interaction gives
rise to non-proportional damping where on orthogonal transformation the equations
do not uncouple we use completely different techniques for analyzing such systems.

Before we discuss these techniques, we see how the equation of motion can also be
formed based on other techniques namely the energy equations.

5.2.2.6 The Lagrangian formulation

French mathematician Lagrange developed equations based on differential equations
of motion expressed in terms of generalized co-ordinates of the kinetic and potential
energy of a system.
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This is one of the most versatile tools in formulating the equations of motion of a
dynamical system, specially when the system motion is complicated.

While formulating the equation based on D’Alembert’s principle we have to clearly
write down the equations taking into consideration the vector directions of the
motions. There could be systems for which writing down such equations become quite
complicated (specially for structures and foundations where horizontal and rocking
degree of freedom becomes coupled) and under such situation the Lagrange’s equation
prove to be a powerful tool for formulation of the equations of motions12. Let us now
understand the principle underlying the concept.

For any conservative system in this universe we know that the sum of Kinetic and
Potential energy is a constant.

Thus, if T = kinetic energy of a system (KE) and U = potential energy of a system
(PE), we have by the law of physics:

The total energy = T + U = constant; which gives

d(T + U) = 0, (5.2.55)

where d is the first derivative or differential of the total energy.
Now suppose qi and q̇i are the displacement and velocity vector in the generalized

co-ordinate, we know that

T = f (q1, q2, q3.......qn; q̇1, q̇2,q̇3, .........., q̇n) and

U = f (q1, q2, q3, .........qn) (5.2.56)

Then the differential of T is given by13.

dT =
n∑

i=1

∂T
∂qi

dqi +
n∑

i=1

∂T
∂q̇i

dq̇i (5.2.57)

The kinetic energy of a system can be expressed as

T = 1
2

n∑
i=1

n∑
j=1

mijq̇iq̇j.

Differentiating the above with q̇i and multiplying by q̇i, we have

n∑
i=1

∂T
∂q̇i

q̇i =
n∑

i=1

n∑
j=1

mijq̇iq̇j = 2T i.e. 2T =
n∑

i=1

∂T
∂q̇i

q̇i.

12 We will see the advantages in of this form of equation when we tackle different form of coupled analysis.
13 If u = f (x, y) then du = ∂u

∂x dx + ∂u
∂y dy.
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Now considering u = ∑n
i=1

∂T
∂q̇i

and v = q̇i, we have 2T = u · v and differentiating
the above, one may write

2dT = u · dv + v · du ➔ or 2dT =
n∑

i=1

d
(
∂T
∂q̇i

)
q̇i +

n∑
i=1

(
∂T
∂q̇i

)
dq̇i

Subtracting from above the expression of dT as shown above by a black border,
we have

dT =
n∑

i=1

[
d
dt

(
∂T
∂q̇i

)
− ∂T
∂qi

]
dqi

Taking differential of U we may write

dU =
n∑

i=1

∂U
∂qi

dqi

Thus, considering d(T + U) = 0, we can write

d(T + U) =
n∑

i=1

[
d
dt

(
∂T
∂q̇i

)
− ∂T
∂qi

+ ∂U
∂qi

]
dqi = 0 (5.2.58)

This is Lagrange’s energy equation for derivation of equation of motion in
generalized co-ordinate.

Based on the above let us see how we can form the equation of motion for a structure
having two degrees of freedom [Figure 5.2.14].

Mass = m2, Stiffness = k2

(x2-x1)

x1

Mass = m1, Stiffness = k1

Figure 5.2.14 A two storied frame under free vibration.
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Here, KE = T = 1
2

m1ẋ2
1 + 1

2
m2ẋ2

2, and PE = U = 1
2

k1x2
1 + 1

2
k2(x2 − x1)

2

Based on Lagrange’s equation we have

∂T
∂x1

= m1ẋ1;
d
dt

(
∂T
∂x1

)
= m1ẍ1. (5.2.59)

Similarly

∂U
∂x1

= k1x1 − k2(x2 − x1) (5.2.60)

Thus combining the differential of the kinetic and potential energy in terms of x1
we have

m1ẍ1 + k1x1 − k2(x2 − x1) = 0

Similarly we have for x2

d
dt

(
∂T
∂x2

)
= m2ẍ2; and

∂U
∂x2

= k2(x2 − x1)

Thus combining the two terms we have

m2ẍ2 + k2(x2 − x1) = 0

Now writing the equations in matrix notation we have

[
m1 0
0 m2

]{
ẍ1
ẍ2

}
+
[
k1 + k2 −k2

−k2 k2

]{
x1
x2

}
= 0 (5.2.61)

This is the same expression we had derived based on D’Alembert’s equation.

5.2.3 Direct integration technique, the alternate
approach

This technique is also otherwise known as step-by-step integration and is basically a
numerical method based on the principles of finite difference.

Before we get into the detail of the topic it would be worthwhile to understand the
advantage of this method.
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Direction of motion 

R(t) mx(t)

Figure 5.2.15 Free body diagram of a body in motion.

We had already stated while explaining the modal response technique that there are
situations when due to the non-proportional damping the matrix does not de-couple
and the analyst find it difficult to predict the damping ratio specially when the material
are widely varying.

• He at best guesses a value of the damping ratio for different and lives with it
or . . . Does the operation [ϕ]T [C][ϕ] and considers only the diagonal terms neglect-
ing the off-diagonal terms as secondary effects14. When his assumption of the
neglecting the off-diagonal terms as secondary effect may or may not be correct
or accurate.

It is in this type of cases that step-by-step integration is advantageous and much
superior to modal response technique in predicting the response of the dynamic system
because here no transformation of the equation is required as the integrals are directly
operable on the acceleration velocity and the displacement vectors.

To understand the concept we go back a bit to our basic course of engineering
mechanics (or high school level physics . . . ) in undergraduate class.

We pose the question. . .

Why does a body move in space?

The answer is that it moves because it has an unbalanced force within the system and
tends to move in the same direction in which the unbalanced force works.

Now if we want to formulate the equation of motion as per D’Alembert’s principle
we apply a fictitious force in the direction opposite to the motion (i.e. the unbalanced
force) and state the body to be in a condition of dynamic equilibrium at an instant of
time t when the laws of static do apply (Figure 5.2.15).

The equation of motion is then depicted by

mẍ = R(t) where ẍ = d2x
dt2 and the above can then be depicted as

Fm(t) = R(t) where Fm(t) is the inertial force of the system.

14 There are techniques by which non-proportional damping can be to certain extent modified to de-couple.
We will study this technique in our chapter of Analysis and design of Machine foundation.
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For a body in motion having n degrees of freedom the equation of motion is
given by

[M][Ẍ] + [C][Ẋ] + [K][X] = R(t) (5.2.62)

Then at any instantaneous time �t (we can write the above equation as)

F(m)�t + F(c)�t + F(k)�t = R(t)�t (5.2.63)

where F(m)�t = inertial force; F(c)�t = damping force and F(k)�t = stiffness force.
Thus,

∑
[Inertial force + Damping force + Stiffness force]

= External force at any instant of time�t.

From the above expression it is quite obvious that the dynamic equation of motion
is under static equilibrium at the time instant �t.

Now suppose by some mathematical manipulation we can express each of the force
terms in terms of displacement term say�x, then we can represent the above equation
of motion as follows:

f (m)�x + f (c)�x + f (k)�x = R(t)�t (5.2.64)

where, f (m)�x = function of F(m)�t in terms of �x; f (c)�x = function of F(c)�t in
terms of �x, and f (k)�x = function of F(k)�t in terms of �x.

From which we can develop an expression

f (m, c, k)�x = R(t)

when

�x = R(t)
f (m, c, k)

(5.2.65)

The value of �x = R(t)
f (m,c,k) , thus obtained, becomes the initial input for finding out

the displacement of the next step at an interval 2�t and so on. . .
This is known as step-by-step integration and is usually carried out based on finite

difference equation.
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5.2.3.1 The central difference technique

The equation of motion for a dynamic system having n degrees of freedom at any
instant of time t is given by

[M]{Ẍ(t)} + [C]{Ẋ(t)} + [K]{X(t)} = {R(t)} (5.2.66)

Now applying central difference formula15 to {Ẍ} and average central difference
formula to {Ẋ} for time step increment of �t, we have

Ẍ(t) = 1
�t2 [X(t +�t)− 2X(t)+ X(t −�t)] and

Ẋ(t) = 1
2�t

[X(t +�t)−X(t −�t)]

For easier manipulation while writing the equations let us represent the expre-
ssions as

Ẍt = 1
�t2 [Xt+�t − 2Xt + Xt−�t] and Ẋt = 1

2�t
[Xt+�t − Xt−�t]

Thus substituting the values of {Ẍ} and {Ẋ} in the equation of motion we have

[M] 1
�t2 {Xt+�t − 2Xt + Xt−�t} + [C] 1

2�t
{Xt+�t − Xt−�t}+[K]{X(t)} = {R(t)}

(5.2.67)

Now separating the terms of Xt+�t, Xt and Xt−�t we have

[
M
�t2 + C

2�t

]
Xt+�t = Rt −

(
K − 2M

�t2

)
Xt −

(
M
�t2 − C

2�t

)
Xt−�t

Now considering M̂ =
[

M
�t2 + C

2�t

]
; K̂ =

(
K − 2M

�t2

)
and M̂0 =

(
M
�t2 − C

2�t

)
, we

can write the above equations as

M̂ · Xt+�t = Rt − K̂ · Xt − M̂0 · Xt−�t. (5.2.68)

It is obvious that in order to find out the value of Xt+�t it is necessary to find out
the displacements at Xt and Xt−�t.

15 Refer Chapter 2 (Vol. 1) where we have developed the theory of finite difference for second order
differential equations.
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Thus to calculate for the solution at time �t a special condition has to be invoked.
Usually the displacement and velocity vector at time t = 0 is known as the initial

boundary condition.
For instance if Xt=0 = 0 and Ẋt=0 = 0 then we have

[M][Ẍ0] + [C][0] + [K][0] = Rt=0 ➔ [Ẍ0] = [M]−1Rt=0. (5.2.69)

To find out the value of [X]−�t we proceed as follows . . .
We have seen earlier that based on Taylor’s series expansion that

f (x − h) = f (x)− hḟ (x)+ h2f (x)
2

+ · · · · ·

Thus Xt−�t can be expressed as

Xt−�t = Xt −�tẊt + �t2

2
Ẍt + · · · · ·

Thus ignoring the higher order terms, X−�t may be represented by

X−�t = X0 −�tẊ0 − �t2

2
X0

Thus once X−�t is established we substitute the same in our equation of motion to
obtain

M̂ · X�t = R0 − K̂ · X0 − M̂0 · X−�t (5.2.70)

and step by step proceed to find out the displacements at steps X2�t, X3�t . . .Xt.

The above expression can be structured as follows

• Assemble the mass matrix M, Damping matrix C and stiffness matrix K

• Initialize X0, Ẋ0

• Obtain {Ẍ0} = [M]−1{{R0} − [C]{Ẋ0} − [K]{X0}}
• Select time step �t and calculate the integration constants

◦ α0 = 1
�t2 , α1 = 1

2�t , α2 = 2α0, and α3 = 1
α2

◦ Calculate X−�t = X0 −�tẊ0 + α3Ẍ0

◦ Form effective Mass matrix M̂ = α0[M] + α1[C]
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• For each time step calculate. . . . . . . . . . . . . . . . . . . .

◦ Calculate effective load at time t

{R̂t} = {Rt} − [[K] − α2[M]] {Xt} − [α0[M] − α1[C]] {Xt−�t}

◦ Solve for displacement at time t +�t by

[M̂] {Xt+�t} = {R̂t} (5.2.71)

We show here a numerical problem of finding out the amplitude of a dynamic system
based on Central Difference Technique with the following data:

Example 5.2.7

[M] =
[
50 0
0 100

]
[C] =

[
700 −2800

−2800 12300

]
[K] =

[
3000 −1200

−1200 51000

]

The load vector is given by {P} =
{

500 sin 12.5t
200 sin 12.5t

}
For a time step of 0.04 seconds determine the amplitudes by Central difference

technique.

Solution:

We start with the following assumptions

• Let displacement vector be {X} =
{

X1
X2

}
• As the function is a sine curve hence at t = 0, {P} = 0 as such {X}t=0 = 0

and {Ẋ}t=0 = 0

Thus

[
50 0
0 100

]{
Ẍ1

Ẍ2

}
+
[

700 −2800
−2800 12300

]{
Ẋ1

Ẋ2

}

+
[

3000 −1200
−1200 51000

]{
X1
X2

}
=
[
500 sin 12.5t
200 sin 12.5t

]

∴ For {X}t=0 = 0 and {Ẋ}t=0 = 0 we have
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50 0
0 100

]{
Ẍ1

Ẍ2

}
+
[

700 −2800
−2800 12300

]{
0
0

}

+
[

3000 −1200
−1200 51000

]{
0
0

}
=
{

500 sin 12.5t
200 sin 12.5t

}

➔

{
Ẍ1

Ẍ2

}
t=0

=
{

0
0

}

The integration constant are, α0 = 1
�t2 = 1

(0.04)2
= 625; α1 = 1

2�t = 1
0.08 =

12.5

α2 = 2α0 = 2 × 625 = 1250; α3 = 1/α2 = 1/1250 = 0.0008

Calculation of effective mass matrix

α0[M] =
[
31250 0

0 62500

]
and α1[C] =

[
8750 −35000

−35000 153750

]

➔ [M̂] = α0[M] + α1[C] =
[

40000 −35000
−35000 216250

]

Inversion of the effective mass matrix

|M̂| = 40000 × 216250 − 35000 × 35000 = 7425000000

Cofactor matrix of [M̂] =
[
216250 35000
35000 40000

]
= adjoint Matrix of [M̂]

[M̂]−1 = Adj.[M̂]
|M| =

[
29.12 4.71
4.71 5.39

]
× 10−6

Calculation of effective stiffness matrix

[K̂] = [K] − α2[M] =
[

3000 −1200
−1200 51000

]
− 1250 ×

[
50 0
0 100

]

=
[−59500 −1200

−1200 −74000

]
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Calculation of effective inertial cum damping matrix

[M̂0] = α0[M] − α1[C] = 625 ×
[
50 0
0 100

]
− 12.5 ×

[
700 −2800

−2800 12300

]

=
[
22500 35000
35000 −91250

]

Setting up of initial condition

Now, {X}−0.04 = {X}0 − 0.04 × {Ẋ}0 − (0.04)2

2 {Ẍ}0 =
{

0
0

}
Start of step by step integration

1 At �t = 0.04

{R̂}0.04 = {R}0.04 − [K̂]{X}0 − [M̂0]{X}−0.04 or,

{R̂}0.04 =
{

500 sin 12.5t
200 sin 12.5t

}
−
[−59500 −1200

−1200 −74000

]{
0
0

}

−
[
22500 35000
35000 −91250

]{
0
0

}
with t = 0.04

➔ {R̂}0.04 =
{

239.713
95.885

}

∴
{

X1
X2

}
t=0.04

=
[
29.12 4.71
4.71 5.39

]
× 10−6

{
R̂
}

0
=
[
29.12 4.71
4.71 5.39

]

×
{

239.713
95.885

}
10−6 =

{
239.713
95.885

}
× 10−3

2 At �t = 0.08

{R̂}0.08 = {R}0.08 − [K̂]{X}0.04 − [M̂0]{X}0

=
{

500 sin 12.5t
200 sin 12.5t

}
−
[−59500 −1200

−1200 −74000

]{
7.4316
1.6458

}
×10−3

−
[
22500 35000
35000 −91250

]{
0
0

}
with �t = 0.08

➔ {R̂}0.08 =
{

420.73
168.29

}
+
{

444.15
130.77

}
−
{

0
0

}
=
{

864.88
299.06

}
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∴
{

X1
X2

}
t=0.08

=
[
29.12 4.71
4.71 5.39

]
× 10−6

{
R̂
}

0.08

=
[
29.12 4.71
4.71 5.39

]{
864.88
299.06

}
× 10−6 =

{
0.0265
0.00568

}

3 At �t = 0.12

{R̂}0.12 = {R}0.12 − [K̂]{X}0.08 − [M̂0]{X}0.04

=
{

500 sin 12.5t
200 sin 12.5t

}
−
[−59500 −1200

−1200 −74000

]{
0.0265
0.00568

}

−
[
22500 35000
35000 −91250

]{
7.4316 × 10−3

1.6458 × 10−3

}
with �t = 0.12

➔ {R̂}0.12 =
{

498.747
199.499

}
+
{

1583.566
452.120

}
−
{

224.814
109.926

}
=
{

1857.499
541.693

}
{

X1
X2

}
t=0.12

=
[
29.12 4.71
4.71 5.39

]
× 10−6{R̂}0.12

=
[
29.12 4.71
4.71 5.39

]{
1857.499
541.6593

}
× 10−6 =

{
0.0566
0.0116

}

In this way we can proceed to find out step by step the displacement for each
time step at an increment of time @ 0.04 sec.

The table below gives the value of displacement and force for 30 time steps
based CDT and plotted in Figure 5.2.16.

Sl. No. Time step R1 R2 X1 X2

1 0.04 239.7128 95.88511 0.00743 0.00165
2 0.08 865.0056 299.0563 0.02660 0.00569
3 0.12 1863.547 542.4456 0.05683 0.01171
4 0.16 3052.544 704.3392 0.09222 0.01818
5 0.2 4119.941 655.0561 0.12308 0.02295
6 0.24 4709.854 305.5834 0.13861 0.02385
7 0.28 4528.179 −352.7345 0.13022 0.01944
8 0.32 3439.481 −1231.554 0.09437 0.00958
9 0.36 1527.15 −2156.784 0.03431 −0.00442

10 0.4 −901.792 −2906.572 −0.03997 −0.01991
11 0.44 −3371.882 −3266.585 −0.11360 −0.03349
12 0.48 −5343.218 −3088.552 −0.17018 −0.04183
13 0.52 −6339.924 −2336.345 −0.19566 −0.04247
14 0.56 −6071.389 −1106.647 −0.18204 −0.03458
15 0.6 −4515.196 382.7451 −0.12970 −0.01922
16 0.64 −1939.169 1835.805 −0.04782 0.00075
17 0.68 1145.615 2943.208 0.04724 0.02126

(continued)
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Sl. No. Time step R1 R2 X1 X2

18 0.72 4092.124 3454.226 0.13546 0.03790
19 0.76 6261.167 3238.21 0.19762 0.04696
20 0.8 7168.248 2320.254 0.21971 0.04629
21 0.84 6598.443 881.4853 0.19633 0.03585
22 0.88 4661.193 −777.2352 0.13209 0.01778
23 0.92 1770.754 −2300.583 0.04073 −0.00405
24 0.96 −1444.358 −3358.237 −0.05790 −0.02490
25 1 −4282.619 −3720.077 −0.14227 −0.04023
26 1.04 −6128.804 −3309.321 −0.19410 −0.04672
27 1.08 −6594.064 −2220.837 −0.20252 −0.04305
28 1.12 −5603.828 −699.9693 −0.16651 −0.03019
29 1.16 −3412.734 913.4549 −0.09509 −0.01117
30 1.2 −543.0643 2262.977 −0.00515 0.00963
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Figure 5.2.16 Time history response for first 30 steps ased on CDT.

5.2.4 Wilson-Theta method

The method was developed by Wilson et al. (1973) wherein a linear variation of
acceleration with time between t and t +�t has been assumed.

Referring to Figure 5.2.17, which shows linear variation of acceleration with time
t to t + θ�t, θ is assumed to be ≥1.4. Let τ denote the increase in time such that,
0 ≤ τ ≤ θ�t.

Then by similar triangle

Ẍt+θ�t − Ẍt

t + θ�t − t
= Ẍt+τ − Ẍt

t + τ − t
(5.2.72)

or ,
Ẍt+τ − Ẍt

τ
= Ẍt+θ�t − Ẍt

θ�t
➔ {Ẍt+τ } = {Ẍt} + τ

θ�t
{Ẍt+θ�t − Ẍt} (5.2.73)
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X

t t + τ

Xt + τ

t + Δt

Xt + Δt

t + θΔt

Xt + θΔt

T

Xt

Figure 5.2.17 Linear variation of time period with respect to time.

To find the velocity vector at time interval t + τ , we integrate the L.H.S. between
t + τ to t and right hand side between τ to 0, to have

t+τ∫
t

{Ẍt+τ }dt =
τ∫

0

{Ẍt}dt +
τ∫

0

τ

θ�t
{Ẍt+θ�t − Ẍt}dt

➔ {Ẋt+τ } = {Ẋt} + τ {Ẍt} + τ2

2θ�t
{Ẍt+θ�t − Ẍt} (5.2.74)

To find out the displacement vector at t + τ we have on further integration of the
velocity vector

t+τ∫
t

{Ẋt+τ }dt =
τ∫

0

{Ẋt}dt +
τ∫

0

τ {Ẍt}dt +
τ∫

0

τ2

2θ�t
{Ẍt+θ�t − Ẍt} · dt

➔ {Xt+τ } = {Xt} + τ {Ẋt} + τ2

2
{Ẍt} + τ3

6θ�t
{Ẍt+θ�t − Ẍt} (5.2.75)

For τ = θ�t, we have

{Ẋt+θ�t} = {Ẋt} + θ�t{Ẍt} + θ2�t2

2θ�t
{Ẍt+θ�t − Ẍt}

Thus,

{Ẋt+θ�t} = {Ẋt} + θ�t
2

{Ẍt+θ�t + Ẍt} and

{Xt+θ�t} = {Xt} + θ�t{Ẋt} + θ2�t2

6
{Ẍt+θ�t + 2Ẍt}
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The above two equations can be solved to obtain {Ẍt+θ�t} and {Ẋt+θ�t} in terms of
{Xt+θ�t} and this gives:

{Ẍt+θ�t} = 6
θ2�t2 {Xt+θ�t − Xt} − 6

θ�t
{Ẋt} − 2{Ẍt}

{Ẋt+θ�t} = 3
θ�t

{Xt+θ�t − Xt} − 2{Ẋt} − θ�t
2

{Ẍt} (5.2.76)

To start the solution for the dynamic equation we start with the expression

[M]{Ẍt+θ�t} + [C]{Ẋt+θ�t} + [K]{Xt+θ�t} = {Rt+θ�t} (5.2.77)

Now as acceleration is varying linearly hence the applied force within this small time
step can also be assumed to vary linearly. Thus we can draw a similar force diagram
as shown in Figure 5.2.18.

By similar triangle we have

Rt+θ�t − Rt

t + θ�t − t
= Rt+�t − Rt

t +�t − t

or Rt+θ�t = Rt + θ (Rt+�t − Rt) (5.2.78)

Now substituting the value of {Ẍt+θ�t} and {Ẋt+θ�t} in the equilibrium equation
we have

[M] 6
θ2�t2

{Xt+θ�t − Xt} − [M] 6
θ�t

{Ẋt} − 2[M] {Xt} + [C]
3
θ�t

{Xt+θ�t − Xt}

− 2[C]{Ẋt} − θ�t
2

[C]{Ẍt} + [K]{Xt+θ�t} = {Rt} + θ{Rt+�t − Rt}

Rt

t t + t t + t

Rt + t R

Time

R

t + t

Figure 5.2.18 Linear variation of R with time.
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The above equation can be further simplified to

[
6[M]
θ2�t2 + 3[C]

θ�t
+ [K]

]
{Xt+θ�t} −

[
6[M]
θ2�t2 + 3[C]

θ�t

]
{Xt}

−
[

6[M]
θ2�t2 + 2[C]

]
{Ẋt} −

[
2[M] − θ�t

2
[C]
]

{Ẍt} = {Rt+θ�t}

The above expression can now be further simplified and written in more compact
form as

[K̂] · {Xt+θ�t} = {R̂t+θ�t} + [M̂0]{Xt} + [M̂1]{Ẋt} + [M̂2]{Ẍt} (5.2.79)

where, [K̂] =
[

6[M]
θ2�t2 + 3[C]

θ�t
+ [K]

]
; [M̂0] =

[
6[M]
θ2�t2 + 3[C]

θ�t

]
;

[M̂1] =
[

6[M]
θ2�t2 + 2[C]

]
{Ẋt}; [M̂2] =

[
2[M] − θ�t

2
[C]
]

.

We have,

{R̂t+θ�t} = {Rt} + θ{Rt+�t − Rt} (5.2.80)

from which we can find out the value of {Xt+θ�t}.
Once Xt+θ�t is obtained we can now back-substitute its values in the equations

{Ẍt+θ�t} = 6
θ2�t2 {Xt+θ�t − Xt} − 6

θ�t
{Ẋt} − 2{Ẍt} and

{Ẋt+θ�t} = 3
θ�t

{Xt+θ�t − Xt} − 2{Ẋt} − θ�t
2

{Ẍt} (5.2.81)

Thus all data at the time intervals t + θ�t is evaluated.

The above method can thus be structured as follows:

• Assemble the mass matrix [M] the damping matrix [C] and stiffness matrix [K]
• Initialize {X0} and {Ẋ0}
• Evaluate {Ẍ0} (Refer Central difference method to see how this is evaluated)
• Select the time step �t and calculate the integration constant θ (this usually taken

as 1.4)
• Select the values

α0 = 6
θ2�t2 , α1 = 3

θ�t
, α2 = 2α1, α3 = θ�t

2
, α4 = α0

θ
,

α5 = −α2

θ
, α6 = 1 − 3

θ
, α7 = �t

2
, α8 = �t2

6
.
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• Form modified stiffness matrix [K̂]

[K̂] = [K] + α0[M] + α1[C]

• Calculate the external load {R̂t+θ�t}

{R̂t+θ�t} = {Rt} + θ{Rt+�t − Rt} + [M]{α0{Xt} + α2{Ẋt} + 2{Ẍt}}

+ [C] {α1{Xt} + 2{Ẋt} + α3{Ẍt}}

• Solve for displacement at time t + θ�t

[K̂] {Xt+θ�t} = {R̂t+θ�t}

• Calculate the acceleration, velocity and at time displacement t +�t

◦ {Ẍt+�t} = α4{Xt+θ�t − Xt} + α5{Ẋt} + α6{Ẍt}
◦ {Ẋt+�t} = {Ẋt} + α7{Ẍt+�t + Ẍt}
◦ {Xt+�t} = {Xt} + {Ẋt}�t + α8{Ẍt+�t + 2Ẍt}

We repeat the numerical problem in Example 5.2.7, for finding out the amplitude
of a dynamic system based on Wilson-θ method with the following data:

Example 5.2.8

[M] =
[
50 0
0 100

]
[C] =

[
700 −2800

−2800 12300

]
[K] =

[
3000 −1200

−1200 51000

]

The load vector is given by {P} =
{

500 sin 12.5t
200 sin 12.5t

}
For a time step of 0.04 seconds determine the amplitudes by Wison-θ method.

Consider θ = 1.4.

Solution:

We start with the following assumptions

• Let displacement vector be {X} =
{

X1
X2

}
• As the function is a sine curve hence at t = 0{P} = 0 as such {X}t = 0 = 0

and {Ẋ}t=0 = 0
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Thus

[
50 0
0 100

]{
Ẍ1

Ẍ2

}
+
[

700 −2800
−2800 12300

]{
Ẋ1
X2

}
+
[

3000 −1200
−1200 51000

]{
X1
X2

}

=
{

500 sin 12.5t
200 sin 12.5t

}

∴ For {X}t=0 = 0 and {Ẋ}t=0 = 0 we have,

[
50 0
0 100

]{
Ẍ1

Ẍ2

}
+
[

700 −2800
−2800 12300

]{
0
0

}

+
[

3000 −1200
−1200 51000

]{
0
0

}
=
{

500 sin 12.5t
200 sin 12.5t

}

or,
{

Ẍ1

Ẍ2

}
t=0

=
{

0
0

}

The integration constant are

α0 = 6

(θ�t)2
= 1913, α1 = 3

θ�t
= 53.57, α2 = 2α1 = 107.14,

α3 = θ�t
2

= 0.028, α4 = α0

θ
= 1366, α5 = −α2

θ
= −76.53,

α6 = 1 − 3
θ

= −1.14, α7 = �t
2

= 0.02, α8 = �t2

6
= 0.000266

[K̂] = [K] + α0[M] + α1[C]

[K̂] =
[

3000 −1200
−1200 51000

]
+ 1913

[
50 0
0 100

]
+ 53.57

[
700 −2800

−2800 12300

]

=
[

136150 −151160
−151160 901211

]

[K̂] = 136150 × 901211 − (151160)2 = 9.985 × 1010

Adj.[K̂] =
[
901211 151160
151160 136150

]
; [K̂]−1 =

[
9.03 1.514
1.514 1.363

]
× 10−6
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Now, {R̂t+θ�t} = {Rt} + θ {Rt+�t − Rt} + [M]{α0Xt + α2Ẋt + 2Ẍt}

+ [C]{α1Xt + 2Ẋt + α3Ẍt}

At t = 0.04 sec

{R̂}0.04 =
{

500 sin 12.5 × 0.4
200 sin 12.5 × 0.4

}
+ 1.4

{{
500 sin 12.5 × 0.04
200 sin 12.5 × 0.04

}
−
{

0
0

}}

+
[
50 0
0 100

]{
1913

{
0
0

}
+ 107

{
0
0

}
+ 2

{
0
0

}}

+
[

700 −2800
−2800 12300

]{
53.57

{
0
0

}
+ 2

{
0
0

}
+ 0.028

{
0
0

}}

=
{

575.28
230.20

}

As [K̂] {Xt+θ�t} = {R̂t+θ�t}

{X̂}0.04 =
[

9.03 1.514
1.514 1.363

]{
575.28
230.20

}
× 10−6 =

{
5.543
1.185

}
× 10−3

{Ẍt+�t} = α4 {Xt+θ�t − Xt} + α5{Ẋt} + α6{Ẍt}

= 1366.42
{{

5.543 × 10−3

1.185 × 10−3

}
−
{

0
0

}}
− 76.53

{
0
0

}
− 1.14

{
0
0

}

=
{

7.5714
1.619

}

{Ẋt+�t} = {Ẋt} + α7{Ẍt+�t + Ẍt} =
{

0
0

}
+ 0.02

{{
7.574
1.619

}
+
{

0
0

}}

=
{

0.15148
0.0324

}

{Xt+�t} = {Xt} + {Ẋt}�t + α8{Ẍt+�t + 2Ẍt}

=
{

0
0

}
+ 0.04

{
0
0

}
+ 0.000266

{{
7.5714
1.619

}
+
{

0
0

}}

=
{

2.014 × 10−3

4.306 × 10−4

}
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At t = 0.08 again

{R̂t+θ�t} = {Rt} + θ {Rt+�t − Rt} + [M]{α0Xt + α2Ẋt + 2Ẍt}

+ [C]{α1Xt + 2Ẋt + α3Ẍt}

{R̂}0.08 =
{

500 sin 12.5 × 0.08
200 sin 12.5 × 0.08

}
+ 1.4

{{
420.735
168.294

}
−
{

239.713
95.885

}}

+
[
50 0
0 100

]{
1913

{
2.014 × 10−3

4.306 × 10−4

}
+ 107

{
0.15148
0.0324

}

+2
{

7.574
1.619

}}
+
[

700 −2800
−2800 12300

]{
53.57

{
2.014 × 10−3

4.306 × 10−4

}

+2
{

0.15148
0.0324

}
+ 0.028

{
7.574
1.619

}}
=
{

2498.32
914.00

}

{X̂}0.08 =
[

9.03 1.514
1.514 1.363

]{
2498.32

914

}
× 10−6 =

{
0.02394
0.00502

}

{Ẍt+�t} = α4 {Xt+θ�t − Xt} + α5{Ẋt} + α6{Ẍt} at t = 0.08 is

= 1366.42
{{

0.02394
0.00502

}
−
{

2.014 × 10−3

4.306 × 10−4

}}

− 76.53
{

0.01548
0.0324

}
− 1.14

{
7.574
1.619

}
=
{

9.726
1.946

}

{Ẋt+�t} = {Ẋt} + α7{Ẍt+�t + Ẍt} at t=0.08

=
{

0.15148
0.0324

}
+ 0.02

{{
9.726
1.946

}
+
{

7.5740
1.619

}}
=
{

0.49748
0.1037

}

or, {Xt+�t} = {Xt} + {Ẋt}�t + α8{Ẍt+�t + 2Ẍt} at t = 0.08 is

=
{

2.014 × 10−3

4.306 × 10−4

}
+ 0.04

{
0.15148
0.0324

}
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+ 0.000266
{{

9.726
1.946

}
+ 2

{
7.5740
1.619

}}

=
{

1.47 × 10−2

3.1055 × 10−4

}

Thus, we proceed step by step to find out the displacement, velocity and
acceleration at each time step.

The displacement time history for 30 time steps are shown hereafter.
The table below gives the force and amplitudes for 30 time steps based on

Wilson-Theta Method and a plot is given in Figure 5.2.19.

Sl. No. Time step R1 (t) R2 (t) X1 (m) X2 (m)

1 0.04 239.7128 95.88511 2.02 × 10−03 4.32 × 10−04

2 0.08 420.7355 168.2942 1.47 × 10−02 3.11 × 10−03

3 0.12 498.7475 199.499 4.17 × 10−02 8.65 × 10−03

4 0.16 454.6487 181.8595 7.93 × 10−02 1.59 × 10−02

5 0.20 299.2361 119.6944 1.18 × 10−01 2.27 × 10−02

6 0.24 70.56 28.224 1.46 × 10−01 2.64 × 10−02

7 0.28 −175.3916 −70.15665 1.51 × 10−01 2.48 × 10−02

8 0.32 −378.4012 −151.3605 1.26 × 10−01 1.69 × 10−02

9 0.36 −488.7651 −195.506 7.18 × 10−02 3.41 × 10−03

10 0.40 −479.4621 −191.7849 −4.80 × 10−03 −1.35 × 10−02

11 0.44 −352.7702 −141.1081 −8.92 × 10−02 −3.02 × 10−02

12 0.48 −139.7077 −55.8831 −1.64 × 10−01 −4.29 × 10−02

13 0.52 107.56 43.024 −2.10 × 10−01 −4.83 × 10−02

14 0.56 328.4933 131.3973 −2.17 × 10−01 −4.44 × 10−02

15 0.60 469.00 187.6 −1.80 × 10−01 −3.13 × 10−02

16 0.64 494.6791 197.8716 −1.04 × 10−01 −1.13 × 10−02

17 0.68 399.2436 159.6974 −3.57 × 10−03 1.18 × 10−02

18 0.72 206.0592 82.4237 1.00 × 10−01 3.31 × 10−02

19 0.76 −37.57556 −15.03022 1.86 × 10−01 4.80 × 10−02

20 0.80 −272.0106 −108.8042 2.34 × 10−01 5.32 × 10−02

21 0.84 −439.8479 −175.9392 2.35 × 10−01 4.74 × 10−02

22 0.88 −499.9951 −199.998 1.87 × 10−01 3.17 × 10−02

23 0.92 −437.7261 −175.0904 1.02 × 10−01 9.56 × 10−03

24 0.96 −268.2865 −107.3146 −2.91 × 10−03 −1.43 × 10−02

25 1.00 −33.16095 −13.26438 −1.04 × 10−01 −3.48 × 10−02

26 1.04 210.0835 84.03341 −1.80 × 10−01 −4.74 × 10−02

27 1.08 401.8922 160.7569 −2.15 × 10−01 −4.96 × 10−02

28 1.12 495.3037 198.1215 −2.02 × 10−01 −4.11 × 10−02

29 1.16 467.4475 186.979 −1.45 × 10−01 −2.41 × 10−02

30 1.20 325.1439 130.0576 −5.93 × 10−02 −2.61 × 10−03
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Figure 5.2.19 Time history response using Wilson-Theta method for first 30 steps.
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Figure 5.2.21 Time history response using Newmark-β method for first 30 steps.

5.2.4.1 Newmark-Beta method

Newmark (1959) developed an integration scheme based on constant average
acceleration method as described in Figure 5.2.20. Considering Ẍt and Ẍt+�t as accel-
eration at time t and t +�t he assumed that average acceleration of a body within the
time interval t and t +�t is
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Ẍav = Ẍt+�t + Xt

2

Let dv
dt = Ẍav, we may write

t+�t∫
t

dv =
t+�t∫
t

Ẍavdt ➔ Ẋt+�t − Ẋt = Ẍav (t +�t − t) (5.2.82)

i.e. Ẋt+�t = Ẋt + Ẍav�t implying Ẋt+�t = Ẋt + Ẍt+�t+Ẋt
2 �t

Hence, Ẋt+�t = Ẋt + {(1 − δ)Ẍt + δẌt+�t}�t, where δ = 1/2.
To obtain the displacement vector, we integrate the above between the limits t and

t +�t

t+�t∫
t

Ẋt+�t =
t+�t∫
t

Ẋt +
t+�t∫
t

{(1 − δ)Ẍt + δẌt+�t}�t

or, Xt+�t − Xt = Ẋt ·�t + {(1 − δ)Ẍt + δXt+�t}�t2

2

i.e. Xt+�t = Xt + Ẋt ·�t +
{(

1
2

− β

)
Ẍt + βXt+�t

}
�t2 where, β = 1

4
.

Here you should note the similarity in the above procedure with Wilson-Theta
Method.

In Wilson-Theta method we had expression of displacement as {Xt+�t} = {Xt} +
{Ẋt}�t + α8{Xt+�t + 2Ẍt} where, α8 = �t2

6 and on substitution we get {Xt+�t} =
{Xt} + {Ẋt}�t + �t2

6 {Xt+�t + 2Ẍt}
Considering β = 1/6 in Newmark’s equation, we have

Xt+�t = Xt + Ẋt ·�t +
[(

1
2

− 1
6

)
Ẍt + 1

6
Xt+�t

]
�t2

➔ {Xt+�t} = {Xt} + {Ẋt}�t + �t2

6
{Xt+�t + 2Ẍt} (5.2.83)

Thus we see that for β = 1/6 we arrive at the same expression as arrived in the
Wilson-Theta Method.

Thus we start here with the basic equation of motion as

[M]{Ẍt+�t} + [C]{Ẋt+�t} + [K]{Xt+�t} = {Rt+�t} (5.2.84)

and proceeding in the similar manner as shown in the Wilson-Theta method, we find
out the value of Xt+�t which can be systematically structured as follows
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• Assemble the mass matrix [M] the damping matrix [C] and stiffness matrix [K]
• Initialize {X0} and {Ẋ0}
• Evaluate {Ẍ0} (Refer Central difference method to see how this is evaluated)
• Select time step size �t and parameters δ and β where δ ≥ 0.50 and β =

0.25 (0.5 + δ)2

• Calculate integration constant . . .

α0 = 1
β�t2 , α1 = δ

β�t
, α2 = 1

β�t
,

α3 = 1
2β

− 1, α4 = δ

β
− 1, α5 = �t

2

(
δ

β
− 2
)

,

α6 = �t (1 − δ) , α7 = �tδ

• Form the modified stiffness matrix as

[K̂] = [K] + α0[M] + α1[C]

• Calculate modified load at time t +�t

{R̂t+�t} = {Rt+�t} + [M]{α0Xt + α2Ẋt + α3Ẍt} + [C]{α1Xt + α4Ẋt + α5Ẍt}

• Solve for displacement vector

[K̂] {Xt+�t} = {R̂t+�t }

• Calculate the acceleration and velocity at time t +�t

{Ẍt+�t} = α0{Xt+�t − Xt} − α2{Ẋt} − α3{Ẍt}
{Ẋt+�t} = {Ẋt} + α6{Ẍt} + α7{Ẍt+�t}

We repeat the numerical problem in Example 5.2.7 for finding out the amplitude
of a dynamic system based on Newmark-β method with the following data.

Example 5.2.9

[M] =
[
50 0
0 100

]
[C] =

[
700 −2800

−2800 12300

]

[K] =
[

3000 −1200
−1200 51000

]
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The load vector is given by {P} =
{

500 sin 12.5t
200 sin 12.5t

}
For a time step of 0.04 seconds determine the amplitudes by Newmark-β

method. Consider δ = 0.5 and β = 0.25

Solution:

We start with the following assumptions

• Let displacement vector be {X} =
{

X1
X2

}
• As the function is a sine curve hence at t = 0 {P} =0 as such {X}t=0 = 0 and

{Ẋ}t=0 = 0

Thus

[
50 0
0 100

]{
Ẍ1

Ẍ2

}
+
[

700 −2800
−2800 12300

]{
Ẋ1
X2

}

+
[

3000 −1200
−1200 51000

]{
X1
X2

}
=
{

500 sin 12.5t
200 sin 12.5t

}

∴ For {X}t=0 = 0 and {Ẋ}t=0 = 0 we have

[
50 0
0 100

]{
Ẍ1

Ẍ2

}
+
[

700 −2800
−2800 12300

]{
0
0

}

+
[

3000 −1200
−1200 51000

]{
0
0

}
=
{

500 sin 12.5t
200 sin 12.5t

}

or,
{

Ẍ1

Ẍ2

}
t=0

=
{

0
0

}

The integration constant are

α0 = 1
β�t2 = 2500, α1 = δ

β�t
= 50,

α2 = 1
β�t

= 100, α3 = 1
2β

− 1 = 1.0,

α4 = δ1
β

− 1 = 1.0, α5 = �t
2

(
δ

β
− 2
)

= 0.0,

α6 = �t (1 − δ) = 0.02.
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[K̂] = [K] + α0[M] + α1[C] =
[

3000 −1200
−1200 51000

]

+ 2550
[
50 0
0 100

]
+ 50

[
700 −2800

−2800 12300

]

=
[

16300 −141200
−141200 916000

]

det.|K̂| = 16300 × 916000 − (141200)2 = 1.29E + 11;

Adj.[K̂] =
[
916000 141200
141200 163000

]

[K̂]−1 =
[
7.08 1.09
1.09 1.259

]
× 10−6

Now {R̂t+�t} = {Rt+�t} + [M] {α0{Xt} + α2{Ẋt} + α3{Ẍt}}
+[C] {α1{Xt} + α4{Ẋt} + α5{Ẍt}}

For t = 0.04 sec

{R̂}0.04 =
[
500 sin 12.5 × 0.04
200 sin 12.5 × 0.04

]
+
[
50 0
0 100

]

×
{

2500
{

0
0

}
+ 100

{
0
0

}
+ 1

{
0
0

}}
+
[

700 −2800
−2800 12300

]

×
{

50
{

0
0

}
+ 1.0

{
0
0

}
+ 0.0

{
0
0

}}
=
{

239.7
95.885

}

{X̂}t+�t = [K̂]−1{R̂}t+�t

{X}0.04 =
[
7.08 1.09
1.09 1.259

]{
239.7
95.885

}
× 10−6 =

{
1.801
0.381

}
× 10−3

{Ẍt+�t} = α0{Xt+�t − Xt} − α2{Ẋt} − α3{Ẍt}

{Ẍ}0.04 = 2500
{{

1.801 × 10−3

0.381 × 10−3

}
−
{

0
0

}}

− 100
{

0
0

}
− 1.0

{
0
0

}
=
{

4.5025
0.9525

}

{Ẋt+�t} = {Ẋt} + α6{Ẍt} + α7{Ẍt+�t}

{Ẋ}0.04 =
{

0
0

}
+ 0.02

{
0
0

}
+ 0.02

{
4.5025
0.9525

}
=
{

0.090
0.019

}
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For t = 0.08 sec

{R̂t+�t} = {Rt+�t} + [M] {α0Xt} + α2{Ẋt} + α3{Ẍt}
+ [C] {α1{Xt} + α4{Ẋt} + α5{Ẍt}}

{R̂}0.08 =
{

500 sin 12.5 × 0.08
200 sin 12.5 × 0.08

}
+
[
50 0
0 100

]

×
{

2500
{

1.801 × 10−3

0.381 × 10−3

}
+ 100

{
0.090
0.019

}
+ 1.0

{
4.5025
0.9525

}}

+
[

700 −2800
−2800 12300

]
{50

{
1.801 × 10−3

0.381 × 10−3

}

+ 1.0
{

0.090
0.019

}
+ 0} =

{
1340.335
512.294

}

For {X}t+�t = [K̂]−1{R̂}t+�t, we have

{X}0.08 =
[
7.08 1.09
1.09 1.259

]{
1340.335
512.294

}
× 10−6 =

{
1.004 × 10−2

2.106 × 10−3

}

{Ẍt+�t} = α0{Xt+�t − Xt} − α2{Ẋt} − α3{Ẍt}

{Ẍ}0.08 = 2500
{{

1.004 × 10−2

2.106 × 10−3

}
−
{

1.801 × 10−3

0.381 × 10−3

}}

− 100
{

0.090
0.019

}
− 1.0

{
4.5025
0.9525

}
=
{

7.0945
1.460

}

Again {Ẋt+�t} = {Ẋt} + α6{Ẍt} + α7{Ẍt+�t}

or {Ẋ}0.08 =
{

0.090
0.019

}
+ 0.02

{
4.5025
0.9525

}

+ 0.02
{

7.0945
1.460

}
=
{

0.3218
0.068

}

This way we proceed step-by-step to find out the displacement velocity and
acceleration at a time step of 0.04, 0.08, 0.12 . . .

The table below gives the force and amplitudes for 30 time steps based on
Newmark-Beta method and plots are given in Figure 5.2.21.

Finally we compare the values obtained by the three methods to see how they
match in terms of each other.
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Sl. No. Time steps R1(t) R2(t) X1(t) X2(t)

1 0.04 239.71 95.89 1.80 × 10−03 3.82 × 10−04

2 0.08 420.74 168.29 1.01 × 10−02 2.11 × 10−03

3 0.12 498.75 199.50 2.85 × 10−02 5.89 × 10−03

4 0.16 454.65 181.86 5.66 × 10−02 1.14 × 10−02

5 0.20 299.24 119.69 8.90 × 10−02 1.73 × 10−02

6 0.24 70.56 28.22 1.17 × 10−01 2.16 × 10−02

7 0.28 −175.39 −70.16 1.31 × 10−01 2.25 × 10−02

8 0.32 −378.40 −151.36 1.24 × 10−01 1.85 × 10−02

9 0.36 −488.77 −195.51 9.09 × 10−02 9.57 × 10−03

10 0.40 −479.46 −191.78 3.58 × 10−02 −3.27 × 10−03

11 0.44 −352.77 −141.11 −3.29 × 10−02 −1.77 × 10−02

12 0.48 −139.71 −55.88 −1.02 × 10−01 −3.06 × 10−02

13 0.52 107.56 43.02 −1.56 × 10−01 −3.89 × 10−02

14 0.56 328.49 131.40 −1.82 × 10−01 −4.02 × 10−02

15 0.60 469.00 187.60 −1.73 × 10−01 −3.38 × 10−02

16 0.64 494.68 197.87 −1.28 × 10−01 −2.03 × 10−02

17 0.68 399.24 159.70 −5.49 × 10−02 −2.19 × 10−03

18 0.72 206.06 82.42 3.20 × 10−02 1.69 × 10−02

19 0.76 −37.58 −15.03 1.15 × 10−01 3.30 × 10−02

20 0.80 −272.01 −108.80 1.75 × 10−01 4.26 × 10−02

21 0.84 −439.85 −175.94 2.01 × 10−01 4.34 × 10−02

22 0.88 −500.00 −200.00 1.86 × 10−01 3.53 × 10−02

23 0.92 −437.73 −175.09 1.33 × 10−01 1.99 × 10−02

24 0.96 −268.29 −107.31 5.30 × 10−02 4.01 × 10−04

25 1.00 −33.16 −13.26 −3.59 × 10−02 −1.89 × 10−02

26 1.04 210.08 84.03 −1.15 × 10−01 −3.39 × 10−02

27 1.08 401.89 160.76 −1.67 × 10−01 −4.15 × 10−02

28 1.12 495.30 198.12 −1.81 × 10−01 −4.00 × 10−02

29 1.16 467.45 186.98 −1.56 × 10−01 −3.00 × 10−02

30 1.20 325.14 130.06 −9.79 × 10−02 −1.40 × 10−02

Sl. No. Time steps x1 (Central difference) x1 (Wilson-θ ) x1 (Newmark-β)

1 0.04 7.43 × 10−03 2.02 × 10−03 1.80 × 10−03

2 0.08 2.66 × 10−02 1.47 × 10−02 1.01 × 10−02

3 0.12 5.68 × 10−02 4.17 × 10−02 2.85 × 10−02

4 0.16 9.22 × 10−02 7.93 × 10−02 5.66 × 10−02

5 0.2 1.23 × 10−01 1.18 × 10−01 8.90 × 10−02

6 0.24 1.39 × 10−01 1.46 × 10−01 1.17 × 10−01

7 0.28 1.30 × 10−01 1.51 × 10−01 1.31 × 10−01

8 0.32 9.44 × 10−02 1.26 × 10−01 1.24 × 10−01

9 0.36 3.43 × 10−02 7.18 × 10−02 9.09 × 10−02

10 0.4 −4.00 × 10−02 −4.80 × 10−03 3.58 × 10−02

(continued)
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Sl. No. Time steps x1 (Central difference) x1 (Wilson-θ ) x1 (Newmark-β)

11 0.44 −1.14 × 10−01 −8.92 × 10−02 −3.29 × 10−02

12 0.48 −1.70 × 10−01 −1.64 × 10−01 −1.02 × 10−01

13 0.52 −1.96 × 10−01 −2.10 × 10−01 −1.56 × 10−01

14 0.56 −1.82 × 10−01 −2.17 × 10−01 −1.82 × 10−01

15 0.6 −1.30 × 10−01 −1.80 × 10−01 −1.73 × 10−01

16 0.64 −4.78 × 10−02 −1.04 × 10−01 −1.28 × 10−01

17 0.68 4.72 × 10−02 −3.57 × 10−03 −5.49 × 10−02

18 0.72 1.35 × 10−01 1.00 × 10−01 3.20 × 10−02

19 0.76 1.98 × 10−01 1.86 × 10−01 1.15 × 10−01

20 0.8 2.20 × 10−01 2.34 × 10−01 1.75 × 10−01

21 0.84 1.96 × 10−01 2.35 × 10−01 2.01 × 10−01

22 0.88 1.32 × 10−01 1.87 × 10−01 1.86 × 10−01

23 0.92 4.07 × 10−02 1.02 × 10−01 1.33 × 10−01

24 0.96 −5.79 × 10−02 −2.91 × 10−03 5.30 × 10−02

25 1 −1.42 × 10−01 −1.04 × 10−01 −3.59 × 10−02

26 1.04 −1.94 × 10−01 −1.80 × 10−01 −1.15 × 10−01

27 1.08 −2.03 × 10−01 −2.15 × 10−01 −1.67 × 10−01

28 1.12 −1.67 × 10−01 −2.02 × 10−01 −1.81 × 10−01

29 1.16 −9.51 × 10−02 −1.45 × 10−01 −1.56 × 10−01

30 1.2 −5.15 × 10−03 −5.93 × 10−02 −9.79 × 10−02
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Figure 5.2.22 Comparison of response for displacement x1 by three methods.

It may be observed from Figure 5.2.22 that the results are quite closely
matching.

5.2.4.2 Discussions on selection of time step for step by step
integration

In central difference method, the value of displacement {Xt+�t} is sought based on
equilibrium equation of [M] {Ẍt} + [C] {Ẋt} + [K] {Xt} = {Rt} while in Wilson-Theta
method and Newmark-beta method the equation is solved for {Xt+�t} based on the
equilibrium of the equation of motion at

[M] {Ẍt+�t} + [C] {Ẋt+�t} + [K] {Xt+�t} = {Rt+�t} (5.2.85)
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The central difference method is known as explicit integration scheme while
Wilson-Theta method and Newmark–Beta are known as implicit integration schemes.

Most of the explicit integration schemes like central difference method are condition-
ally stable, while implicit integration schemes like, Wilson-Theta, and Newmark-Beta
method are unconditionally stable.

By conditional stability we mean that there exists a certain condition beyond which
the scheme does not produce meaningful results.

For central difference method there exists a particular limiting value of the time step
�tlim, which if exceeded, the scheme becomes unstable and displacement, velocity and
acceleration vectors grow without limit.

If the damping is high the solution may not undergo core overflow but may contain
errors that may not be easily recognizable.

Thus selection of an appropriate time period for meaningful evaluation of response
based on direct integration method is of utmost importance.

The time step should neither be too small to make the analysis too expensive and
nor too big to render results which have values which are far too crude/rough for any
practical use.

This is the essence of our further discussion.
It has been observed that for central difference technique when,�t ≤ �tlim ≤ Tn/π ,

the solution is stable. Here, Tn is the highest un-damped time period of the dynamic
system having n degrees of freedom.

Let us now see what does the term, �t ≤ �tlim ≤ Tn/π signify.
For a structure or a foundation system having limited degrees of freedom finding Tn

is surely not a problem.
For instance a block foundation supporting a centrifugal/reciprocating compressor

subjected to coupled horizontal and rocking mode and we have to deal with two
degrees of freedom system.

Similarly for dynamic analysis of tall R.C.C. chimney where we usually apply a stick
model and have a maximum of 20 to 30 nodes with about 40 to 60 degrees of freedom
and the value of Tn can easily be obtained by an inverse iteration technique16.

But when we undertake a large finite element analysis with more than 1000 or
1500 nodes, finding out Tn, based on standard eigen value solution, could be time
consuming and expensive too. Moreover, the value of Tn for such problems could be
quite small, making �t ≤ Tn/π very small.

As the cost of analysis increases directly with the decrement of the time step, for a
value �t → 0, the analysis could be prohibitively expensive.

We discuss below a few of the cases when due to the typical characteristics of a
problem, the time step becomes prohibitively small.

• There could be cases where due to opening or re-entrant corners it becomes
necessary for mesh refinements this goes on to add additional degrees of freedom
and makes the value of Tn small.

16 In most of the iterative techniques for evaluation eigenvalue the iteration converges first to the lowest
eigen value. In inverse iteration technique it converges to the highest eigen value.
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• The use shell elements in structure where in plane membrane mode is far stiffer
than the bending or flexural mode.

• A large structure with mass matrix considered as lumped mass having one or two
nodes having very small mass will make the value of Tn very small.

Systems which are flexible having long time period gives very good result based on
explicit integration scheme. One of the best examples is response of fluid in a container
in a fluid structure interaction problem.

For implicit integration schemes there exists a condition if satisfied the scheme
becomes unconditionally stable. However the choice of magnitude of an appropriate
time step also depends upon the accuracy of the scheme as well as on the co-relation
between modal response method and direct integration method.

As such we first try to understand the co-relation between modal response and direct
integration.

In modal analysis we have seen that the orthogonal transformation de-couples an
equation of n degrees of freedom into the form

{ξ̈1} + 2D1ω1{ξ̇1} + [ω2
1]{ξ1} = 0; {ξ̈2} + 2D2ω2{ξ̇2} + [ω2

2]{ξ2} = 0;

{ξ̈3} + 2D3ω3{ξ̇3} + [ω2
3]{ξ3} = 0; · · · {ξ̈n} + 2Dnωn{ξ̇n} + [ω2

n]{ξn} = 0.

(5.2.86)

where Di = damping ratio per mode; ωi = natural frequency per mode, and ξi =
displacement value in transformed orthogonal plane.

Now for each mode we have time periods T1, T2, T3 . . . Tn
Suppose we want to do a time history analysis in the transformed co-ordinates for

each uncoupled degree of freedom, we can find
∑n

i=1�ti = T1
π

, T2
π

, T3
π

, . . . . Tn
π

and
can find a solution based on step by step integration.

However if we can solve the equations for all modes based on common time step
modal analysis in essence becomes direct integration method.

Thus how to arrive at a common time step to solve the equation of motion becomes
of the topic of our subsequent discussion. For most of the practical structure the
significant contributions are restricted to a first few mode beyond which the inertial
contribution for higher modes become insignificant. Now for a structural system hav-
ing n degrees of freedom if first m-modes are significant then for �t ≤ Tm/π or say
�t ≤ Tm/10 would suffice.

This also has the advantage that the time step �t becomes larger to �tlim by the
ratio Tm/Tn and makes the cost of analysis much cheaper.

However, it should also be remembered that during direct integration method the
effects of the higher modes also get directly integrated into the system.

Thus the question boils down what response does the structure give for large �t/T
and what is the contribution of the higher modes which are deemed insignificant.

This is basically the crux of the stability concept for by stability of integration we
mean that for large value of�t/T, the results do not get artificially amplified rendering
the lower mode responses useless.
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We will not discuss the mathematics underlying the stability of integration for
excellent treatment is available elsewhere but will only discuss the end results17.

• For Central difference method we have already discussed that the condition of
stability to be �t ≤ �tlim ≤ Tn/π .

• For Wilson-Theta method, unconditional stability is obtained for θ ≥ 1.37
(usually taken as 1.4).

• For Newmark-Beta method, the unconditional stability is satisfied when δ ≥ 0.5
and β ≥ 0.25(δ + 0.5)2.

For accuracy analysis specially for central difference method we don’t have much
choice except to abide by the conditional stability rule of putting, �t ≤ �tlim ≤ Tn/π .
However for implicit integration scheme it has been shown that for Wilson-Theta
method for θ ≥ 1.37 and for Newmark-Beta method for δ ≥ 0.5 and β ≥ 0.25(δ+0.5)2

gives the best solution.
Even with higher value of �t/T it has been observed that due to amplitude

decay inherent in the numerical procedure the effect of higher modes effectively gets
damped out.

Thus for a modeling a finite element problem falling under the purview of structural
dynamics problem for selection of �t we have to proceed as follows18:

• Select the frequency to which there is a significant contribution from load

◦ For instance for Turbine foundation say the operating frequency is 3000 rpm.
then the forcing function will be given by P(t) = P sin 314 t where ωm = 314
rad/sec Then consider the cut off frequency as ωco = 4ωm = 1256 rad /sec

◦ Similarly for earthquake analysis it is possible to undertake a Fourier analysis
to find out the significant frequency to which the load has contribution and
establish the cut off frequency based on the relation ωco = 4ωm. Alternatively
one can check the modal mass participation factor and find out to which mode
does 95% of mass contribute and consider the cut off frequency as four times
the corresponding frequency of that mode.

• Once the cut off frequency is established it should be ensured that the finite element
has enough nodes to accurately predict the modal response to the cutoff frequency
level.

• Find out the cut off time period from the expression Tco = 2π/ωco.
• Select �t = Tco/20.

You might wonder at this point as to what is the basis of the selection of ωco = 4ωm.

17 For detailed discussion on study of stability and accuracy of Numerical integration technique applied to
dynamic problems in Finite element method, read section 9.4 of the book “Finite Element Procedures –
Bathe Klaus Jurgen Prentice Hall Publication. It possibly gives the best insight into the topic we feel.

18 For soil dynamics and wave propagation problems the considerations are a bit different. We will discuss
this problem in detail in when we take up the subject of Soil Dynamics.



Concepts in structural and soil dynamics 577

The logic is simple for we know that x̄ = P0/k
(1−r2)

where, r = ωm
ωn

. For ωm
ωn

≤ 0.25 the

value of x̄ → P0
k , which means that the value approaches static deflection.

As the response for higher modes are insignificant for static deflection case a cut off
frequency four times the significant mode is found to be quite logical.

We have already stated earlier that dynamic analysis is nothing but equivalent to
static analysis at an instant of time �t. Thus all logic pertaining to modeling of FEM
for static problems holds good including the use of higher order elements which gives
a better result.

As we had stated earlier that refined meshes at times render exceedingly low value
of Tn it would possibly be worth to go for higher order elements with cruder meshes
to have an economic and optimal analysis model.

We solve a bench mark problem here which covers the complete gamut of modal
analysis as discussed in this chapter.

Example 5.2.9

As shown in Figure 5.2.23 is a three storied steel frame subjected to dynamic
forces as shown. The damping ratio for steel is found to vary between 2 to 5%.
Determine

• The natural frequencies of the structure.
• The eigen-vectors
• The mode shapes
• Normalised eigen-vectors
• Form the Rayleigh Damping Matrix
• Determine the damped amplitude of vibrations.
• Nodal shear forces.

G H  
X3 P3 = 800 cos 50t

E F
X2 P2 = 1000 cos 50t

C D X1 P1 = 0 cos 50t

A B

Figure 5.2.23 A three storied frame under harmonic load.
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k2(x2-x1)
m3x3

m1x1

k3(x3-x2)
k1x1k3(x3-x2)

m2x2

k2(x2-x1)

Figure 5.2.24

Here

1 KAC = KDB = 1.5 × 103 kN/m MGH = 200 kN sec2
/m

2 KCE = KDF = 1.0 × 103 kN/m MEF = 400 kN sec2/m
3 KEG = KFH = 0.75 × 103 kN/m MCD = 400 kN sec2/m

Solution:

The free body diagram of the structure is as shown in Figure. 5.2.24.
Based on the F.B.D we have:

m3 ẍ3 + k3(x3 − x2) = P3 cosωmt

m2 ẍ2 + k2(x2 − x1)− k3(x3 − x2) = P2 cosωmt

m1 ẍ1 + k1x1 − k2(x2 − x1) = P1 cosωmt

The above on simplification while writing in the matrix form gives⎡
⎣m1 0 0

0 m2 0
0 0 m3

⎤
⎦
⎧⎨
⎩

ẍ1

ẍ2

ẍ3

⎫⎬
⎭+

⎡
⎣k1 + k2 −k2 0

−k2 k2 + k3 −k3

0 −k3 k3

⎤
⎦
⎧⎨
⎩

x1

x2

x3

⎫⎬
⎭ =

⎧⎨
⎩

P1 cosωmt
P2 cosωmt
P3 cosωmt

⎫⎬
⎭

The above, on substituting the values, gives the following matrices:

[K] =
⎡
⎣ 5000 −2000 0

−2000 3500 −1500
0 −1500 1500

⎤
⎦ and [M] =

⎡
⎣400 0 0

0 400 0
0 0 200

⎤
⎦

• To find out the natural frequencies we have,

⎡
⎣5000 − 400λ −2000 0

−2000 3500 − 400λ −1500
0 −1500 1500 − 200λ

⎤
⎦ = 0
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On expansion we have

(5000 − 400λ)
∣∣∣∣3500 − 400λ −1500

−1500 1500 − 200λ

∣∣∣∣+ 2000
∣∣∣∣−2000 −1500

0 1500 − 200λ

∣∣∣∣ = 0

The above on expansion and further simplification gives a cubical equation as
follows

λ3 − 28.75λ2 + 215.625λ− 281.25 = 0

We find the first root by Newton Raphson method
Let f (λ) = λ3 − 28.75λ2 + 215.625λ − 281.25 and f ′(λ) = 3λ2 − 57.5λ +

215.625

λi+1 = λi − f (λ)
f ′(λ)

Let λ = 50, say an arbitrary value we start with, then λ1 = 50 − 63625
4840.6 =

36.586

λ2 = 36.586 − 18676
2171.499

= 28.255 . . . λ6 = 17.753 − 83.66
140.33

= 17.156;

λ7 = 17.156 − 5.569
112.14

= 17.106; λ8 = 17.106 − 0.1944
109.87

= 17.104.

Thus the first root of the above equation is 17.104.
Now as 17.104 is one of the roots of the equation hence it must satisfy the

expression

λ3 − 28.75λ2 + 215.625λ− 281.25 = 0

i.e. (λ− 17.104)λ2 − (λ− 17.104)11.646λ+ (λ− 17.104)16.431816 = 0

or, (λ− 17.104)(λ2 − 11.646λ+ 16.431816) = 0;

➔ (λ2 − 11.646λ+ 16.431816) = 0

Hence,

λ = 11.646 ±√(11.646)2 − 4 × 16.431816
2

= 11.646 ± 8.360
2

= 1.6426, 10.00

Thus

ω1 = √
1.6426 = 1.281 rad/sec; ω2 = √

10.00 = 3.162 rad/sec;

ω3 = √
17.104 = 4.135 rad/sec.
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• To calculate the mode shapes or the eigenvectors

For first mode we have (λ = 1.6426)⎡
⎣5000 − 400 × 1.6426 −2000 0

−2000 3500 − 400 × 1.6426 −1500
0 −1500 1500 − 200 × 1.6426

⎤
⎦

×
⎧⎨
⎩
φ1
φ2
φ3

⎫⎬
⎭ = 0

where [φi]3i=1 are the modal vectors

or,

⎡
⎣ 4343 −2000 0

−2000 2843 −1500
0 −1500 1171.48

⎤
⎦
⎧⎨
⎩
φ1
φ2
φ3

⎫⎬
⎭ = 0

or 4343φ1 − 2000φ2 = 0

− 2000φ1 + 2843φ2 − 1500φ3 = 0

− 1500φ2 + 1171φ3 = 0

For φ1 = 1.00, φ2 = 2.1715 and φ3 = 1500×2.1715
1171 = 2.7816

∴ φ1 : φ2 : φ3 = 1.00 : 2.1715 : 2.7816

For second mode (λ = 10.00)⎡
⎢⎣

5000 − 400 × 10 −2000 0
−2000 3500 − 400 × 10 −1500

0 −1500 1500 − 200 × 10

⎤
⎥⎦
⎧⎪⎨
⎪⎩
φ1

φ2

φ3

⎫⎪⎬
⎪⎭ = 0

The above on simplification gives

φ1 = 1.00, φ2 = 0.500 and φ3 = 1500 × 0.5
500

= −1.50

φ1 : φ2 : φ3 = 1.00 : 0.50 : −1.50

For third mode we have (λ = 17.104)⎡
⎣5000 − 400 × 17.104 −2000 0

−2000 3500 − 400 × 17.104 −1500
0 −1500 1500 − 200 × 17.104

⎤
⎦

×
⎧⎨
⎩
φ1
φ2
φ3

⎫⎬
⎭ = 0
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The above on simplification gives

φ1 = 1.00, φ2 = −0.9208 and φ3 = 1500 × −0.9208
1920.8

= 0.719

φ1 : φ2 : φ3 = 1.00 : −0.9208 : 0.719

Thus for three modes eigen-vectors are given by

[φ] =
⎡
⎣ 1.00 1.0 1.0

2.1715 0.5 −0.9208
2.7816 −1.50 0.719

⎤
⎦

Normalised eigen vectors
For first mode

{ϕ}T [M]{ϕ} = 〈1.00 2.1715 2.7816〉
⎡
⎣400 0 0

0 400 0
0 0 200

⎤
⎦
⎧⎨
⎩

1.00
2.1715
2.7816

⎫⎬
⎭

= 3833.56

Mr = √
3833.56 = 6.191 ➔ {φi} =

⎧⎪⎪⎨
⎪⎪⎩

1.00
6.191

2.1715
6.191

2.7816
6.191

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎨
⎩

0.01615
0.0350718
0.0449255

⎫⎬
⎭

For second mode

{ϕ}T [M]{ϕ} = 〈1.00 0.5 −1.50〉
⎡
⎣400 0 0

0 400 0
0 0 200

⎤
⎦
⎧⎨
⎩

1.00
0.5

−1.50

⎫⎬
⎭

= 950; Mr = √
950 = 30.822

{φi} =
⎧⎨
⎩

0.03244
0.016322
−0.02433

⎫⎬
⎭

For third mode

{ϕ}T [M]{ϕ} = 〈1.00 −0.9208 0.719〉
⎡
⎣400 0 0

0 400 0
0 0 200

⎤
⎦

×
⎧⎨
⎩

1.00
−0.9208

0.719

⎫⎬
⎭ = 842.54

Mr = √
842.54 = 29.0265 ➔ {φi} =

⎧⎨
⎩

0.03445
−0.031723

0.02477

⎫⎬
⎭
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Second Mode First Mode

Third Mode

Figure 5.2.25 Mode shape of the frame.

Thus the normalised eigen-vector is

[ϕi] =
⎡
⎣ 0.01615 0.03244 0.0344512

0.0350718 0.01622 −0.03172
0.04493 −0.02433 0.02477

⎤
⎦

Mode shapes are shown in Figure. 5.2.25.

• Determination of Rayleigh Damping

For ω1 = 1.281 rad/sec. D1 = 0.02
For ω3 = 4.135 rad/sec. D3 = 0.05 then by linear interpolation
For ω2 = 3.162 rad/sec. D2 = 0.0397

Thus based on successive averaging technique

Sl. No. Damping ratio Average damping Frequency Average frequency

1 0.02 0.02985 1.281 2.2215
2 0.0397 0.0448 3.162 3.6485
3 0.05 4.135

As α + βω2
i = 2Diωi

For the above two conditions we have

α + 2.22152β = 2 × 0.02985 × 2.215 or,α + 4.906β = 0.1326 and

α + 3.64582β = 2 × 0.0448 × 3.6485 or,α + 13.311β = 0.326

Solving the above two equations we have α = 0.0198; β = 0.023
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Considering [C] = α [M] + β[K] we have

[C] = 0.0198

⎡
⎣400

400
200

⎤
⎦+ 0.023

⎡
⎣ 5000 −2000 0

−2000 3500 −1500
0 −1500 1500

⎤
⎦

=
⎡
⎣122.92 −46 0

−46 88.42 −34.5
0 −34.5 38.46

⎤
⎦

• Determination of damped amplitude of vibration.

The force vector is given by

P(t) =
⎧⎨
⎩

0
1000 cos 50t
800 cos 50t

⎫⎬
⎭

On the transformed co-ordinate the force vector is

[ϕ]TP(t) =
⎡
⎣0.01615 0.03507 0.04492

0.03244 0.01622 −0.02433
0.03445 −0.01372 0.02477

⎤
⎦
⎧⎨
⎩

0
1000 cos 50t
800 cos 50t

⎫⎬
⎭

=
⎧⎨
⎩

75 cos 50t
−3.244 cos 50t
−11.904 cos 50t

⎫⎬
⎭

The equation of motion on transformed co-ordinate is given by

{ξ̈i} + 2Diωi{ξ̇i} + [ω2
i ]{ξi} = {p(t)}

i.e. ξ̈1 + 2 × 0.02 × 1.281 ξ̇1 + 1.642 ξ1 = 75 cos 50 t

ξ̈2 + 2 × 0.039 × 3.162 ξ̇2 + 10 ξ2 = −3.244 cos 50 t

ξ̈3 + 2 × 0.05 × 4.135 ξ̇3 + 17.1 ξ3 = −11.904 cos 50 t

The above on simplification gives the following equations

ξ̈1 + 0.0512 ξ̇1 + 1.642 ξ1 = 75 cos 50 t

ξ̈2 + 2.466 ξ̇2 + 10 ξ2 = −3.244 cos 50 t

ξ̈3 + 0.4135 ξ̇3 + 17.1 ξ3 = −11.904 cos 50 t

Knowing that amplitude for harmonic force is given by

ξmax =
P0
K cosωmt√[(1 − r2)2 + (2ζ r)2]
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⎩
ξ1
ξ2
ξ3

⎫⎬
⎭ =

⎧⎨
⎩

0.03 cos 50t
−1.3012 × 10−3 cos 50t
−4.794 × 10−3 cos 50t

⎫⎬
⎭

For first mode :

�1 = 〈0.0615, 0.0350, 0.0492〉T × 0.03 cos 50 t m

or �1 = 〈1.845, 1.052, 1.498〉T × 10−3 cos 50 t m

Nodal shear force is given by

V1 = KX�1

=
⎡
⎣ 5000 −2000 0

−2000 3500 −1500
0 −1500 1500

⎤
⎦×

⎡
⎣1.845

1.052
1.498

⎤
⎦× 10−3 cos 50 t

=
⎧⎨
⎩

7.21
−2.25
0.668

⎫⎬
⎭ cos 50 t kN

Proceeding in identical manner for second mode

�2 = 〈−4.22, −2.11, 3.166〉T × 10−5 cos 50 t m

V2 = 〈−0.169, −0.337, 0.079〉T cos 50 t kN

For third mode

�3 = 〈1.652, −1.521, 1.187〉T × 10−4 cos 50t m

V3 = 〈1.13, −1.041, 0.406〉T cos 50t kN.

5.3 EIGEN VALUE ANALYSIS

5.3.1 Some techniques for eigen value analysis

In this section we deal with some of the techniques that are used for eigen value analysis
for small and large structures and also their computer implementation. In various
domains of science and engineering, eigen value solution plays a very important role.
Mathematicians, physicists and engineers are grappling with this problem for perhaps
more then a century and have put forward various techniques for solution to this
problem.

Some concept of eigen value was already explained to you previously where we
defined briefly the mathematical definition of eigen value and also explained it’s phys-
ical significance in terms of principal stress in an elastic body. We also explained what
it means in terms of Dynamic Analysis of a physical system.

In this chapter we first discuss different techniques that may be used for calculation
of eigen values of small systems like buildings (two or three storied), simple framed
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structures, chimneys, retaining walls etc to name a few and finally digress into tech-
niques used for eigen value solution of large systems based on Finite element method
and its computer implementation.

The eigen value problem in terms of matrix algebra is defined as follows (Ayres
1962):

If there exists a matrix [A] and {X} such that

• [A]{X} = [λ]{X} then problem is said to be an eigen value19 problem. Where λis
the eigen value.

• The matrix expression as mentioned above on expansion gives a polynomial
equation, and the order of the polynomial is same as the order of the matrix
[A] and {X} (i.e. if the size of the matrix is 2 × 2 the polynomial equation will be
a quadratic equation, if the size is 3 × 3 it will be a cubic equation and so on. . .).
The characteristic roots of the polynomial gives the eigen value solution (λ) of the
problem.

• For each definite value of λ we get a set of homogeneous equation in terms of
X and the same can be expressed in terms of the other and are known as the
eigenvectors.

• For any particular mode j the term (λj, xj) is known as the eigen pair for the jth
mode.

In terms of structural dynamics considering the free vibration equation

[M]{Ẍ} + [K]{X} = 0 (5.3.1)

Using {X} = {ϕ} sin(ωt − α), we have {Ẍ} = −{ϕ}ω2 sin(ωt −α)and substituting the
value of {Ẍ} in Equation. (5.2.94) one can have

− [M]ω2{ϕ} sin(ωt − φ)+ [K]{ϕ} sin(ωt − α) = 0

➔ [A]{ϕ} = λ{ϕ}, where [A] = [K][M]−1 (5.3.2)

which is the standard eigen value format in terms of structural dynamics.
Based on the above statements it will be observed that eigen value solution boils

down to finding the roots of polynomial of n degrees where n is the order of the
matrix.

Thus for a system having three degrees of freedom we have the free vibration
equation of motion as

⎡
⎣m1 0 0

0 m2 0
0 0 m3

⎤
⎦
⎧⎨
⎩

ẍ1
ẍ2
ẍ3

⎫⎬
⎭+

⎡
⎣k1 + k2 −k2 0

−k2 k2 + k3 −k3
0 −k3 k3

⎤
⎦
⎧⎨
⎩

x1
x2
x3

⎫⎬
⎭ =

⎧⎨
⎩

0
0
0

⎫⎬
⎭

19 The word “eigen” is a German term whose equivalent English word means “proper”.
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The above can be expressed as

⎡
⎣k1 + k2 − m1λ −k2 0

−k2 k2 + k3 − m2λ −k3
0 −k3 k3 − m3λ

⎤
⎦
⎧⎨
⎩

x1
x2
x3

⎫⎬
⎭ = {0} (5.3.3)

Expansion of the above would give a cubical polynomial whose roots would give
the three eigen values λ1, λ2s, λ3.

In other words eigen value is obtained by determination of roots of the polynomial
of order n where n = 1, 2, 3. . .

We discuss hereafter some techniques that may be used for determination of roots
of such n degree polynomial.

5.3.1.1 Visual inspection

With the advent of desktop and laptop computer, technology application has
undergone a profound change in last two decades.

What was perceived as a Herculean effort even twenty years ago can now be very
well done quite easily – thanks to the computer and different software now available
commercially.

Thus method of visual inspection though one of the most simplified method, can
very well be used to identify the roots very easily.

For instance in Example 5.2.10, we have shown that stiffness and mass matrix of a
structural system as

[K] =
⎡
⎣ 5000 −2000 0

−2000 3500 −1500
0 −1500 1500

⎤
⎦ and [M] =

⎡
⎣400

400
200

⎤
⎦, the eigen

value equation is given by

⎡
⎣5000 − 400λ −2000 0

−2000 3500 − 400λ −1500
0 −1500 1500 − 200λ

⎤
⎦ = 0, the

above on expansion gives a cubical polynomial equation as

λ3 − 28.75λ2 + 215.625λ− 281.25 = 0

One of the simplest thing would be to plot this equation in utility tools like Excel,
Mathcad or Matlab and visually find out the points where values tend to zero.

The value for which the equation tends to zero would give the eigenvalues of the
equation.

For example if we plot the above polynomial equation in excel we have a graph as
shown in Figure. 5.3.1.

Based on the above plot, we see that the values approach zero at three points and is
given by

λ1 = 1.7, λ2 = 10.2 and λ3 = 17.1
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Figure 5.3.1 Plot of equation λ3 − 28.75λ2 + 215.625λ− 281.25 = 0.

The above represent three eigen values of the cubical polynomial20.

5.3.1.2 Newton Raphson method

This is one of the most powerful iterative methods which can be very effectively used
for determination of roots of an equation. Without mathematically making it too
abstract the theory underlying the method can be explained as follows. Let

f (x) = Ax3 + Bx2 + Cx + D (5.3.4)

where x0 be an approximate value perceived as a root of the equation when the correct
root is actually x1, such that f (x1) = 0.

Also let, x1 = x0 ± h , (which would of course be problem dependent.)
Since f (x1) = 0, we have f (x0 ± h) = 0 and now expanding it by Taylor series

about x0,

f (x0)+ hf ′(x0)+ h2

2! f ′′(x0)+ h3

3! f ′′′(x0)+ · · · · · · = 0

Neglecting the higher terms, we have

f (x0)+ hf ′(x0) = 0; h = − f (x0)

f ′(x0)

An improved approximation is then given by,

x1 = x0 − f (x0)

f ′(x0)
(5.3.5)

20 Reader to note that in Example 5.2.10 we found the three eigen values as 1.643,10.00,17.104 by
Newton Raphson method which we have explained in the next section.
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Successive approximation is given by x1, x2, x3. . .. . .xn, where,

xn+1 = xn − f (xn)

f ′(xn)
till the value of xn+1 − xn ∼= 0. (5.3.6)

The value thus obtained is one of the roots of the equation and let it be depicted
by α. If α is one of the root of the equation then (x − α) = 0 and the equation
Ax3 + Bx2 + Cx + D = 0, can be represented by, (x − α)(A′x2 + B′x + C′) = 0

The expression (A′x2 + B′x + C′) = 0 is next considered and we repeat the process
to find out the next root β. We reduce the degree of the polynomial for each successive
root, till all the roots are found.

We shall explain the above by a suitable numerical example.

Example 5.3.1

Find out the roots of the equation λ3 − 28.75λ2 + 215.625λ − 281.25 = 0 based
on Newton-Raphson method.

Solution:

Let f (λ) = λ3 − 28.75λ2 + 215.625λ− 281.25, then, f ′(λ) = 3λ2 − 28.75λ.
Let gλ = 1.2, then we have f (λ) = −62.172 and f ′(λ) = 150.945
Thus λ1 = 1.2 − −62.172

150.945 = 1.611885; λ2 = 1.61185 − −4.1968
130.736 = 1.6439

λ3 = 1.6439 − −0.035
129.208

= 1.6444

The values being nearly constant we conclude that λ = 1.644 is one of the
roots of the equation.

Thus equation λ3 − 28.75λ2 + 215.625λ− 281.25 = 0 can be simplified to

(λ− 1.644)λ2 − (λ− 1.644)27.106λ+ 171.106(λ− 1.644) = 0

or, (λ− 1.644)(λ2 − 27.106λ+ 171.106) = 0

Thus the reduced equation is (λ2 − 27.106λ+ 171.106) = 0
With this we start our next cycle of iteration21, as shown hereafter
Let f (λ) = λ2 − 27.106λ+ 171.106
Then f ′(λ) = 2λ− 27.106
As a first trial let λ = 9 then we have

λ1 = 9 − 8.152
−9.106

= 9.895; λ2 = 9.895 − 0.757
−7.316

= 9.998;

and λ3 = 9.998 − 0.06021
−7.11 = 10.00.

21 Note the equation being a quadratic one, we can directly solve it by the expression λj,k =
−b±

√
b2−4ac

2a , however for clarity we proceed with as depicted above.
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Thus values being nearly constant we conclude that λ = 10.00 is another root
of the equation.

Thus on further reduction of the equation λ2 − 27.106λ + 171.106 = 0
we have

(λ− 10)(λ− 17.106) = 0

Thus, the third root is λ = 17.106.
Three roots are

{λ}3
i=1 =

⎧⎨
⎩

1.644
10.00

17.106

⎫⎬
⎭

It is to be noted that the initial assumption is very important in terms of
iterations. For instance in Example 5.2.10 we started with λ = 50 and took
eight (8) iterations to arrive at the first root. On the contrary in this case starting
with λ = 1 it took us only three (3) iterations to arrive at the first root.

This means closer the first approximation to a root, lesser is the number of
iterations it will take to converge.

To make the process quicker one can directly plot the values in excel and
find out the point where the value changes sign, you can select a value close to
this point as the first iteration vector which would considerably accelerate the
process.

The above technique can be very easily adapted in a spreadsheet to arrive at
the roots as shown hereafter

A = 1, B = −28.75, C = 215.625, D = −281.25

Iteration λ f(λ) f ′(λ) λ f (λ)/f ′(λ)

1 1.2 −62.172 150.945 1.611885
2 1.611885124 −4.19681 130.7361 1.643986
3 1.643986467 −0.02461 129.2039 1.644177
4 1.644176945 −8.6E-07 129.1948 1.644177
5 1.644176952 0 129.1948 1.644177

It will be observed that at 5th iteration the values has converged to λ =
1.644177.

5.3.1.3 Ramanujan’s method22

Ramanujan’s method can be stated as follows

22 Srinivasa Ramanujan born in Chennai in 1887 a mathematical genius who died tragically of tuberculosis
at the young age of only 33 in England. With practically minimal formal education he managed to solve
some of the most complex mathematical riddles, which has intrigued many a mathematician.
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Let there be an equation represented by,

f (λ) = Aλ3 + Bλ2 + Cλ+ D = 0

The above equation can then be written as

f (λ) = D − Aλ3 − Bλ2 − Cλ (5.3.7)

or, f (λ) = [1 − (Aλ3 + Bλ2 + Cλ)/D] = 0 as D�= 0

Considering, x = (Aλ3 + Bλ2 + Cλ)/D, we can represent Equation (5.3.7) as the
first two terms of the equation

f (λ) = [1 − x]−1 = 0

Thus23,

f (λ) = [1 + (a1λ+ a2λ
2 + a3λ

3)+ (a1λ+ a2λ
2 + a3λ

3)2 + · · · · · · · · ·]
= b1 + b2λ+ b3λ

2 (5.3.8)

where a1 = C/D , a2 = B/D and a3 = A/D
Comparing the like powers of λ we have

b1 = 1

b2 = a1 = a1b1

b3 = a2
1 + a2 = a1b2 + a2b1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

bn = a1bn−1 + a2bn−2 + · · · · · · · · · + an−1b1, for n = 2, 3. . .. . .. . . (5.3.9)

Ramanujan showed that successive value of bn
bn+1

approaches the lowest root of the
equation, f (λ) = 0.

Example 5.3.2

Find out the lowest root of the equation λ3 −28.75λ2 +215.625λ−281.25 = 0
based on Ramanujan’s Method.

Solution:

Here λ3 − 28.75λ2 + 215.625λ− 281.25 = 0

23 From Binomial theorem .. (1 + x)p = 1 + pC1x + pC2x2 + pC3x3 + · · ·· · ·· · · where p could be negative,
zero or positive integer
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Transferring the above in the Ramanujan’s form, we have[
1 − 215.625λ− 28.75λ2 + λ3

281.25

]
= 0

Thus by the problem

a1 = 215.625
281.25

= 0.766667, a2 = −28.75
281.25

= −0.10222,

a3 = 1
281.25

= 0.003556; a4 = a5 = 0

b1 = 1
b2 = a1 = 0.766667 b1/b2 = 1.304348
b3 = a1b2 + a2b1 = 0.485556 b2/b3 = 1.578947
b4 = a1b3 + a2b2 + a3b1 = 0.297444 b3/b4 = 1.632424
b5 = a1b4 + a2b3 + a3b2 + a4b1 = 0.178406 b4/b5 = 1.667232
b6 = a1b5 + a2b4 + a3b3 + a4b2 + a5b1

= 0.108099
b5/b6 = 1.650395

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b9 = 0.024298
b10 = 0.014778 b9/b10 = 1.644184

Based on above calculation it is observed that successive ratio has converged
to the value of 1.6441.

5.3.1.4 Matrix deflation method

This method is often used for large system when we are interested to find out the
fundamental time period (or the lowest frequency) or the highest frequency /time
period.

We had shown earlier that in terms of structural dynamics the eigen-values can be
expressed as

[K]{φ} = ω2[M]{φ} or [B]{φ} = 1
ω2 {φ} (5.3.10)

where [B] = [K]−1[M] when the value converges to the lowest eigen value, or can be
expressed as [A]{φ} = ω2{φ}, where [A] = [K][M]−1 when the value converges to the
highest eigen value.

The iteration starts with a trial value of the column vector which is pre-multiplied
by [B] or [A] depending on what is the value we are seeking. The resulting column
matrix is then normalized by reducing one of its value to unity.

The resulting normalized vector is then again pre-multiplied by the matrix [B] or [A].
The process is repeated till we arrive at a normalized column matrix which becomes
stationary with respect to the preceding step. The constant thus obtained gives the
highest/lowest eigen value.
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We explain the above method now with a suitable example.

Example 5.3.3

For structure having stiffness and mass matrix as mentioned below determine
the highest eigen-value by matrix deflation method

[K] =
⎡
⎢⎣

5000 −2000 0
−2000 3500 −1500

0 −1500 1500

⎤
⎥⎦ and [M] =

⎡
⎢⎣

400
400

200

⎤
⎥⎦.

Solution:

For the above matrices

[M]−1 =
⎡
⎢⎣

0.0025 0 0
0 0.0025 0
0 0 0.005

⎤
⎥⎦

Considering [A] = [K][M]−1 we have

[A] =
⎡
⎢⎣

5000 −2000 0
−2000 3500 −1500

0 −1500 1500

⎤
⎥⎦×

⎡
⎢⎣

0.0025 0 0
0 0.0025 0
0 0 0.005

⎤
⎥⎦

=
⎡
⎢⎣

12.5 −5 0
−5 8.75 −7.5
0 −3.75 7.5

⎤
⎥⎦

Considering {ϕ} =

⎧⎪⎨
⎪⎩

1.0
1.0
1.0

⎫⎪⎬
⎪⎭ as trial vector, we have

[A]{ϕ} =
⎡
⎣12.5 −5 0

−5 8.75 −7.5
0 −3.75 7.5

⎤
⎦
⎧⎨
⎩

1.0
1.0
1.0

⎫⎬
⎭ = ω2{ϕ} = 7.5

⎧⎨
⎩

1.0
−0.5
0.5

⎫⎬
⎭

For second cycle

[A]{ϕ} =
⎡
⎣12.5 −5 0

−5 8.75 −7.5
0 −3.75 7.5

⎤
⎦
⎧⎨
⎩

1.0
−0.5
0.5

⎫⎬
⎭ = ω2{ϕ} = 15

⎧⎨
⎩

1.0
−0.875
0.375

⎫⎬
⎭
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For third cycle

[A]{ϕ} =
⎡
⎣12.5 −5 0

−5 8.75 −7.5
0 −3.75 7.5

⎤
⎦
⎧⎨
⎩

1.0
−0.875
0.375

⎫⎬
⎭

= ω2{ϕ} = 16.875

⎧⎨
⎩

1.0
−0.91667
0.361111

⎫⎬
⎭

4th Cycle

[A]{ϕ} =
⎡
⎣12.5 −5 0

−5 8.75 −7.5
0 −3.75 7.5

⎤
⎦
⎧⎨
⎩

1.0
−0.91667
0.361111

⎫⎬
⎭

= ω2{ϕ} = 17.08333

⎧⎨
⎩

1.0
−0.92073
0.359756

⎫⎬
⎭

5th Cycle

[A]{ϕ} =
⎡
⎣12.5 −5 0

−5 8.75 −7.5
0 −3.75 7.5

⎤
⎦
⎧⎨
⎩

1.0
−0.92073
0.359756

⎫⎬
⎭

= ω2{ϕ} = 17.10366

⎧⎨
⎩

1.0
−0.92112
0.359626

⎫⎬
⎭

6th Cycle

[A]{ϕ} =
⎡
⎣12.5 −5 0

−5 8.75 −7.5
0 −3.75 7.5

⎤
⎦
⎧⎨
⎩

1.0
−0.92112
0.359626

⎫⎬
⎭ = ω2{ϕ}

= 17.10561

⎧⎨
⎩

1.0
−0.92116
0.359613

⎫⎬
⎭

7th Cycle

[A]{ϕ} =
⎡
⎣12.5 −5 0

−5 8.75 −7.5
0 −3.75 7.5

⎤
⎦
⎧⎨
⎩

1.0
−0.92116
0.359613

⎫⎬
⎭ = ω2{ϕ}

= 17.1058

⎧⎨
⎩

1.0
−0.92116
0.359612

⎫⎬
⎭
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As the column matrix has now become stationary we conclude that the highest
eigen value of the system is given by λ = 17.1058.

It is to be noted that as per example 5.2.11 we arrived at this value based on
Newton Raphson method as λ = 17.106.

This is also sometimes called as inverse iteration technique for the value having
converged to the highest eigen value.

Now that we have explained the above method based on a numerical example it
would perhaps be relevant to contemplate as to how and why does it converge to the
desired eigen value.

5.3.1.5 Mathematical proof of convergence to lowest eigen value

For a matrix [A] of order nxn, we know that we can obtain n number of eigen values
and n eigen vectors {ϕ} which span n space and linearly independent of each other24 i.e.

{ϕ1} = C1 {φ1} + C2 {φ2} + C3 {φ3} + · · · · · · · · · · · · + Cn {φn} (5.3.11)

where, {ϕ1} = the first trial vector, C1, C2, C3, · · · · · · Cn = constants; {φ1}, {φ2},
{φ3} . . . {φn} = n number of eigenvectors.

Now pre-multiplying the above equation with [A], we have

[A] {ϕ1} = C1[A] {ϕ1} + C2[A] {φ2} + C3[A] {φ3} + · · · · · · · · · · · · Cn[A] {φn}
(5.3.12)

Since [A][ϕ] = 1
ω2 [ϕ], we can interpret this expression as the [A] matrix represent-

ing a linear transformation that transforms any eigenvector {ϕ1} into itself within a
constant scalar multiplier (1/ω2

r ).
Thus, the above equation can be represented as

[A] {ϕ1} = {ϕ2} = C1

ω2
1

{φ1} + C2

ω2
2

{φ2} + C3

ω2
3

{φ3} + · · · · · · · · · · · · Cn

ω2
n

{φn}
(5.3.13)

Here {ϕ2} is the second trial vector.
The second iteration would give

[A]{ϕ2} = {ϕ3} = C1

ω4
1

{φ1} + C2

ω4
2

{φ2} + C3

ω4
3

{φ3} + · · · · · · · · · · · · Cn

ω4
n
{φn} (5.3.14)

24 We will discuss more about this property of eigen vectors when we talk about eigen value determination
of large systems.
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Thus r numbers of iteration would give

[A] {ϕr} = {ϕr+1} = C1

ω2r
1

{φ1} + C2

ω2r
2

{φ2} + C3

ω2r
3

{φ3} + · · · · · · · · · · · · Cn

ω2r
n

{φn}
(5.3.15)

As ω1 < ω2 < ω3 < · · · · · · · · · · · · < ωn it is evident that for the value r (number of
iterations) being sufficiently large,

1

ω2r
1

>>
1

ω2r
2

>>
1

ω2r
3

>> · · · · · · · · · · · · 1
ω2r

n
(5.3.16)

Equation (5.3.15) reduces to

[A] {ϕr} = {ϕr+1} = C1

ω2r
1

{φ1} + C2

ω2r
2

{φ2} + C3

ω2r
3

{φ3} + · · · · · · · · · · · · Cn

ωr
n

{φn}
(5.3.17)

thus the first term in Equation (5.3.17) only become significant with other terms having
higher order becoming exceedingly small and can be neglected.

Hence, for r number of iterations required to achieve the accuracy, the resulting
equation is

{ϕr+1} = C1

ω2r
1

{φ1} (5.3.18)

Thus we see that the (r+1)th trial vector becomes identical to the first natural mode
shape to within a multiplicative constant and converges to the lowest eigenvalue.

5.3.1.6 Calculation of higher modes

For calculation of higher eigen values the matrix [A] has to be modified to eliminate
the effect of the first eigen value.

This is done by the following mathematical operations

[A2] = [A] − 1

ω2
1

{ϕ1}n {ϕ1}T
n [M] (5.3.19)

where {ϕ1}n = Is the normalized eigen vector, based on orthogonal property25 we have
{ϕ1}n [M] {ϕ1}T

n = 1.

25 Recall our discussion earlier.
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Thus the above sweeps out the effect of the first eigen value and if we repeat our
process with a second trial vector we will converge to the next higher eigen value.

The above will now be explained with a suitable numerical example.

Example 5.3.4

For structure having stiffness and mass matrix as mentioned below determine
the lowest eigen value by matrix deflation method and also find out the other
values based on sweeping technique.

[K] =
⎡
⎣ 5000 −2000 0

−2000 3500 −1500
0 −1500 1500

⎤
⎦ and [M] =

⎡
⎣400

400
200

⎤
⎦

Solution:

For the above matrices

[K]−1 =
⎡
⎣0.0003333 0.000333 0.000333

0.0003333 0.000833 0.000833
0.0003333 0.000833 0.0015

⎤
⎦

Considering [A] = [K]−1[M] we have

[A] =
⎡
⎣0.0003333 0.000333 0.000333

0.0003333 0.000833 0.000833
0.0003333 0.000833 0.0015

⎤
⎦×

⎡
⎣400 0 0

0 400 0
0 0 2000

⎤
⎦

=
⎡
⎣0.133333 0.133333 0.066667

0.133333 0.333333 0.166667
0.133333 0.333333 0.3

⎤
⎦

Considering {ϕ} =
⎧⎨
⎩

1.0
1.0
1.0

⎫⎬
⎭as the first trial vector we have

[A]{ϕ} =
⎡
⎣0.133333 0.133333 0.066667

0.133333 0.333333 0.166667
0.133333 0.333333 0.3

⎤
⎦
⎧⎨
⎩

1.0
1.0
1.0

⎫⎬
⎭

= 1
ω2 {ϕ} = 0.766667

⎧⎨
⎩

0.434783
0.826087

1.0

⎫⎬
⎭
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For second cycle we have

[A]{ϕ} =
⎡
⎣0.133333 0.133333 0.066667

0.133333 0.333333 0.166667
0.133333 0.333333 0.3

⎤
⎦
⎧⎨
⎩

0.434783
0.826087

1.0

⎫⎬
⎭

= 1
ω2 {ϕ} = 0.63333

⎧⎨
⎩

0.3707
0.7894

1.0

⎫⎬
⎭

For third cycle we have

[A]{φ} =
⎡
⎣0.133333 0.133333 0.066667

0.133333 0.333333 0.166667
0.133333 0.333333 0.3

⎤
⎦
⎧⎨
⎩

0.370709
0.789474

1.0

⎫⎬
⎭

= 1
ω2 {φ} = 0.612856

⎧⎨
⎩

0.36135
0.782343

1.0

⎫⎬
⎭

. . . . . . . . .

Proceeding in this way after 9 cycles we arrive at a value
9th Cycle

[A]{ϕ} =
⎡
⎣0.133333 0.133333 0.066667

0.133333 0.333333 0.166667
0.133333 0.333333 0.3

⎤
⎦
⎧⎨
⎩

0.359612
0.780776

1.0

⎫⎬
⎭

= 1
ω2 {ϕ} = 0.608207

⎧⎨
⎩

0.359612
0.780776

1.0

⎫⎬
⎭

where the value becomes stationary
Thus as per the problem ω2 = 1/0.608207 = 1.64416 which has converged

to the lowest eigenvalue26.

Calculation of next lowest eigen value

The scaling factor is given by

{ϕ}T [M]{ϕ} = 〈0.359612 0.780776 1.0〉

×
⎡
⎣400 0 0

0 400 0
0 0 200

⎤
⎦
⎧⎨
⎩

0.359612
0.780776

1.0

⎫⎬
⎭ = 495.572

S.F. = √
495.572 = 22.26

26 We arrived at a value of 1.644 based on Newton Raphson Method in Example 5.2.11.
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Thus normalized eigen vector is given by

{ϕ}n =
⎧⎨
⎩

0.01654018
0.035072995
0.044920688

⎫⎬
⎭

Considering the expression [A2] = [A] − 1
ω2

1
{φ1}n {φ1}T

n [M] we have

[A2] =
⎡
⎣0.133333 0.133333 0.066667

0.133333 0.333333 0.166667
0.133333 0.333333 0.3

⎤
⎦

−
⎧⎨
⎩

0.016154
0.035072
0.04492

⎫⎬
⎭
⎧⎨
⎩

0.01654
0.035072
0.04492

⎫⎬
⎭

T ⎡
⎣400

400
200

⎤
⎦

[A2] =
⎡
⎣ 0.0698 −0.0045 −0.0216

−0.0045 0.0341 −0.025
−0.0432 −0.05 0.0545

⎤
⎦ which is the revised matrix with

which we start our new cycle of iteration

Considering {ϕ} =
⎧⎨
⎩

1.0
−1.0
1.0

⎫⎬
⎭ as trial vector we have

[A]{ϕ} =
⎡
⎣ 0.0698 −0.0045 −0.0216

−0.0045 0.0341 −0.025
−0.0432 −0.05 0.0545

⎤
⎦
⎧⎨
⎩

1.0
−1.0
1.0

⎫⎬
⎭

= 1
ω2 {ϕ} = 0.0613

⎧⎨
⎩

0.859706
−1.03752

1.0

⎫⎬
⎭

For second cycle we have

[A]{ϕ} =
⎡
⎣ 0.0698 −0.0045 −0.0216

−0.0045 0.0341 −0.025
−0.0432 −0.05 0.0545

⎤
⎦
⎧⎨
⎩

0.859706
−1.03752

1.0

⎫⎬
⎭

= 1
ω2 {ϕ} = 0.069237

⎧⎨
⎩

0.622161
−0.97295

1.0

⎫⎬
⎭

. . . . . . . . .

Proceeding in this way after 13 cycles we arrive at a value
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13th Cycle

[A]{ϕ} =
⎡
⎣ 0.0698 −0.0045 −0.0216

−0.0045 0.0341 −0.025
−0.0432 −0.05 0.0545

⎤
⎦
⎧⎨
⎩

−0.65011
−0.34136

1.0

⎫⎬
⎭ = 1

ω2 {ϕ}

= 0.099653

⎧⎨
⎩

−0.6567
−0.33832

1.0

⎫⎬
⎭

where the value becomes stationary
Thus as per the problem ω2 = 1

0.0996503 = 10.035 which has converged to the
next lowest eigen value27.

It is to be noted in the above problem that it took 9 cycles of iteration to
converge to the lowest eigen-value and subsequently took 13 cycles of iteration
to converge to the next eigen value.

How many iterations it would take to converge to a reasonable accuracy varies
from case to case. However it is generally seen that higher modes take larger
iteration to converge.

For systems with large degrees of freedom or cases where significant modes needs
to be considered the technique may turn out to be less efficient compared to other
techniques used for systems with large degrees of freedom.

5.3.1.7 Stodola’s Method

Stodola’s Method is actually a refined version of matrix deflation method which
is very effective in finding out the values of first few modes of a large structural
system28.

The steps involved in calculation of the first lowest eigen value remains exactly same
as that like matrix deflation method, it is only for the higher modes where for matrix
deflation method order of matrix remains unchanged, in this method gets reduced by
the degree one for each successive higher modes.

Suffice it to say this successive reduction of matrix considerably reduces the
computational effort and can surely be considered as an improvement on the matrix
deflation method.

The steps involved in this method can thus be structured as hereunder:

• Form the matrix [A] as

[A] = [K]−1[M] (5.3.20)

27 The same problem gave a value of 10.0 in Example 5.31 by Newton Raphson method.
28 We should remember that in most of the cases it is the first few modes which contribute to maximum

dynamic response of a system.
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• Choose a trial vector {φ} and proceed with the iteration as shown in the matrix
deflation method till it converges to the desired value. The constant will give the
lowest eigen value and the corresponding values in the column matrix gives the
first mode eigen vectors.

• For obtaining higher modes modify the basis based on orthogonality relationship29

m1φ
1
1φ

2
1 + m2φ

1
2φ

2
2 + · · · · · · · · · + mnφ

1
nφ

2
n = 0 (5.3.21)

• Knowing the eigen vectors for first mode find out the expression.

φ2
1 = −m2φ

1
2

φ1
1

φ2
2 − m3φ

1
3

φ11

φ2
3 − · · · · · · · · · − mnφ

1
n

φ1
1

φ2
n (5.3.22)

• Now expanding the term

[A]{ϕ} = 1
ω2 {ϕ} (5.3.23)

and substituting the eigen vector as obtained above we eliminate the effect
of the first eigen value and eigen vector and are left with a matrix of
order (n − 1)

• We start new iteration with this matrix (of order n−1) to find out the next higher
eigen value.

The method will now be explained by a suitable numerical example.

Example 5.3.5

Repeat Example 5.3.4 to solve by Stodola’s method to find out the eigen values
and eigen vectors given:

[K] =
⎡
⎣ 5000 −2000 0

−2000 3500 −1500
0 −1500 1500

⎤
⎦ and [M] =

⎡
⎣400

400
200

⎤
⎦

Solution:

Based on example 10.4 we have seen that [A] = [K]−1 [M] gives the value

[A] =
⎡
⎣0.133333 0.133333 0.066667

0.133333 0.333333 0.166667
0.133333 0.333333 0.3

⎤
⎦ and starting with a trial vector

29 Here superscript denotes order of mode (1st, 2nd etc.) and not power.
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{ϕ} =
⎧⎨
⎩

1.0
1.0
1.0

⎫⎬
⎭ after 9 cycles of iteration we arrive at a value of

1
ω2 {ϕ} = 0.608207〈0.359612 0.780776 1.0〉T where λ = 0.608207
and the corresponding eigen vectors for first mode is given by {ϕ} =
〈0.359612 0.780776 1.0〉T .

For calculation of higher modes considering the orthogonality relation,
we have

m1φ
1
1φ

2
1 + m2φ

1
2φ

2
2 + m3φ

1
3φ

2
3 = 0

or, 400 × 0.359162φ2
1 + 400 × 0.780776φ2

2 + 200 × 1φ2
3 = 0

➔ φ2
1 = −2.173883φ2

2 − 1.39213φ2
3.

Now expanding the term [A]{ϕ} = λ{ϕ}we have (neglecting the superscript
for ease of presentation)

0.13333φ1 + 0.13333φ2 + 0.06667φ3 = 0.21872

0.13333φ1 + 0.33333φ2 + 0.16667φ3 = 0.47487

0.13333φ1 + 0.33333φ2 + 0.3φ3 = 0.608207.

Substituting the value φ1 = −2.173883φ2 − 1.39213φ3 in the last two equa-
tions we have

0.04348φ2 − 0.018939φ3 = 0.47487

and 0.04348φ2 + 0.114391φ3 = 0.60807

Thus the modified [A] matrix becomes

[A] =
[
0.04348 −0.018939
0.04348 0.114391

]
, we start with new eigen vector {φ} =

{
1
1

}

when we have

[A]{φ} =
[
0.04348 −0.018939
0.04348 0.114391

]{
1
1

}

= λ{φ} = 0.157871
{

0.15545
1

}

For 2nd cycle

[A]{φ} =
[
0.04348 −0.018939
0.04348 0.114391

]{
0.15545

1

}



602 Dynamics of Structure and Foundation: 1. Fundamentals

= λ{φ} = 0.12115
{−0.10054

1

}

For 3rd cycle

[A]{φ} =
[
0.04348 −0.018939
0.04348 0.114391

]{
0.15545

1

}

= λ{φ} = 0.106025
{−0.25753

1

}

. . . . . . . . .

After 10th cycle, we have

[A]{φ} =
[
0.04348 −0.018939
0.04348 0.114391

]{−0.3316
1

}

= λ{φ} = 0.099973
{−0.33366

1

}

when the value becomes stationary.
Thus the desired eigen value30 is = 0.099973

The corresponding eigen vector is given by {φ} =
⎧⎨
⎩

−0.66676
−0.33366

1.0

⎫⎬
⎭

Now proceeding in the identical manner we can find out the next eigenvalue31.

5.3.1.8 Rayleigh Ritz method

In many cases, for different class of structures it is sufficient to find out the fundamental
time period or response of a first few modes.

In such cases Rayleigh Ritz method is one of the most powerful methods for calcu-
lation of time period and can be applied to wide class of problems in engineering32.

The beauty of the method is that it is equally versatile in its application based on
closed form and numerical solution.

The underlying principle of this method can be explained as follows:

30 In example 5.3.4 we had obtained this value as 0.0996.

31 This we leave as an exercise for the reader.

32 For further application of this method refer to the topic of retaining wall and tall chimneys in
Chapter 3 (Vol. 2) for earthquake analysis.
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m(x)

I(x)

L

Figure 5.3.2 Cantilever beam under flexure.

For a flexural member shown in Figure 5.3.2, the kinetic energy of the system is
given by

T = 1
2

L∫
0

m(x)
[
∂y(x, t)
∂t

]2

dx (5.3.24)

Considering y(x, t) = φ(x) · q(t) we have

T = 1
2

L∫
0

m(x)
[

n∑
i=1
φi(x)q̇i(t)

][
n∑

j=1
φj(x)q̇j(t)

]
dx, which can be expressed as

T = 1
2

n∑
i=1

n∑
j=1

q̇i(t)q̇j(t)

⎡
⎣ L∫

0

m(x)φi(x)φj(x)dx

⎤
⎦ (5.3.25)

from which it can be concluded that the mass coefficient has the form

mij =
L∫

0

m(x)φi(x)φj(x)dx for i, j = 1, 2, 3 . . . . . . . . .n (5.3.26)

On the other hand the potential energy of the system is given by

U(t) = 1
2

L∫
0

EIx

[
∂2y(x, t)
∂x2

]2

dx

= 1
2

L∫
0

EIx

[
n∑

i=1

d2φi(x)
dx2 qi(t)

]⎡⎣ n∑
j=1

d2φj(x)

dx2 qj(t)

⎤
⎦ dx

➔ U(t) = 1
2

n∑
i=1

n∑
j=1

qi(t)qj(t)

⎡
⎣ L∫

0

EIx
d2φi(x)

dx2

d2φj(x)

dx2 dx

⎤
⎦ (5.3.27)

from which we conclude that stiffness coefficient may be written as

kij =
L∫

0

EI(x)φ′′
i (x)φ

′′
j (x)dx (5.3.28)
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The natural frequency is given by the expression

λij = ω2
ij = k

m
=
∫ L

0 EI(x)ϕ′′
i(x)ϕ

′′
j(x)dx

L∫
0

m(x)ϕi(x)ϕj(x)dx

(5.3.29)

Based on the above expression it is evident that the correctness of the result will
depend on how correctly we have guessed the eigen vectors φi(x), φj(x).

The closer the value of the eigen vectors to the reality more accurate will be the
value of the frequency or the time period.

There are certain classes of structures like chimneys, vertical vessels, distillation
columns, retaining walls etc whose time periods can be very effectively obtained by
this method.

We now show the application of this theory by a practical problem hereafter.

Example 5.3.6

A vertical vessel of height 40 m as shown in Figure 5.3.2a, has outside diameter
2.0 meter and shell thickness 20 mm. Operating weight of the vessel is 750 kN
and empty weight of vessel is 380 kN. Determine the fundamental time period
under operation and when the vessel is empty. Consider the structure to be fixed
at the foundation level.

2.0 m

20 mm thick

40 m

Figure 5.3.2a Vertical vessel resting on foundation.

Solution:

For applying Rayleigh-Ritz method we had stated earlier that the first step is
to select an appropriate displacement function. For choosing the displacement
consider the Figure 5.3.3.
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w kN/m x 

H

Figure 5.3.3

From our basic knowledge of mechanics of material we know that EI d2y
dx2 =

−Mx, and for the above cantilever beam we have

EI
d2y
dx2 = wx2

2
; or EI

∫
d2y
dx2 =

∫
wx2

2
dx ➔ or EI

dy
dx

= wx3

6
+ C1

Now at x = H as dy/dx = 0 we have C1 = −wH3/6 from which we have,
EI dy

dx = wx3

6 − wH3

6

On subsequent integration, we have EIy = wx4

24 − wH3x
6 + C2.

At x = H as y = 0 we have C2 = wH4/8, from which we have, EIy =
wx4

24 − wH3x
6 + wH4

8

It is evident from above, that the beam will follow generically a curve of nature
φ = H4

8 − H3x
6 + x4

24 for any value of w and EI.

From which we conclude that possible mode shape of the system for first
mode as

φ = H4

8
− H3x

6
+ x4

24
.

Differentiating the above expression twice, we have, φ′′ = x2

2 .

Thus based Rayleigh’s method kij = ∫ H
0 EIφ′′

i φ
′′
j dx from which we have for

the first mode

k11 =
H∫

0

EI
x4

4
dx = EIH5

20
.

The mass coefficient is given by mij = ∫ H
0 m(x)φiφjdx from which we have for

the first mode

m11 =
H∫

0

m

[
H4

8
− H3x

6
+ x4

24

]2

dx
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=
H∫

0

m

[
H8

64
+ H6x2

36
+ x8

576
− H7x

24
− H3x5

72
+ H4x4

96

]
dx

The above on intergration gives

m11 = mH9

249.23
.

Considering, ω2 = k
m = EIH5

20 × 249.23
mH9 = 12.4615 EI

mH4 , which gives, ω =
3.53

√
EI

mH4 rad/sec.

Considering T = −2π /ω we have (Dowrick 1987)33, T = 1.779
√

mH4

EI secs.
For the present problem

I = π(2.04 − 1.964)

64
= 0.06097 m4; E = 2x108 kN/m2

Thus, EI = 12194381 kN/m2.

Under operating condition; m = 750
40×9.81 = 1.9113kN · sec2/m.

➔ T = 1.779

√
1.9113 × 404

12194381
= 1.126secs

When the vessel is empty m = 380
40×9.81 = 0.9684 kN · sec2/m; T =

1.779
√

0.9684×404

12194381 = 0.802 secs.

In the above example we solved for the fundamental time period of a vertical vessel
based on closed form solution. However for complicated geometry we usually resort
to numerical solution for calculation of such time period34.

5.3.1.9 Calculation of eigen value for free–free structure

Though, a common phenomenon in aircraft structure analysis or ship floating in sea
is not so common in civil engineering35.

There are cases where a structure or a system does not have a physical boundary.

33 It suggests a formula for self supporting steel chimney and vessels as T = 1.79H2[w/EIg]0.5 ·
w = weight per unit height.

34 This we have dealt in detail in Chapter 3 (Vol. 2) under Earthquake Engineering.
35 Except special cases of soil/fluid structure interaction depending on how the coupling of soil/fluid is

considered.
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One of the classic cases for the same is an aircraft in flight or a ship floating on
sea. Finding eigen value for such cases becomes tricky for the [K] matrix becomes
singular36.

As the matrix inversion becomes inadmissible trying to solve for the eigen value by
normal methods are not possible.

One of the major property of such matrices is that there are eigen values equal to the
number of degrees of freedom which are zero, i.e. under such circumstance the body
undergoes rigid body modes and induces no stress within the body initially before
the body itself starts bending deformation when stress starts getting induced with the
body37.

Since as stress engineers we are more interested to know the stress deformation
within the body we get rid of the rigid body mode by a technique which is called
shifting technique.

We had shown previously that eigen value equation of a physical system is
expressed as

[K]{ϕ} = ω2[M]{ϕ} (5.3.30)

Now since [K] is singular for unconstrained system the strategy is to make [K] non-
singular but at the same time retain the intrinsic property of the system undisturbed.

The following is done in such cases.
Adding the term ψ[M]{ϕ} on both sides we have

[K]{ϕ} + ψ[M]{ϕ} = ω2[M]{ϕ} + ψ[M]{ϕ} → {[K] + ψ[M]} {ϕ}
= (ω2 + ψ)[M]{ϕ}

The above can now be expressed as

[K]′{ϕ} = ω′2{ϕ} (5.3.31)

where [K]′ = [K] + ψ[M] and ω2 = ω′2ψ .
The modified matrix [K]′ will be non singular and shall produce eigen values which

are non zero from which the relevant eigen values can be obtained based onω2 = ω′2ψ .
It should be noted that ψ2 should be of the same order of ω2 for the results to give

meaningful results.
The theory is further elaborated by an example hereafter.

36 By singular we mean determinant of the matrix [K] becomes zero.As inverse of [K] is given by
Adj[K]/Det[K], thus the inversion of the matrix becomes inadmissible.

37 A classic case of this is a plate resting on elastic medium. When the first few modes the body under-
goes a rigid body mode (though non-zero) and finally at higher modes undergoes its own bodily
deformations.
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Example 5.3.7

For a structure having [K] and [M] as shown below determine the eigen values
based shifting technique

[K] =
[

100 −200
−20 40

]
and [M] =

[
10 0
0 20

]

Solution:
Solving the above by polynomial method we have

[
100 − 10λ −200

−20 40 − 20λ

]
= 0

The above on expansion gives λ (200λ− 2400) = 0 and λ = 0 and 12.
However if we try to solve the same by Matrix deflation method to arrive at

he lowest eigen-value, we have to perform the operation

[A] = [K]−1[M]
But the stiffness matrix [K] being singular inversion of [K] is inadmissible and

arriving at matrix [A] is not possible38.
Hence we have to perform a mathematical operation based on which the

singularity of the matrix [K] is disturbed.
Considering the expression [K]′ = [K] + ψ[M] and taking ψ = 5.0, we have

[K]′ =
[
100 −200
20 40

]
+ 5

[
10 0
0 20

]

=
[
100 + 50 −200

20 40 + 100

]
=
[
150 −200
20 140

]

The modified matrix being non-singular the operation [A] = [K]−1[M] is now
admissible and solution by vector iteration method is now possible.

Expanding the above by polynomial method[
150 − 10λ −200

−20 140 − 20λ

]
= 0 which gives the characteristic equation as

200λ2 − 4400λ− 17000 = 0 and this results in λ = 5 and 17
from which we can predict that the corrected actual eigen values as λ = 0 and 12.

38 We should remember that polynomial method is only used for small system. For systems with

large degrees of freedom eigen values are generally obtained based on vector iteration method

(as explained above) or by transformation techniques that will be explained subsequently.
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5.3.1.10 Calculation of eigen-values based on vector transformation

We had shown previously how eigen values are obtained based on vector iteration
method based on matrix deflation and Stodola’s sweeping technique. We now show
here after techniques which are commonly used for eigen value determination of
systems based on co-ordinate transformation.

The underlying concepts are not difficult to understand.
Let us consider the free vibration equation

[K]{ϕ} = ω2[M]{ϕ} (5.3.32)

We have shown earlier that if {ϕ} is the eigen vector matrix of the system then

{ϕ}T [K]{ϕ} = [λ] and {ϕ}T [M] {ϕ} = [I] (5.3.33)

Here [λ] is the diagonal matrix consisting of eigen values of the system and [I] is an
identity matrix

For the eigen vector {ϕ} as this diagonalisation is unique, in transformation method
we try to construct based on iteration -a vector, which reduce [K] and [M] into a diag-
onal matrix by successively pre and post multiplying by the transformation matrices
[Tr]T and [Tr] where, r = number of iterations 1, 2, 3. . .

Thus,

[K2] = [T1]T [K1] [T1]

[K3] = [T2]T [K2] [T2]

. . . . . .

[Kr+1] = [Tr]T [Kr] [Tr] (5.3.34)

and similarly for mass matrix we have

[M2] = [T1]T [M1] [T1]

[M2] = [T1]T [M1] [T1]

. . .

[Mr+1] = [Tr]T [Mr] [Tr] (5.3.35)

and, the transformation matrix [T] is chosen in such a manner that

[Kr+1] → [λ] and [Mr+1] → [I] as r → [∞] . (5.3.36)

In practice, it is not necessary for the matrix [Kr+1] converge to [λ] or [Mr+1] tend
to [I]. All that is necessary is that they converge to a diagonal form

[Kr+1] → Diag[Kr
ii] and [Mr+1] → Diag[Mr

ii] (5.3.37)
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when the eigen values are given by

[λ] = Diag
[

Kr
ii

Mr
ii

]
. (5.3.38)

It is to be noted that here the eigen values may not be obtained in sequential ascending
or descending order.

The eigen vectors of the system is then given by

{φ} = [T1] [T2] . . . . . . . . . [Tr] Diag

⎡
⎢⎣ 1√

Mr+1
nn

⎤
⎥⎦ (5.3.39)

where n = order of the matrix.
Based on the above principle we now explain two techniques which have a wide

ranging application in dynamics and Finite element analysis, and are usually adapted
for systems with large degrees of freedom.

5.3.2 Standard Jacobi’s technique

This is a longstanding technique (Jacobi 1846), which has been found to be very
reliable and has wide ranging application in different branch of physics and engineering
(Goldstein et al. 1959).

The method is very powerful for symmetric matrices and is capable of evaluating
negative, zero and positive eigen values.

Jacobi’s method can be very effectively used for both standard and general eigen
value problem.

We first discuss the solution of standard eigen value problem.
Considering the free vibration equation

[K]{ϕ} = ω2[M]{ϕ} (5.3.40)

the above can be expressed as

[A]{ϕ} = ω2{ϕ} where [A] = [K] [M]−1. (5.3.41)

The above format is known as the standard eigen value problem such that on
transformation

[Ar+1] = [Tr]T [Ar] [Tr] (5.3.42)

where [Tr] is an orthogonal matrix gives

[Tr]T [Tr] = I (5.3.43)
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As per Jacobi, the rotation matrix [Tr] is so chosen that the off diagonal element of
[Ar] is zeroed. If element (j, k) is to be reduced to zero the corresponding transforma-
tion matrix is chosen as

[Tr] =

⎡
⎢⎢⎢⎢⎢⎢⎣

j col k col
1 0 0 0 0
. . . . .
0 0 1 0 0

cos θ − sin θ
sin θ cos θ

⎤
⎥⎥⎥⎥⎥⎥⎦

(5.3.44)

where tan 2θ = 2Ar
jk

Ar
jj−Ar

kk
, in which Ar

jj �= Ar
kk and θ = π

4 for Ar
jj = Ar

kk.

In this case the matrix being symmetric transformation need to be only applied to
either the lower or upper triangle matrix including the diagonal term. For optimal solu-
tion and computer implementation a special form of the solution known as Threshold
Jacobi Technique39 is usually applied. In this case off diagonal elements are tested
column by column or row by row and transformation is only applied if the value is
greater than a pre-defined threshold value for that sweep.

Since in this technique we ultimately want to reduce the matrix into a diagonal
form the strategy is to diminish the coupling effect between the j and k degrees of
freedom. An estimate of this coupling effect is given by (A2

jk/AjjAkk)
0.5. This factor can

be effectively used to decide if a rotation has to be applied or not. The convergence is
measured based on the threshold tolerance for a finite number of iterations40.

Thus for a particular number of finite iterations q it is assumed to have converged
to a tolerance t if

|A(q+1)
jj − A(q)jj |

A(q+1)
jj

≤ 10−t and

√√√√√ (A(q+1)
jk )2

Ajj(q+1)
A(q+1)

kk

≤ 10−t; for all i < j and

i = 1, 2, 3. . .. . .. . .n. (5.3.45)

Having defined the method it would be worthwhile to understand why and how the
matrix get reduced to a diagonal form.

Consider the matrix

[A] =
[

Ajj Ajk
Ajk Akk

]
(5.3.46)

—a symmetric 2 × 2 matrix.

39 For further insight to this refer “Finite Element Analysis for Engineering Procedure” – by K.J. Bathe
which has some superb discussion on this issue.

40 This is logical for q number of iterations as theoretically Aq + 1 → λ as q →∝.
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Considering the transformation matrix as

[T] =
[
cos θ − sin θ
sin θ cos θ

]
, (5.3.47)

we have

[T]T [A][T] =
[

cos θ sin θ
− sin θ cos θ

] [
Ajj Ajk
Ajk Akk

] [
cos θ − sin θ
sin θ cos θ

]
(5.3.48)

which gives

[T]T [A][T]

=
[
Ajj cos2 θ + Ajk sin 2θ + Akk sin2 θ (Akk − Ajj) sin θ cos θ + Ajk cos 2θ
(Akk − Ajj) sin θ cos θ + Ajk cos 2θ Ajj sin2 θ − Ajk sin 2θ + Akk cos2 θ

]

(5.3.49)

Considering the fact that the off diagonal terms are to be reduced to zero we have

1
2
(Akk − Ajj) sin 2θ + Ajk cos 2θ = 0

➔ tan 2θ = 2Ajk

Ajj − Akk
when Ajj �= Akk, for Ajj = Akk (5.3.50)

θ = π

4
when Ajk > 0 and θ = −π

4
when Ajk < 0.

Thus based on above transformation considering i and j degrees of freedom the
matrix is systematically transformed into a diagonal form. It has been proved that
once the off diagonal element are small the convergence is quadratic in nature and
minimal cost is required to calculate eigen pairs to high accuracy once an approximate
solution is obtained (Wilkinson 1968).

The symmetric eigen value analysis also has an important application in finite
element analysis.

It is a very effective tool to check the stability and conformity of finite elements and
is often used by FEM researchers to test the numerical sanctity of a new finite element.

Example 5.3.8

For symmetric matrix [A] as shown below determine the eigen values based on
Jacobi’s method.

[A] =
⎡
⎣ 5000 −2000 0

−2000 3500 −1500
0 −1500 1500

⎤
⎦
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Solution:

For 1st row (j) and 2nd column (k)
As tan 2θ = 2Ajk

Ajj−Akk
= 2×(−)2000

5000−3500 = −2.6667, we have sin θ = −0.569594 and
cos θ = 0.821925.

Thus the transformation matrix is given by

T1 =
⎡
⎢⎣

0.821926 0.569594 0

−0.569594 0.821926 0

0 0 1

⎤
⎥⎦ ➔

TT
1 =

⎡
⎢⎣

0.821926 −0.569594 0

0.569594 0.821926 0

0 0 1

⎤
⎥⎦

and TT
1 AT1 =

⎡
⎢⎣

6386.000936 −3.41061 × 10−13 854.3922566

0 2113.999064 −1232.888426

854.3922566 −1232.888426 1500

⎤
⎥⎦

For j = 1 and k = 3 we have, tan 2θ = 2Ajk

Ajj−Akk
= 2×854.3922566

6386.000935−1500 =
0.349730697 which gives sin θ = 0.167425 and cos θ = 0.98588 and the
transformation matrix is given by

T2 =
⎡
⎣ 0.98588 0 −0.167425

0 1 0
0.167425 0 0.98588

⎤
⎦ which results in

TT
2 TT

1 AT1T2 =
⎡
⎣6386.000936 −3.41061 × 10−13 854.3922566

0 2113.999064 −1232.888426
854.3922566 −1232.888426 1500

⎤
⎦

For j = 2 and k = 3, we have tan 2θ = 2Ajk

Ajj−Akk
= 2×−1232.888426

2113.999064−1500 = −4.0159
which gives sin θ = −0.61578 and cos θ = 0.787918 and the transformation
matrix is

T3 =
⎡
⎣1 0 0

0 0.787918 0.61578
0 −0.61578 0.787918

⎤
⎦ which results in

TT
3 TT

2 TT
1 AT1T2T3 =

⎡
⎣6386.000936 −526.1177 673.19112

−526.1177 3077.535869 −1.13687 × 10−13

673.1911 2.27374 × 10−13 536.4632

⎤
⎦
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and T1T2T3 =
⎡
⎣ 0.81032 0.5335 0.2423

−0.56155 0.5888 0.5812648
0.16742 −0.607088 0.77679

⎤
⎦

This completes the first cycle of sweep.

We start the 2nd Cycle with modified value of [A] as

[A] =
⎡
⎣6386.000936 −526.1177 673.19112

−526.1177 3077.535869 −1.13687 × 10−13

673.1911 2.27374 × 10−13 536.4632

⎤
⎦

For 1st row(i) and 2nd column (k)

As tan 2θ = 2Ajk

Ajj−Akk
= 2×(−)526.1177

6386.00936−3077.535869 = −0.31804 from which we
have sin θ = −0.15335 and cos θ = 0.98817101

Thus, the transformation matrix is given by

T1 =
⎡
⎣0.988171 0.15335 0

−0.15335 0.988171 0
0 0 1

⎤
⎦ and

TT
1 AT1 =

⎡
⎣6467.650055 −1.70531 × 10−13 665.227

0 2995.88675 103.2378
665.227 −103.2378 536.463

⎤
⎦ .

Now proceeding in identical manner with j = 1 and k = 3 and then sub-
sequently j = 2, k = 3 we finally arrive at a value of

TT
3 TT

2 TT
1 AT1T2T3 =

⎡
⎣6541.344802 11.35799 −0.45933

11.35799 3000.0364 −2.131 × 10−14

−0.45933 1.98952 × 10−13 458.6187

⎤
⎦

and T1T2T3 =
⎡
⎣ 0.98216 0.14883 −0.11491

−0.152435 0.9804 0.02306
0.110107 −0.04016 0.993107

⎤
⎦

For 3rd Cycle, considering the modified matrix as

[A] =
[

6541.344802 11.35799 −0.45933
11.35799 3000.0364 −2.131 × 10−14

−0.45933 1.98952 × 10−13 458.6187

]
and proceeding in

identical manner, we have

TT
3 TT

2 TT
1 AT1T2T3 =

⎡
⎣ 6541.381265 1.11245 × 10−7 6.45 × 10−14

1.11245 × 10−7 3000 4.878 × 10−19

3.85507 × 10−13 1.76595 × 10−13 458.6187

⎤
⎦
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and T1T2T3 =
⎡
⎣ 0.999999 −0.003207 −7.55131 × 10−5

0.003207 0.99999 3.37487 × 10−7

−7.55131 × 10−5 5.79678 × 10−7 0.999999

⎤
⎦

Since the matrix has almost diagonalised with off diagonal terms reducing to
negligible terms we conclude that

[λ] =
⎡
⎣ 6541.38

3000
458.6187

⎤
⎦ and

[ϕ] =
⎡
⎣ 0.999999 −0.003207 −7.55131 × 10−5

0.003207 0.99999 3.37487 × 10−7

−7.55131 × 10−5 5.79678 × 10−7 0.999999

⎤
⎦.

In most of the practical structural dynamics problem mass matrix [M] is considered
as a lumped mass matrix41 thus obtaining the matrix [A] = [K][M]−1 is simple and
does not take much computational effort and can be converted into a standard eigen
value form very easily. Once the same is done we can apply the above procedure to
find out the eigen pairs of the system. However for cases where the mass matrix is
distributed or dynamic coupling exists generalized Jacobi technique operable on both
[K] and [M] are usually used.

Before we move into this technique let us see what happens to the problem we had
solved earlier by Newton-Raphson method based on standard Jacobi technique.

Example 5.3.9

For structure having stiffness and mass matrix as mentioned below determine
the eigen-values by standard Jacobi’s technique.

[K] =
⎡
⎣ 5000 −2000 0

−2000 3500 −1500
0 −1500 1500

⎤
⎦ and [M] =

⎡
⎣400

400
200

⎤
⎦

Solution:

For the above matrices

[M]−1 =
⎡
⎣0.0025 0 0

0 0.0025 0
0 0 0.005

⎤
⎦

41 Meaning thereby that it is diagonal matrix.
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Considering [A] = [K][M]−1 we have

[A] =
⎡
⎣ 5000 −2000 0

−2000 3500 −1500
0 −1500 1500

⎤
⎦×

⎡
⎣0.0025 0 0

0 0.0025 0
0 0 0.005

⎤
⎦

=
⎡
⎣12.5 −5 0

−5 8.75 −7.5
0 −3.75 7.5

⎤
⎦

For 1st row(i) and 2nd column (k)
As tan 2θ = 2Ajk

Ajj−Akk
= 2×(−)5

12.5−8.75 = −2.6667 which gives sin θ = −0.569594
and cos θ = 0.821925.

Thus the transformation matrix is given by

T1 =
⎡
⎣ 0.821926 0.569594 0

−0.569594 0.821926 0
0 0 1

⎤
⎦ thus

TT
1 =

⎡
⎣0.821926 −0.569594 0

0.569594 0.821926 0
0 0 1

⎤
⎦

Thus TT
1 AT1 =

⎡
⎣15.965 −4.44 × 10−16 4.2719

0 5.284 −6.164
2.1359 −3.0822 7.5

⎤
⎦

For j = 1 and k = 3, we have tan 2θ = 2Ajk

Ajj−Akk
= 2×4.2719

15.965−7.5 = 1.00932 which
gives sin θ = 0.384826 and cos θ = 0.82192 which gives the transformation
matrix as

T2 =
⎡
⎣ 0.82192 0 −0.384826

0 1 0
0.384826 0 0.982192

⎤
⎦ which gives

TT
2 TT

1 AT1T2 =
⎡
⎣ 15.965 4.44 × 10−16 4.2719

0 5.2849 −6.1644
2.13598 −3.0822 7.5

⎤
⎦ .

Now proceeding in identical manner as shown in the previous problem of
example 11.8 after three cycles we arrive at42

TT
3 TT

2 TT
1 AT1T2T3 =

⎡
⎣ 17.112 0.039 9.92 × 10−5

−2.746 1.637 5.444 × 10−7

−0.6059 2.4365 9.9999

⎤
⎦ and

42 The intermediate steps are left as an exercise to the reader.
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T1T2T3 =
⎡
⎣0.99896 −0.04344 −0.013889

0.04343 0.99905 −0.00107
0.01392 0.0004 0.99903

⎤
⎦

From which we have

{λ} =
⎧⎨
⎩

17.112
1.637

9.99999

⎫⎬
⎭ and [ϕ] =

⎡
⎣0.99896 −0.04344 −0.013889

0.04343 0.99905 −0.00107
0.01392 0.0004 0.99903

⎤
⎦

It will be observed that results are closely matching with the results solved previously
by other techniques though the off diagonal term convergence to tolerance value is
poor, for on transformation of [K][M]−1 to matrix [A] the matrix has lost its symmetric
property.

A significant fact is to be noticed here. Unlike Matrix Deflation or Stodola’s method
where number of iterations increased significantly beyond the fundamental mode in
Jacobi’s method the number of iterations are spectacularly less.

Suffice it to say that computational effort being much less the technique becomes a
very attractive choice for computer implementation for eigen value solutions of large
systems.

5.3.3 Generalized Jacobi technique

As discussed earlier we now explain herein how Jacobi Technique is applied to gener-
alized equation [K] {ϕ} = ω2[M]{ϕ} where we do not convert it into a standard eigen
value problem.

The transformation matrix used in this case is given by (for i row and j column)

[Tr] =

⎡
⎢⎢⎢⎢⎣

1 0 0 . .
. 1 0 a .
. . 1 . .
. b . 1 .
. . . . 1

⎤
⎥⎥⎥⎥⎦ (5.3.51)

The values of the coefficients a and b are chosen in such a way that on application
it simultaneously reduces elements of i row and j column of matrix [Kr] and [Mr]
to zero.

It is not difficult to infer from the above statement that the coefficients a and b (for
rth iteration) is a dependent function of kr

ii, kr
jj, kr

ij, mr
ii, mr

jj, mr
ij.

Performing the matrix operation [Tr]T [Kr] [Tr] and [Tr]T [Mr] [Tr] and satisfying
the condition that kr+1

ij , mr+1
ij will tend to zero results in the following boundary

equations

akr
ii + (1 + ab)kr

ij + bkr
jj = 0 and amr

ii + (1 + ab)mr
ij + bmr

jj = 0 (5.3.52)
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For solving for a and b we express

kr
ii = kr

iim
r
ij − mr

iik
r
ij

kr
jj = kr

jjm
r
ij − mr

jjk
r
ij and

k̂r = kr
iim

r
jj − mr

iik
r
jj (5.3.53)

where, b = −kr
ii

x and a = kr
jj

x in which x is defined as

x = k̂r

2
+ sign(k̂r)

√√√√( k̂r

2

)
+ kr

iik
r
jj (5.3.54)

Here the function sign(k̂r)means if the value of k̂r > 0 then we consider it as (+)1
and when k̂r < 0 we consider this as (−)1.

Based on above the steps to find out the eigen values based on generalized Jacobi
Technique can be structured as follows

• For the matrix [K] and [M] determine for each row i and j (where i, j = 1, 2, 3. . .)

◦ kr
ii = kr

iim
r
ij − mr

iik
r
ij

◦ kr
jj = kr

jjm
r
ij − mr

jjk
r
ij

◦ k̂r = kr
iim

r
jj − mr

iik
r
jj

• If k̂r > 0 then x = k̂r

2 +
√(

k̂r

2

)
+ kr

iik
r
jj else

• x = k̂r

2 −
√(

k̂r

2

)
+ kr

iik
r
jj

• find b = −kr
ii

x and a = kr
jj

x

• Form the matrix T as [Tr] =

⎡
⎢⎢⎢⎢⎣

1 0 0 . .
. 1 0 a .
. . 1 . .
. b . 1 .
. . . . 1

⎤
⎥⎥⎥⎥⎦

• Form [K]r+1 = [Tr]T [K][Tr] and [M]r+1 = [Tr]T [M][Tr]
• Repeat this cycle till the matrix gets diagonalised i.e. off diagonal elements get

reduced below the tolerance value of 10−t

• Find the eigen values based on the expression [λ] = Diag
[

Kr
ii

Mr
ii

]
• Find the eigen vectors based on the expression

{ϕ} = [T1][T2] . . . . . . . . . . . . [Tr] Diag

⎡
⎢⎣ 1√

Mr+1
nn

⎤
⎥⎦

The above steps now will be expressed further by a numerical problem.
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Example 5.3.10

For the stiffness and mass matrix as shown below determine the eigen-pair based
on generalized Jacobi Technique.

[K] =
⎡
⎣ 5000 −2000 0

−2000 3500 −1500
0 −1500 1500

⎤
⎦ and [M] =

⎡
⎣400

400
200

⎤
⎦

Solution:

For i = 1 and j = 2 we have k1
11 = k1

11m1
12 − m1

11k1
12

or k11 = 5000 × 0 − 400 × −2000 = 800000

Again k1
22 = k1

22m1
12 − m1

22k1
12

or, k22 = 3500 × 0 − 400 × −2000 = 800000

k̂ = k11m22 − m11k22 = 5000 × 400 − 400 × 3500 = 600000.

As k̂ > 0 hence x = k̂
2 +

√(
k̂
2

)
+ k11k22

x = 600000
2

+
√(

600000
2

)
+ (800000)2 ➔ x = 1154400.375

Then

b = −k11

x
= − 800000

1154400.375
= −0.693000468 and

a = k22

x
= 800000

1154400.375
= 0.693000468.

Thus the transformation matrix is given by

[T1] =
⎡
⎣ 1 0.693000468 0

−0.693000468 1 0
0 0 1

⎤
⎦

Based on this we have

[K](2) = [T(1)]T [K][T (1)] =
⎡
⎣ 9452.875664 0 1039.500702

9.09495 × 10−13 3129.246372 −1500
1039.500702 −1500 1500

⎤
⎦
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and [M](2) = [T(1)]T [M][T(1)] =
⎡
⎣592.0998596 0 0

0 592.0998586 0
0 0 200

⎤
⎦

For i = 1 and j = 3 we have

k1
11 = k1

11m1
13 − m1

11k1
13

= 9452.875664 × 0 − 592.0998596 × 1039.500702

= −615488.2198.

Again, k1
33 = k1

33m1
13 − m1

33k1
13 = 1500 × 0 − 200 × 10039.500702 =

−207900.1404.

k̂ = k11m33 − m11k33 = 9452.875664 × 200 − 592.0998596 × 1500

= 1002425.339.

As k̂ > 0, hence x = k̂
2 +

√(
k̂
2

)
+ k11k33

Substituting the value k11, k33, etc . . . we have, x = 1116983.916.
Then

b = −k11

x
= −−615488.2198

1002425.339
= 0.551026932 and

a = k33

x
= −207900.1404

1002425.339
= −0.186126351.

Thus the transformation matrix is given by

[T2] =
⎡
⎣ 1 0 −0.186126351

0 1 0
0.551026932 0 1

⎤
⎦ then

[K](3) = [T(2)]T [K][T(2)]

=
⎡
⎣ 11053.90743 −826.5403974 −2.27374 × 10−13

−826.5403974 3129.246372 −1500
−4.54747 × 10−13 −1500 1440.519201

⎤
⎦

and [M](3) = [T(2)]T [M][T(2)]

=
⎡
⎣ 652.825994 0 −2.84217 × 10−14

0 592.0998586 0
−2.84217 × 10−14 0 220.5121264

⎤
⎦
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For i = 2 and j = 3 we have proceeding in identical manner

k1
22 = k1

22m1
23 − m1

22k1
23 = 888149.7893

Again k1
33 = k1

33m1
23 − m1

33k1
23 = 330768.1896.

k̂ = k22m33 − m22k33 = −162894.4451

As k̂ < 0, hence x = k̂
2 −

√(
k̂
2

)
+ k11k33.

Substituting the value k22, k33, etc . . . we have, x = −629539.6856.
Then b = −k22

x = 1.410792377 and a = k33
x = −0.525413.

Thus the transformation matrix is given by

[T3] =
⎡
⎣1 0 0

0 1 −0.525413
0 1.410792377 1

⎤
⎦ then

[K](4) = [T(3)]T [K][T(3)]

=
⎡
⎣ 11053.90743 −826.5403974 434.2748792

−826.5403974 1763.985213 −9.09495 × 10−13

434.2748792 −2.27374 × 10−13 3880.612814

⎤
⎦

and

[M](4) = [T(2)]T [M][T(2)]

=
⎡
⎣ 652.825994 −4.009 × 10−14 −2.84217 × 10−14

−4.009 × 10−14 1030.992891 0
−2.84217 × 10−14 0 383.9663718

⎤
⎦

and

[T1][T2][T3] =
⎡
⎣ 1 0.430414831 −0.550237646

−0.693000468 1.18197197 −0.396427121
0.551026932 1.410792377 1

⎤
⎦

This completes the first cycle. We start the second cycle with new stiffness and
mass matrix as

[K] =
⎡
⎣ 11053.90743 −826.5403974 434.2748792

−826.5403974 1763.985213 −9.09495 × 10−13

434.2748792 −2.27374 × 10−13 3880.612814

⎤
⎦ and
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[M] =
⎡
⎣ 652.825994 −4.009 × 10−14 −2.84217 × 10−14

−4.009 × 10−14 1030.992891 0
−2.84217 × 10−14 0 383.9663718

⎤
⎦ and

proceeding in identical fashion as mentioned above we arrive at the figures

[K](4) = [T(3)]T [K][T (3)] =
⎡
⎣ 11387.13 5.811795352 0.024159556

5.811795352 1702.578035 0
0.02416 6.74127 × 10−13 3898.55867

⎤
⎦

and

[M](4) = [T(2)]T [M][T (2)]

=
⎡
⎣ 665.6875 −3.559 × 10−14 −2.857 × 10−14

−3.56 × 10−14 1035.518 8.88178 × 10−16

−2.86 × 10−14 8.88178 × 10−16 389.855

⎤
⎦ and

[T1][T2][T3] =
⎡
⎣ 1 0.08386 −0.09428

−0.05244 0.99999 0.009119
0.161594 −0.01104 1

⎤
⎦

This completes the second cycle.

For third cycle proceeding in identical manner, we have

[K](4) = [T(3)]T

[K][T (3)] =
⎡
⎣ 11387.13 1.18 × 10−10 6.75 × 10−18

1.18 × 10−10 1702.575103 0
5.66 × 10−13 6.744 × 10−13 3898.55867

⎤
⎦ and

[M](4) = [T (2)]T

[M][T (2)] =
⎡
⎣ 665.6875 −3.559 × 10−14 −2.857 × 10−14

−3.56 × 10−14 1035.518 9.044 × 10−16

−2.86 × 10−14 9.044 × 10−16 389.855

⎤
⎦ and

[T1][T2][T3] =
⎡
⎣ 1 −0.00056 5.107 × 10−6

0.000363 1 −3.4305 × 10−9

8.72 × 10−6 4.187 × 10−9 1

⎤
⎦

Considering {λ} = Diag
[

Kr
ii

Mr
ii

]
, we have {λ} =

⎧⎨
⎩

17.10582
1.644177

10

⎫⎬
⎭ as the eigen

values43 and considering {ϕ} = [T1][T2] . . . . . . . . . [Tr] Diag
[

1√
Mr+1

nn

]
we can get

43 Compare the results with previous examples . . . . . .
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{ϕ} =
⎡
⎣ 1 −0.00056 5.107 × 10−6

0.000363 1 −3.4305 × 10−9

8.72 × 10−6 4.187 × 10−9 1

⎤
⎦

×
⎡
⎣0.03876

0.031076
0.050646

⎤
⎦

{ϕ} =
⎡
⎣ 0.038758 −1.7547 × 10−5 −2.586 × 10−7

1.407 × 10−5 0.03107 −1.7374 × 10−10

3.3801 × 10−7 1.3013 × 10−10 0.05064

⎤
⎦

as the eigenvectors.

5.3.4 Dynamic analysis based on finite element method

In our previous discussions we had mostly dealt with frames to explain to you the basic
principles that are used for dynamic analysis of structural systems. It is but evident
that this can be extended to Finite Element Method (FEM) where the theory can be
extended to perform analysis for any general physical system also.

For readers who have gone through Chapter 2 (Vol. 1) can intuitively deduce that
like for a static analysis in this case we assemble the [K] and [M] matrix and perform
the eigen value analysis based on the equation [K] − [M]ω2 = 0.

To give you further conceptual insight into the problem we first give you some
preparatory background.

5.3.4.1 Flexibility and stiffness matrices

Influence coefficients: An influence coefficient aij is defined as the static deflection of
the system at point i due to a unit force at j. Let us consider a simply supported beam
of Figure 5.3.4 in which two vertical forces f1 and f2 are applied at points 1 and 2.
Influence coefficients are then, a11, a12, a21, a22. For example, the deflection at 1 due
to force f2 at 2 is f2 a12. Let us assume that a force f1 is first applied at 1 and then f2
is applied at 2.

When f1 alone is applied, the potential energy in the beam, for its deformation, is
equal to (1/2)f 2

1 a11. Again, when the force f2 is applied, the additional deflection at
the point 1 due to the force f2 is f2 a12. The work done by f1 corresponding to this

21

f2f1

l3l2l1

Figure 5.3.4 Simply supported beam with two concentrated loads.
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deflection is f1(f2 a12). Hence the total potential energy in the system is

U = 1
2

f 2
1 a11 + f1[f2a12] + 1

2
f 2
2 a22 (5.3.55)

Again when the force f2 is applied at 2 and then the force f1 is applied at 1. The
total potential energy of the system is

U = 1
2

f 2
2 a22 + f2[f1a21] + 1

2
f 2
1 a11 (5.3.56)

Since the final two stages are identical, by the law of conservation of energy, the
potential energy computed by the two methods should be same. This implies a12 =
a21. This can be generalised for several loads and is known as Maxwell’s reciprocal
theorem.

Example 5.3.11

A simply supported uniform beam of length L, shown in Figure 5.3.5, is loaded
with weights at positions 0.25L and 0.6L. Determine the flexibility matrix for
the beam.

4321

m2m1

0.40L0.35L0.25L

Figure 5.3.5 Simply supported beam with two concentrated loads.

Solution:

Influence coefficients may be determined by placing unit loads at 2 and 3.
---------------------------------------------------------------------------------------------------
In Figure. 5.3.5a,
For span AD:

Vertical deflection, v = Pbx
6EIL (x

2 + b2 − L2)

Slope at A θ = Pb
6EIL (L

2 − b2)

For span DB:

Vertical deflection, v = Pb
6EIL

[−L
b (x − a)3 − (L2 − b2)x + x3

]
Slope at B θ = Pab

6EIL (2L − b).
---------------------------------------------------------------------------------------------------
Thus, consider the simply supported beam shown in the Figure 5.3.5 in which

two vertical unit loads are applied at points 2 and 3, respectively. First assume
that the unit force is applied first at station 2 and then another unit load is applied
at station 3.
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L

A D B
ba

P

Figure 5.3.5a

When the unit load is applied at 2 and the at 3, we have

a11 = 0.75L × 0.25L
6EIL

(0.252 + 0.752 − 1)L2 = 0.0117L3

EI
;

a22 = 0.4L × 0.6L
6EIL

(0.62 + 0.42 − 1)L2 = 0.0192L3

EI

similarly,

a12 = a21 = 0.75L
6EIL

(
0.62 − 0.6(1 − 0.752)− (0.6 − 0.25)3

0.75

)
L3

= 0.01296L3

EI
(All values are negative).

Hence the flexibility matrix can be written as

[A] =
[

.0117 .01296
.01926 .0192

]
L3

EI
.

Example 5.3.12

The natural frequencies of a system, shown in Figure 5.3.6, are to be obtained.
Assume a constant flexural rigidity EI of the shaft with no inertial effect. Radius
of the shaft is L/4 and the system is in its static equilibrium.
Solution:

From the figure: a11 = L3

3EI ; a22 = L
EI ; a12 = a21 = L2

2EI .

y-delection of the mass: y(t) = −m ÿ a11 − J θ̈ a12 = −(2 L m ÿ + 3 Jθ̈ )
(L2/6EI)

Rotation of the mass: θ(t) = −mÿa21 − Jθ̈a22 = −(Lmÿ + 2Jθ̈ )(L
/

2EI)
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my

y
x

y

L

RMass, m

T = 1 

a21

a22

a11

F = 1

a21

Jθ

θ

Figure 5.3.6 Determination of influence coefficients.

Assuming: y = A1 sinωt and θ = A2 sinωt, and substituting them for y(t)
and θ(t), we have,

6EI
L2 y + 2Lmÿ + 3Jθ̈ = 0;

2EI
L
θ + Lmÿ + 2Jθ̈ = 0

Above equation further reduce to

A1[6EI − 2mL3ω2] − 3JL2ω2A2 = 0

− L2mω2A1 + [2EI − 2JLω2]A2 = 0

Characteristic equation may thus be written as

�(ω) =
∣∣∣∣6EI − 2mL3ω2 −3JL2ω2

−L2mω2 2EI − 2JLω2

∣∣∣∣ = 0

Now using J = mR2/4 and R = L/4, and expanding the above determinant
we have

ω4 − 268
(

EI
mL3

)
ω2 + 768

(
EI

mL3

)2

= 0

Solution is ω1 = 1.962
√

EI
/

mL3 : ω2 = 16.37
√

EI
/

mL3

5.3.4.2 Generalisation

With forces f1, f2, f3, . . ., fn acting at points 1, 2, 3, . . ., n displacements, thus produced
can be written as

x1 = a11f1 + a12f2 + a13f3 + · · · + a1nfn

x2 = a21f1 + a22f2 + a23f3 + · · · + a2nfn
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x3 = a31f1 + a32f2 + a33f3 + · · · + a3nfn

.

.

.
xn = an1f1 + an2f2 + an3f3 + · · · + annfn. (5.3.57)

These equations can be written in matrix for as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1
x2
x3
.
.
.

xn

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
a31 a32 a33 . . . a3n
. . . . . . .
. . . . . . .
. . . . . . .

an1 an2 an3 . . . ann

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1
f2
f3
.
.
.
fn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.3.58)

This can be written as {x} = [A]{f }, in which [A] is called flexibility matrix. If [A]
is non-singular, [A]−1 exists and {f } can be expressed as

{f } = [A]−1{x} = [K]{x} (5.3.59)

where [K] is called the stiffness matrix.
In terms of stiffness, Equation (5.1.11) can be rewritten as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

k11 k12 k13 . . . k1n
k21 k22 k23 . . . k2n
k31 k32 k33 . . . k3n

. . . . . . .

. . . . . . .

. . . . . . .
kn1 kn2 kn3 . . . knn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1
x2
x3
.
.
.

xn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1
f2
f3
.
.
.
fn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (5.3.60)

Elements of the stiffness matrix in Equation (5.3.60) can be interpreted as follows:
If x1 = 1 and all other x’s are zero, the forces at 1, 2, 3, . . ., n are that which are

required to maintain this displacement are k11, k21, k31, . . ., kn1 in the first column.

Example 5.3.13

Consider a system with n-springs in series as presented in Figure 5.3.7. Compute
the stiffness matrix of the over-all system.

Solution:

Let x1 = 1, and other x’s are zero. The forces required at 1, 2, 3, . . ., n,
considering positive direction forces as the forces to the right, we have, say,
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kn
k3k2k1

xnx3x2x1

m1 m2
m3

mn

Figure 5.3.7 Vibration of a system with n-springs arranged in series.

Reference to Figure 5.3.8.

f1

m1

k2x1

k1x1

f2

m2

k2x1

Figure 5.3.8

f1 = (k1 + k2)x1 : f2 = −k2x1 : f3 = f4 = . . . = fn = 0

➔ k11 = k1 + k2 : k21 = −k2 : k31 = k41 = . . . = kn1 = 0.

Similarly setting x2 = 1, and all other x’s zero;
Reference to Figure 5.3.9.

k3 x2

f3

f2

k3 x2
m2

k2 x2

m1

k2 x2

f1

m3

Figure 5.3.9

f1 = −k2x2 : f2 = (k2 + k3)x2 : f3 = −k3x2 : f4 = f5 = . . . = fn = 0.

➔ k12 = −k2 : k22 = (k2 + k3) : k32 = −k3 : k42 = k52 = . . . = kn2 = 0.

Continuing with setting unit values to xn−1 = 1 and all other x’s zero;
Reference to Figure 5.3.10.

kn xn-1 

fnfn-1

kn xn-1
mn-1 mn 

kn-1 xn-1 

kn-2 xn-1 

fn-2  

mn-2

Figure 5.3.10
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fn−2 = −kn−2xn−1 : fn−1 = (kn−1 + kn)xn−1 :

fn = −kn×n−1 : f1 = f2 = f3 = . . . = fn−3 = 0.

➔ kn−2,n−1 = −kn−1 : kn−1,n−1 = (kn−1 + kn) :

kn,n−1 = −kn : k1,n−1 = k2,n−1 = . . . = kn−3,n−1 = 0.

Reference to Figure 5.3.11.

m

fn
fn-1

kn xn

kn xn

mn-1 

Figure 5.3.11

Hence, fn−1 = −knxn : fn = knxn : f1 = f2 = f3 = . . . = fn−3 = fn−2 = 0.

➔ kn−1,n = −kn : kn,n = kn : k1,n = k2,n = . . . = kn−3,n = kn−2,n = 0.⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

k1 + k2 −k2 0 0 . 0 0
−k2 k2 + k3 . . . 0 0

0 −k3 . . . . .
0 . . . . . .
. . . . . . .
0 0 . . −kn−1 kn−1 + kn −kn

0 0 . . . −kn kn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1

x2

.

.

.
xn−1

xn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1

f2

fn−1

fn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

The governing equation shown above indicates a banded form of stiffness matrix
with a band along the diagonal.

The influence coefficients have been defined for static elastic property of a system and
the inertial effects neglected. When this method is applied to a dynamical system, the
inertial forces are to be substituted for the assumed static forces. The total deflection at
a point of a system is the sum of the product of the inertial forces and the appropriate
influence coefficients.

The above numerical example makes a very important deduction. For a system
having multi-degree of freedom the overall stiffness of the system is nothing but an
assemblage of the individual stiffness of the elements constituting the structure. Thus
principles of assemblage of global stiffness matrix as explained in Chapter 2 (Vol. 1)
for finite element is valid. However for assemblage of mass matrix an additional step
has to be carried out.

5.3.4.3 Distributed or consistent mass matrix

In the previous sections in most of the cases we have considered masses lumped at the
node which makes the mass matrix diagonal and makes it very convenient for further
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computation. However the lumped mass approximation do induce some error (not
very profound though) in the eigenvalues thus obtained especially for members having
pre-dominant flexural modes.

Thus when considering continuum, especially plates and shells where flexural mode
governs, it is preferable to consider distributed mass for more accurate results.

The development of consistent mass matrix is as explained by Archer (1963) is given
below.

For a body of volume V the kinetic energy of the system can be expressed as K.E. =
1/2 mv2. Here m is the mass of the body and v its velocity.

For an elemental volume dV this can thus be expressed in terms of FEM as

K.E. = 1
2

∫
V

u̇Tu̇ρdV (5.3.61)

Here ρ = mass density of the body and u̇ = the velocity of the body.
The displacement vector u is thus expressed in terms of shape function and time as

[u] = [N][q(t)] (5.3.62)

Thus the velocity vector u̇ can be expressed as [u̇] = [N][q̇(t)] (5.3.63)

Substituting Equation (5.3.63) in (5.3.61) we finally we have

K.E. = 1
2

q̇(t)[
∫
V

ρNTNdV]q̇(t) (5.3.64)

Comparing this with Equation (5.3.61) it is obvious that the element mass matrix
is given by

[Me] =
∫
V

ρNTNdV (5.3.65)

5.3.4.4 Distributed and lumped mass matrix of beam element

We had shown in Chapter 2 (Vol. 1) that shape function of a beam having two degrees
of freedom per node (one translation and one rotation) is given by

[N] =
〈(

1 − 3x2

L2 + 2x3

L3

) (
x − 2x2

L
+ x3

L2

) (
3x2

L2 − 2x3

L3

) (
−x2

L2 + x3

L3

)〉

(5.3.66)
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Substituting this in Equation (5.3.65) we have

[Me] = ρAL
420

⎡
⎢⎢⎣

156 22L 54 13L
22L 4L2 13L −3L2

54 13L 156 −22L
13L −3L2 −22L 4L2

⎤
⎥⎥⎦ (5.3.67)

The lumped mass matrix for beam element where the masses are assumed to be
lumped at the node is expressed as

[Me] = ρAL
2

⎡
⎢⎢⎣

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦ (5.3.68)

It is evident from Equation (5.3.67) that lumped mass approach cannot simulate
the rotational inertia as such induces some error in eigen-value solution especially for
systems with pre-dominant flexural mode. But irrespective of this short coming its
popularity with professional engineers is immense for its ease of computation.

5.3.4.5 Distributed and lumped mass matrix of triangular
elements (CST)

For plain stress and plain strain triangular elements the shape function as cited in
Chapter 2 (Vol. 1) is given by

[N] = 1
2�

×
[
d11 0 d22 0 d33 0
0 d11 0 d22 0 d33

]
(5.3.69)

in which, d11 = ai + bix + ciy; d22 = aj + bjx + cjy; d33 = am + bmx + cmy; and
� = Area of the triangle.

Substituting this in Equation (5.3.65) we have

[Me] = ρAt
12

⎡
⎢⎢⎢⎢⎢⎢⎣

2
0 2 Symmetric
1 0 2
0 1 0 2
1 0 1 0 2
0 1 0 1 0 2

⎤
⎥⎥⎥⎥⎥⎥⎦

(5.3.70)

Here t is the thickness of the element.

Similar to stiffness matrix the element mass matrix has to undergo the transforma-
tion [MG] = [T]T [Me][T] before one carries out the global assemblage.
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Example 5.3.14

A Portal frame as shown in Figure 5.3.12 having three degrees of freedom per
node (two translation and one rotation) supports a pulsating pipe of weight
200 kN when the frequency of the pulsating fluid is 6 Hz and 12 Hz in the first and
second harmonics. Determine the natural frequencies of frame based on FEM
to check if there is any resonance in the system or not. Also determine the fun-
damental frequency of the system as a body with single degree of freedom. The
material and geometric property of columns and beams are mentioned hereafter.
E = 2 × 107 kN/m2, Icol=1.2 × 10−4 m4, Acol = 0.03 m2, Ibeam = 1.5 × 10−4 m4

and Abeam = 0.035 m2. Density of material = 25 kN/m3.

200 kN 

2                                                                3 

v

u

1                                                                   4   

1 3

2

Figure 5.3.12 A portal frame supporting a pulsating pipe.

Solution:

Calculation of global stiffness matrix:

The element stiffness matrix of the beam element in this case is expressed as

[K]beam =

⎡
⎢⎢⎢⎢⎢⎢⎣

AE/L 0 0 −AE/L 0 0
0 12EI/L3 6EI/L2 0 −12EI/L3 6EI/L2

0 6EI/L2 4EI/L 0 −6EI/L2 2EI/L
−AE/L 0 0 AE/L 0 0

0 −12EI/L3 −6EI/L2 0 12EI/L3 −6EI/L2

0 6EI/L2 2EI/L 0 −6EI/L2 4EI/L

⎤
⎥⎥⎥⎥⎥⎥⎦
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For member 1 and 3 (the vertical members), the element stiffness matrix is
given by

[Ke] =

150000 0 0 −150000 0 0
0 450 900 0 −450 900
0 900 2400 0 −900 1200

−150000 0 0 150000 0 0
0 −450 −900 0 450 −900
0 900 1200 0 −900 2400

The transformation matrix for the vertical members are given as

[T] =

0 1 0 0 0 0
−1 0 0 0 0 0

0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 −1 0 0
0 0 0 0 0 1

Performing the operation [Kg] = [T]T [Ke]T we have

[Ke] =

450 0 −900 −450 0 −900
0 150000 0 0 −150000 0

−900 0 2400 900 0 1200
−450 0 900 450 0 900

0 −150000 0 0 150000 0
−900 0 1200 900 0 2400

For member 2 whose axis matches with the global direction the stiffness matrix
is given by

[Ke] =

200000 0 0 −200000 0 0
0 840 1469 0 −840 1469
0 1469 3429 0 −1469 1714

−200000 0 0 200000 0 0
0 −840 −1469 0 840 −1469
0 1469 1714 0 −1469 3429

Performing the global assemblage and eliminating the degrees of freedom for
the fixed base of the column we finally have the global stiffness matrix as
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[Kg] =

200450 0 900 −200000 0 0
0 150840 1469 0 −840 1469
900 1469 5829 0 −1469 1714

−200000 0 0 200450 0 −900
0 −840 −1469 0 150840 −1469
0 1469 1714 −900 −1469 5829

Calculation of mass matrix:

Load from pipe on each node = 100 kN
Load from column (assumed 1/3rd mass affects the node 2 and 3) = 1.00 kN
Load from beam (50% on each node) = 1.54 kN
Thus mass per node = 102.54/9.81 = 10 kN.
The mass matrix which is a diagonal matrix is thus given by44

[M] =

10 0 0 0 0 0
0 10 0 0 0 0
0 0 0 0 0 0
0 0 0 10 0 0
0 0 0 0 10 0
0 0 0 0 0 0

Solving by Jacobi method for eigenvalue analysis as shown earlier we have
[λ] = 〈25.316 1.5 × 104 1.505 × 104 4.003 × 104〉diag which gives
[ω] = 〈5.031 122.474 122.693 200.086〉diag rad/sec

⇒ [f ] = 〈0.801 19.492 19.527 31.845〉diag Hz

It may be noticed that while the total degrees of freedom for the system is
6 we have only shown 4 frequencies. This is because as the rotational inertia
is ignored considering lumped mass (zero diagonal element in the mass matrix)
the eigen values are theoretically infinite for these degrees of freedoms are of no
physical significance and are ignored.

The corresponding eigenvectors are given by

[ϕ] =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.691 0.702 9.246 × 10−4 0
0 −9.853 × 10−4 0.659 0.707

−0.151 −0.083 −0.257 1.862 × 10−14

0.691 −0.702 −9.246 × 10−4 0
0 9.853 × 10−4 −0.659 0.707

0.151 −0.083 −0.257 −2.024 × 10−14

⎤
⎥⎥⎥⎥⎥⎥⎦
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Frequency based on single degree of freedom:

In lateral direction
Kcol = 24EI/L3 = 900 kN/m, total mass (M) = 20.89 kN-sec2/m
Thus ω = √Kcol/M or ω = 6.563 rad/sec i.e. f = 1.044 Hz.
In vertical direction
Kcol = 2EA/L = 3 × 105 kN/m, total mass (M) = 20.89 kN-sec2/m
Thus ω = √Kcol/M or ω = 119.817 rad/sec i.e. = 19.07 Hz.
It may be observed that even such simplistic model gives quite a reasonable

result for practical application.
Having established the basis of dynamic analysis of a system by FEM based

on a framed structure we now extend the above for continuum.

Example 5.3.15

Shown in Figure 5.3.13 is a wall 4 m × 3 m × 0.25 m subjected to load of 1500 kN
vertical direction. We need to determine the time periods based on finite element
analysis. The Elastic Modulus of the wall is E = 2.8 × 108 kN/m2 and consider
ν=0.25. Material density of the wall is 25 kN/m3.

Y     
                                   7                                           1500 kN

                 8                                                           5
4(0,3)  6

                                                                           3
                     9                                                                                 

                         3m                             (2,2.5) 5           10     
                                                  4                 

                                     2      
                                        1

                                        2
                                                                            1                                      3

                                         2(4,0)      

                                                                             4
                                                                                                                                                    X      

                                                                      4m
1(0,0)

3(4,3) 

Figure 5.3.13

Also, shown in Figure 5.3.13 is the finite element assembly with global degrees
of freedom as marked at each node (1 thru 10).

Solution:

In this case to avoid repetition we will not derive the assembled global stiffness
matrix with the enforced boundary condition. This has already been worked out
in detail in Example 2.12.6 in Chapter 2 (Vol. 1).

The global stiffness matrix for the assembly considering plain stress triangular
element is given by [Kg] =

44 Observe here that we have ignored the rotational inertia of the system.
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7.72
×10+17

−7.78
×10+06

−1.77
×10+07

−2.33
×10+06

0.00
×10+00

0.00
×10+00

−1.56
×10+06

5.44
×10+06

−5.79
×10+07

4.67
×10+06

−7.78
×10+06

6.32
×10+17

2.33
×10+06

6.18
×10+06

0.00
×10+00

0.00
×10+00

1.01
×10+07

−2.20
×10+07

−4.67
×10+06

−4.74
×10+07

−1.77
×10+07

2.33
×10+06

3.98
×10+07

−1.56
×10+07

−1.56
×10+06

−1.01
×10+07

0.00
×10+00

0.00
×10+00

−2.05
×10+07

2.33
×10+07

−2.33
×10+06

6.18
×10+06

−1.56
×10+07

4.92
×10+07

−5.44
×10+06

−2.20
×10+07

0.00
×10+00

0.00
×10+00

2.33
×10+07

−3.34
×10+07

0.00
×10+00

0.00
×10+00

−1.56
×10+06

−5.44
×10+06

8.09
×10+07

3.11
×10+07

2.33
×10+07

−2.33
×10+06

−1.03
×10+08

−2.33
×10+07

0.00
×10+00

0.00
×10+00

−1.01
×10+07

−2.20
×10+07

3.11
×10+07

1.16
×10+08

2.33
×10+06

7.29
×10+07

−2.33
×10+07

−1.67
×10+08

−1.56
×10+06

1.01
×10+07

0.00
×10+00

0.00
×10+00

2.33
×10+07

2.33
×10+06

4.36
×10+17

−7.78
×10+06

−6.53
×10+07

−4.67
×10+06

5.44
×10+06

−2.20
×10+07

0.00
×10+00

0.00
×10+00

−2.33
×10+06

7.29
×10+07

−7.78
×10+06

1.02
×10+18

4.67
×10+06

−1.53
×10+08

−5.79
×10+07

−4.67
×10+06

−2.05
×10+07

2.33
×10+07

−1.03
×10+08

−2.33
×10+07

−6.53
×10+07

4.67
×10+06

2.46
×10+08

0.00
×10+00

4.67
×10+06

−4.74
×10+07

2.33
×10+07

−3.34
×10+07

−2.33
×10+07

−1.67
×10+08

−4.67
×10+06

−1.53
×10+08

0.00
×10+00

4.00
×10+08

Calculation of mass matrix:

Area of element #1 = 5.0 m2. Thickness = 0.25 m. Thus considering material
wt density = 25 kN/m3

we have

[m1] =

⎡
⎢⎢⎢⎢⎢⎢⎣

1.062
1.062

1.062
1.062

1.062
1.062

⎤
⎥⎥⎥⎥⎥⎥⎦

and

[m2] = [m4] =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.637
0.637

0.637
0.637

0.637
0.637

⎤
⎥⎥⎥⎥⎥⎥⎦

[m3] =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.212
0.212

0.212
0.212

0.212
0.212

⎤
⎥⎥⎥⎥⎥⎥⎦
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The global mass matrix(10 × 10) including the effect of nodal load (1500 kN)
is thus given by45

[mg] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.698
1.698

1.698
1.698

154
154

0.85
0.85

2.55
2.55

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Solving the eigen value equation [K]{φ} = λ[M]{φ} by the Jacobi method as
explained earlier we have

[λ] = 〈1.2 × 1018 4.54 × 1017 3.72 × 1017 5.13 × 1017 1.61 × 108

9.99 × 107 2.96 × 105 1.67 × 107 2.51 × 105 6.35 × 104〉
Considering ω = √

λ and T = 2π/ω we have the time periods46 for all the
active degrees of freedom as

[T] = 〈0.025 0.013 0.00153 0.00115 0.0006 0.0004 sec.

5.3.4.6 Static and dynamic condensation – the eigen value
economizer

Based on above examples it is evident that for dynamic analysis based on FEM the
major effort is directed towards the computation of the eigen-values and eigen vectors
and this is computationally expensive when the structure in hand is large.

More refined are the meshes, larger is the stiffness and mass matrix and more expen-
sive is the cost of computation. However for most of the structures from practical
engineering point of view it is only necessary to compute the first few modes when
all the eigenvalues (as computed in the above examples) is not required. For instance
a 3D building frame of say 500 nodes having six degrees of freedom will have total
3000 degrees of freedom. Ignoring the rotational inertia and considering lumped mass
the size of the stiffness and mass matrix would actually be of the order 1500 × 1500.
However for practical engineering design the first 3 to 4 eigen values and correspond-
ing eigenvectors suffice. Naturally the question arose as to – is there a way by which
we can compute the first few significant eigen values of a matrix of order n without
solving all the n equations? The biggest advantage then would obviously be that it
would bring a lot of economy in computational time and effort.

45 The mass matrices are diagonal matrix having all non diagonal terms as zero.
46 This is just to show you the procedure and may not be the correct model in terms of mesh refinement

when the value has converged to a correct result.
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This issue has been a topic of significant research in the last decade and huge amount
of literature are available on the issue. A detailed discussion would rightfully be a
complete chapter as such we give briefly here the conceptual aspects only.

One of the most popular method is static and dynamic condensation which are used
in many commercially available software to compute the desired number of eigen
values and vectors as prescribed by the user.

We had already explained the principle of static condensation in Chapter 2 (Vol. 1)
while deriving stiffness matrix of quadrilateral elements from triangular elements how-
ever in such case the nodal degree of freedom that needs to be eliminated (the internal
node) was known priori. For a complex structure on the other hand how do we know
which degrees of freedom can be ignored?

For instance for the portal frame problem worked out above it is evident that since we
are considering lumped mass the rotational degree of freedoms are ignored as such on
can condense out the rotational degrees of freedom at element level and then assemble
the global matrix which would reduce its size. Thus for small or simple structures one
can possibly identify these mass less degree of freedom based on inspection and can
eliminate them.

However when the order of the stiffness and mass matrix is say 1000, condensation
of only rotational or mass less degrees of freedom may not be sufficient enough to give
any significant computational advantage for an eigen value solution.

Thus techniques had to be developed where even translational mass which does not
affect the first few modes, can be eliminated-however keeping the fact in mind that
condensation do incur error in the final eigen values and vectors thus obtained47.

The technique that is used for such case is as follows.
For any structure or foundation when we assemble the global stiffness and mass

matrix, it is observed that the values are invariably dominated by the major diag-
onal element (i.e. Kii and Mii). Since our objective is to obtain the first few lowest
eigen value, the target is to eliminate the higher eigen-values whose values are not
important/relevant to us.

To this end an array constituting the term Kii/Mii is computed and the computer
is asked to search for the highest value in this array48. Once this is identified the
particular degree of freedom is eliminated to crunch the matrix by one degree based
on static condensation. The step is repeated again and the next highest value of Kii/Mii
is identified and is subsequently crunched. In this process if we get two values in the
array that have the same highest value, then the first value encountered is eliminated
first. It has been observed that the procedure do induce some error in the eigen values
thus obtained but is not significant provided the order of the matrix is restricted to at
least 3 times the number of modes we are seeking.

The technique though looks simple requires significant book keeping while program-
ming to track the correct addresses of the degree of freedom that are to be eliminated
and in many cases the stiffness and mass matrix looses its inherent banded property
and becomes a full matrix.

47 It is obvious that this error should be within an acceptable limit and not significant.
48 In terms of Fortran programming this is address as LAMBDA = MAX(K(I, J)/M(I, J)) when I = J



Concepts in structural and soil dynamics 639

5.4 INTRODUCTION TO SOIL AND ELASTO-DYNAMICS

In this section we will study some basic concepts of soil dynamics and its theoretical
developments within the domain of civil engineering. Before we start this chapter we
would expect you to have some background on

• Theory of elasticity
• Solution of linear and partial differential equation
• Some basics of wave motion (not mandatory though)

This would greatly help in understanding the mechanics of the subject.

5.4.1 Development of soil dynamics to the present state
of art

Most of the developments in natural science go through certain phases of metamor-
phosis. The experimental observations, followed by empirical and semi-empirical
formulation, are used to match observed phenomena. This is usually followed by
a spurt of theoretical hypothesis that forms the basis of rigorous mathematical
developments.

The development of soil dynamics has however defied the above trend. Though
researchers have been aware of its importance for quite some time yet its development
has been at best sporadic.

The root of its developments lies within the annals of continuum mechanics
where considering a linear stress-strain relationship under small strain range, many
of the solutions were obtained by applying laws of elasticity coupled with Newtonian
equation of motion where characteristic property of the soil hardly played any role
except for Young’s modulus and Poisson’s ratio.

Development of dynamics related to foundations subjected to vibrations under rotat-
ing equipment is one of the areas where above mentioned hypothesis fitted quite well.

The pioneering work in this area was the work of Lamb (1904) and that of Rayleigh
(1885) and Love (1942) based upon which most of the developments took place in
future.

Russians unknown to the Western World49 made a significant contribution in this
area that perhaps formed the first scientific study of this emerging science.

Theory of mechanical vibration based on lumped mass, spring and dashpot was a
significantly developed science by then. When analogues of elastic half space theory
based on continuum were developed, observations matched the field results quite well.

Reissner, Sung, Quinlan, Hsieh, and Shekter developed the elastic half space theories
pertaining to continuous medium which were brought into the day to day application
of design office practice by developing equivalent spring analogs by Lysmer, Richart,
Whitman and Novak only to name the pioneering few. However soil when subjected
to severe shock and subjected to large strain started showing peculiar characteristics
of its own especially liquefaction, that defied many of the above hypothecation.

49 Till D.D. Barkan published his book – Dynamics of Bases and Foundations in English.
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Further development almost came to a standstill for a significant period of time,
till 1964 when Nigaata Earthquake in Japan and Alaskan earthquake created massive
damage due to soil liquefaction.

This started a second spurt of research activities where significant development
took place in this area under the pioneering leadership of Seed, Idriss and Newmark
including some areas of seismology; a new area of technology called geotechnical
earthquake engineering was developed. Geotechnical earthquake engineering mainly
deals with liquefaction potential of soil, dynamic pressures induced due to propagation
of waves through the soil medium, behavior of earth structures like dams and retaining
walls under earthquake and dynamic bearing capacity of soil.

Though theoretical developments have been significant, many of these theories are
yet to be put to rigorous test awaiting a major earthquake to occur. In spite of such
developments, structures and foundations still fail with monotonic regularity in dif-
ferent parts of the world under earthquake50 clearly proving that there do exist a
significant gap or limitation in our knowledge in the behavior of soil under propaga-
tion of waves due to earthquake. The continuing research in this field would hopefully
clear the picture further in time to come which to our perception is still a growing
technology.

5.4.1.1 How do soil dynamics differ from structural dynamics?

Soil dynamics is relatively a new addition in the annals of civil engineering, though
geo-physicists and seismologists have been using these techniques in their own study
for a significant period of time.

Engineers working in the design office, many though are conversant with the basic
mechanics involving the dynamic behavior of structure has been observed hardly to
have any or very limited background on this particular topic or its significance in the
design of structures and its foundation.

So for people new to this topic the basic question which comes to mind is – what is
the difference between the two?

In structural dynamics as has been shown in the earlier section, we basically analyze
behavior of a structure considering the body as an assemblage of discrete elements like
beams, plates, shells, springs, trusses etc. and then apply the equation of motion to
arrive at the displacement vis a vis dynamic stresses induced within the body.

While in case of soil dynamics we study the same thing within a soil body51 and
find out displacement, stresses within the body itself and also its effect on structures
overlying it52.

However in case of soil dynamics the soil body considered to be a continuum the
approach for analysis is quite different than what we do in structural dynamics. It
would be enlightening to point out at this juncture as to why this topic has remained
almost a mystique science understood and applied by a handful few in the industry.

50 For instance Bhuj Earthquake in India, 26th January 2001.
51 Often idealized as an isotropic homogenous elastic medium.
52 Often termed as Dynamic soil structure interaction.
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One of the major reasons is perhaps that root of its development lies in domain of
applied mathematics and physics where mathematician/physicist explains a number
of these elastodynamic phenomena in their own abstract mathematical way that an
average engineer finds difficult to comprehend. It is for this perhaps many engineers
feel uncomfortable with the subject to deal with in their day to day work.

Finally unlike structural dynamics where solution of equation of motion is a second
order linear differential equation whose solution is mostly sought resorting to Matrix
notation and algebra53, solutions of equation of motion for elastodynamic problem
mostly gives rise to fear evoking partial differential equations, integral transforms with
complex functions, and other complicated functions like Bessel and Hankel functions,
Bateman–Pekeris integral etc. with which most engineers are not too familiar with.
Moreover most of the interpretations being more mathematical than physical and
intuitive (where structural dynamics has a great advantage), engineers find it indeed
difficult to tackle the subject.

We surely agree at the very outset that it is not an easy topic to deal with54. But
with little bit of patience and dogged wrestling with a few mathematical theorems and
retrospection it is not an impossible topic to cope with.

Before we proceed further we would request puritans in structural engineering not
to neglect this chapter.

For in the analysis of many important structures like reactor buildings in nuclear
power plant, high rise commercial complexes on soft soil, frame top compressors and
turbines it is now almost mandatory to consider the effect of soil within the structural
frame work and arrive at a solution which is far more realistic than the traditional
fixed base analysis.

To understand the basic behavior of a continuum (could be soil, fluid or any
elastic medium), let us examine a case, many of us have often observed in our
childhood.

If we drop a pebble in a pool of water – what do we see?
We will see concentric circles of waves generated from the source of disturbance

(i.e. the point where the pebble is dropped in the fluid) which dissipates away (in
intensity) from the source and dampens away as it moves away from the source of the
disturbance as shown in Figure 5.4.1.

Now if we look at the waves carefully it will be observed that the wave patterns
dissipate with distance in the fashion as shown in Figure 5.4.2. Thus, we can conclude
that when a continuum is subjected to a disturbance which varies with time,

• it generates waves within the body.
• the intensity of the wave amplitude attenuates with distance.55

• the travel of these waves through the body would obviously induce deformation
within the body which in turn would induce stresses within the body.

53 With which most of the engineers are familiar with . . . . . .
54 We are quite sympathetic to those engineers in the industry whose routine commitment of releasing

drawings in design office often severely blunts their mathematical edge with course of time.
55 Often defined as Radiation damping of the system.
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Figure 5.4.1 Concentric wave patterns and its dissipation from the disturbing source.
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Figure 5.4.2 Dissipation of waves from the disturbing source.

• if the body through which the waves are propagating is considered a homogeneous
isotropic elastic medium, laws of elasticity may be applied and consequently it may
be possible to arrive at the stiffness of this body based on stress strain relationship.

• this stiffness if added to the stiffness of overlying structure, it is possible to arrive
at stiffness of the overall assemblage from which it is possible to assess the global
behaviour of the continuum plus discrete system.

The above has been the basic philosophy of a number of studies in soil-structure,
fluid-structure interactions and also in coupled thermo-mechanical behavior of
spacecrafts flight in the space.

Thus as a first step it is essential to understand the behavior of waves propagating
through elastic medium which constitutes the foundation of soil dynamics.

5.4.2 One-dimensional propagation of wave through
an elastic medium

In our real world everything we see and feel is three dimensional (3D), however there
are many cases where simplifying a 3D problem to a two or one dimensional problem
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adequately serves the purpose56. Thus as a first step we study herein the solution of
propagation of waves through an elastic media in one dimension.

Before we delve into the mathematical aspect of such analysis it would be preferable
to understand the various types of waves, which propagate through an elastic medium.

The waves propagating through an elastic medium constitute mainly of four types
of waves which are of interest to civil engineers.

1 P-waves (body waves)
2 S-waves (body waves)
3 R-waves: Rayleigh Waves (surface waves)
4 L-waves: Love waves (surface waves)

The primary or P-waves are the fastest traveling of all the waves and generally
produces longitudinal compression and extension within a soil media. These waves
can travel both through soil and water and are the first one to arrive at a site during an
earthquake. However soil being relatively more resistant to compression and dilation
effects, its impact on ground distortion is minimal.

The S-waves, also otherwise known as secondary or shear waves usually causes shear
deformation in the medium through which it propagates. The S-waves can usually
propagate through soil only. It travels at a much slower speed through the ground than
the primary waves, the soil being weak in resisting shear deformation, these waves are
found to cause maximum damage (along with Rayleigh waves) to the ground surface
during an earthquake.

The Rayleigh waves are surface waves which are found to produce ripples on the
surface of the ground. These waves produce both horizontal and vertical movement
of the earth surface. As the waves travel away from the source it dissipates maximum
amount of energy while traveling through a medium, and is an important aspect in
study of response of foundations supporting vibrating equipment foundations and
earthquake force transmitting through the ground.

Love waves are similar to S-waves and produce transverse shear deformation to
the ground and have a very important bearing for cases where an elastic half space is
overlain by a finite elastic layer.

We will study the properties of the above waves here in reasonable details to
understand how it affects various aspects of foundation and structural design.

The expression of wave propagation in a semi-infinite elastic medium in one
dimension is given by the equation

∂2u
∂z2 = 1

v2

∂2u
∂t2 (5.4.1)

where u = displacement of the medium and is a function of time and space coordinate
z; v = velocity of the medium and may be vp for primary wave, vs for shear wave,
vR for Rayleigh wave and vL for Love wave etc.

56 For instance consolidation of soil is basically three dimensional in nature. However for many practical
engineering problems treating it as a one dimensional plane strain body adequately serves the analysis.
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Considering, u(z, t) = ϕ(z)ψ(t) this on substitution in Equation (5.4.1) gives

φ(z)ψ̈(t)
1
v2 = φ̈(z)ψ(t) (5.4.2)

i.e. ψ̈(t)
ψ(t) = v2 φ̈(z)

φ(z) = −ω2
n, and ωn is the natural frequency of the system.

The above can now be broken up into two linear differential equations

d2ψ(t)
dt2 + ω2

nψ(t) = 0 and
d2φ(z)

dz2 + ω2
n

v2 φ(z) = 0 (5.4.3)

The solutions of Equation (5.4.3), are given by

φ(z) = A cos
ωn

v
z + B sin

ωn

v
z and ψ(t) = C cosωnt + D sinωnt. (5.4.4)

The complete solution to the above equation may be written as

u(z, t) = φ(z) ψ(t) =
[
A cos

ωn

v
z + B sin

ωn

v
z
]

[C cosωnt + D sinωnt] (5.4.5)

in which, the integration constants A, B, C, D and ωn are obtained from the boundary
conditions.

Having gone through Equation (5.4.5), one might wonder, fair enough, – where do
we apply this equation in our day-to-day design engineering?

At least three applications of this equation have been presented in this book in
different chapters, namely,

1 determination of dynamic shear modulus of soil (G) of a site under high strain
earthquake in Section-1.5.1 (Vol. 2).-Geo-technical consideration for DSSI.

2 determination of fundamental time period of a site and how we can avoid
resonance at the planning stage of a structure in Chapter-1 (Vol. 2)-Fundamentals of
DSSI.

3 finally, we have used this equation extensively to arrive at the dynamic pressure
on an unyielding wall for a building basement under earthquake in Chapter-3
(Vol. 2)-Analysis and design of structures and foundations under Earthquake.

Going through the above mentioned applications, we hope you’d realize how power-
ful is the above equation in solving certain types of problems related to earthquake
engineering.

5.4.3 Three-dimensional propagation of waves in an infinite
elastic medium

Having derived the basic expression for propagation of waves in one dimension,
we now examine the behavior of a soil element under wave propagation in three
dimensions.
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Figure 5.4.3 Stresses on an elemental body in three dimensions.

However, before we go into the details of the derivation it would be worthwhile
to re-capitulate some of the fundamental properties of elasticity, which has important
bearing on the derivation.

For an elemental body of length �x, �y and �z (Figure 5.4.3), the stress matrix57

or stress tensor, at a point within the body is represented as

[σ ] =
⎡
⎣σxx τxy τxz
τyx σyy τyz
τzx τzy σzz

⎤
⎦ ,

and strain relationship is given by

εxx = du
dx

, εyy = dv
dy

, εzz = dw
dz

, γxy = dv
dx

+ du
dy

, γyz = dw
dy

+ dv
dz

,

γzx = du
dz

+ dw
dx

,

and the rigid body rotation is given by

�x = 1
2

(
dw
dy

− dv
dz

)
; �y = 1

2

(
du
dz

− dw
dx

)
, �z = 1

2

(
dv
dx

− du
dy

)
(5.4.6)

57 The matrix is symmetric about its diagonal.
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The stress strain relationship is now given by the relation

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σxx
σyy
σzz
τxy
τyz
τzx

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

λ+ 2G λ λ 0 0 0
λ λ+ 2G λ 0 0 0
λ λ λ+ 2G 0 0 0
0 0 0 G 0 0
0 0 0 0 G 0
0 0 0 0 0 G

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

εxx
εyy
εzz
γxy
γyz
γzx

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(5.4.7)

where λ and G are the Lame’s constants and are expressed as

λ = νE
(1 + ν) (1 − 2ν)

; G = E
2 (1 + ν)

(5.4.8)

Based on the above relationship one can easily derive that

σxx = λev + 2Gεxx, σyy = λev + 2Gεyy, σzz = λev + 2Gεzz (5.4.9)

τxy = Gγxy, τyz = Gγyz, τzx = Gγzx; ev = εxx + εyy + εzz is defined as the volumetric
strain.

The equation of motion in the x direction can be expressed as

ρ�x ·�y ·�z · ∂
2u
∂t2 =

(
σxx + ∂σxx

∂x
�x

)
�y�z − σxx�y�z

+
(
τxy + ∂τxy

∂y
�y

)
�x�z − τxz�x�y (5.4.10)

in which, ρ = mass density of the elemental body; ∂
2u
∂t2 is the acceleration in x-direction.

Equation (5.4.10) can be further simplified to

ρ
∂2u
∂t2 = ∂σxx

∂x
+ ∂τxy

∂y
+ ∂τxz

∂z
(5.4.11)

Proceeding in identical fashion for the other directions (y and z), we have

ρ
∂2v
∂t2 = ∂τyx

∂x
+ ∂σyy

∂y
+ ∂τyz

∂z
and ρ

∂2w
∂t2 = ∂τzx

∂x
+ ∂τzy

∂y
+ ∂σzz

∂z
(5.4.12)

The above three expressions represent the equations of motion of an elastic body in
three dimensions.

It may be observed that since these equations were derived based on the condition
of equilibrium only and is valid for all materials.

Subsequent solution of the above equations will reveal that the wave propagation
breaks up into two major body waves namely P and S waves whose property we are
going to study subsequently.
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5.4.3.1 Derivation of P waves

Substituting the values of stress-strain relationship of Equation (5.4.9), we have

ρ
∂2u
∂t2 = ∂

∂x
(λev + 2Gεxx)+ ∂

∂y
Gγxy + ∂

∂z
Gγxz (5.4.13)

Again substituting the strain displacement relations εxx = ∂u
∂x ; γxy = ∂v

∂x + ∂u
∂y , γxz =

∂w
∂x + ∂u

∂z in the x-direction.
We can further express the equation of motion as

ρ
∂2u
∂t2 = ∂ev

∂x
(λ+ G)+ G∇2u (5.4.14)

where, the Laplacian operator ∇2 is expressed as ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 .
Similarly, the equation of motion in the y and z-directions may be given by

ρ
∂2v
∂t2 = ∂ev

∂y
(λ+ G)+ G∇2v; ρ

∂2w
∂t2 = ∂ev

∂z
(λ+ G)+ G∇2w (5.4.15)

Differentiating the equation of motion in the x-direction with respect to x, we have

ρ
∂2

∂t2

(
∂u
∂x

)
= ∂2ev

∂x2 (λ+ G)+ G∇2
(
∂u
∂x

)
➔ ρ

∂2εxx

∂t2 = ∂2ev

∂x2 (λ+ G)+ G∇2εxx,

and in the y and z-directions,

ρ
∂2εyy

∂t2 = ∂2ev

∂x2 (λ+ G)+ G∇2εyy and ρ
∂2εzz

∂t2 = ∂2ev

∂x2 (λ+ G)+ G∇2εzz.

Now, adding all three equations, we have

ρ

(
∂2εxx

∂t2 + ∂2εyy

∂t2 + ∂2εzz

∂t2

)
= (λ+ G)

(
∂2ev

∂x2 + ∂2ev

∂y2 + ∂2ev

∂z2

)

+ G

(
∂2εxx

∂x2 + ∂2εyy

∂y2 + ∂2εzz

∂z2

)

Using ev = εxx + εyy + εzz = the volumetric strain, we can simplify the equation as

∂2ev

∂t2 = λ+ 2G
ρ

∇2ev (5.4.16)

Since the volumetric strain ev in the above equation does not involve any deformation
which is shearing or rotational in nature, it shows that the dilatational waves will
propagate through the body with a velocity,
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vp = √
(λ+ 2G)/ρ (5.4.17)

— which is the velocity of P or primary wave.
The above can be written in terms of Shear Modulus (G) and Poisson’s ratio (ν) as

vp =
√

2G (1 − ν)

ρ (1 − 2ν)
(5.4.18)

5.4.3.2 Derivation for S waves

Another type of wave which generates in the infinite elastic body may be obtained by
differentiating the equation of motion in y-direction with respect to z and the equation
of motion in z-direction with respect to y and subtracting them from one another gives

ρ
∂2

∂t2

(
∂w
∂y

− ∂v
∂z

)
= G∇2

(
∂w
∂y

− ∂v
∂z

)
(5.4.19)

Recalling the previously defined expression for rotation, Equation (5.4.19) can be
simplified to

ρ
∂2�x

∂t2 = G∇2�x or
∂2�x

∂t2 =
(

G
ρ

)
∇2�x (5.4.20)

Above expression describes a distortional wave of rotation about the x-axis58, while
the waves are observed to travel with a velocity of

Vs = √
G/ρ (5.4.21)

This wave is commonly known as S or shear waves which due to its distortional
nature causes ground damage during an earthquake. S-waves during their motion are
often broken up into two components SH and SV-waves.

SH waves are those waves whose particle motion is restricted to the horizontal plane
only. While SV waves are waves when the particle motion lies only in the vertical plane.
A given S-waves with an arbitrary particle motion can be expressed as vector sum of
SH and SV components.

From the above expressions of vp and vs, the relation ship between the two can now
be expressed as

Vp

Vs
=

√
2(1 − ν)

1 − 2ν
, (5.4.22)

for typical value of ν = 0.25, the ratio of Vp/Vs = √
3 which shows that in an infinite

elastic medium the primary waves travel at a much faster velocity than the shear waves
and are the first to arrive at a site during an earthquake, followed by a minor tremor
which develops due to the shear waves which comes at a slower speed59.

58 Similar expression can be derived for the y and z axes also.
59 The major tremor occurs to due to Rayleigh waves whose properties we are going to study subsequently.
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Figure 5.4.4 Propagating wave in an elastic half space.

5.4.3.3 Derivation of Rayleigh waves

In the earlier section we had derived propagation of waves through an infinite elastic
media. However in our real world situation an infinite domain is only an idealization
and the earth we live in though big is still a finite sphere where neglecting its spherical
curvature can be considered as a semi-infinite elastic half space.

Waves propagating through such elastic half space develop special waves near the
surface called Rayleigh Waves60 whose effect both for earthquake induced vibration
and machine foundation is of primary importance.

We will study its property in some detail herein.
Shown in Figure 5.4.4 are the waves propagating through an elastic half space

expressed by the x-y plane. Let u and w be the displacements in the direction of x and
z axes, independent of y.

Let u and w be a function of stream potentials φ and ψ such that

u = ∂φ

∂x
+ ∂ψ

∂z
and w = ∂φ

∂z
− ∂ψ

∂x
Considering ev = volumetric strain where,

ev = εx + εy + εz = ∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

(5.4.23)

Substituting the values of u and w in terms of potential functions we have

ev = ∂

∂x

(
∂φ

∂x
+ ∂ψ

∂z

)
+ ∂

∂y
0 + ∂

∂z

(
∂φ

∂z
− ∂ψ

∂x

)
(5.4.24)

60 Originally studied by Lord Rayleigh and named after him.
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or, ev = ∂2φ

∂x2 + ∂2φ

∂z2 = ∇2φ (5.4.25)

Again considering, �y = 1
2

(
du
dz − dw

dx

)
, and substituting the values of u and w in

terms of their potential function we have

�y = 1
2

(
∂

∂z

(
∂φ

∂x
+ ∂ψ

∂z

)
− ∂

∂x

(
∂φ

∂z
− ∂ψ

∂x

))
= ∂2ψ

∂x2 + ∂2ψ

∂z2 = ∇2ψ (5.4.26)

Substituting the above into the equation of motion in x direction, we have

ρ
∂2u
∂t2 = ∂ev

∂x
(λ+ G)+ G∇2u (5.4.27)

or ρ
∂2

∂t2

(
∂φ

∂x
+ ∂ψ

∂z

)
= (λ+ G)

∂

∂x
∇2φ + G∇2

(
∂φ

∂x
+ ∂ψ

∂z

)
(5.4.28)

If we look carefully at the above equation we will see that it is a combination of two
wave equations namely,

∂2φ

∂t2 = λ+ 2G
ρ

∇2φ → ∂2φ

∂t2 = V2
p ∇2φ (5.4.29)

∂2ψ

∂t2 = G
ρ

∇2ψ → ∂2ψ

∂t2 = V2
s ∇2ψ (5.4.30)

In similar manner for rotational case we have

ρ
∂

∂z

(
∂2φ

∂t2

)
− ρ

∂

∂x

(
∂2ψ

∂t2

)
= (λ+ 2G)

∂

∂z
∇2φ − G

∂

∂x
(∇2ψ) (5.4.31)

Above again on close scrutiny will be seen to constitute of two type of wave equations
as expressed by Equations (5.4.29) and (5.4.30).

For a sinusoidal wave traveling in x direction let the potential functions be
represented by

φ = F(z)e[iωt−nx]; ψ = G(z)e[iωt−nz], (5.4.32)

where F(z) and G(z) are functions of depth and n = 2π/Lw, where Lw = wave length
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Substituting the above in Equations (5.4.29) and (5.4.30), we have

∂2

∂t2 F(z)e[iωt−nx] = V2
p ∇2F(z)e[iωt−nx]; → −ω2F(z) = V2

p [F′′(z)− n2F(z)]
(5.4.33)

∂2

∂t2 G(z)e[iωt−nz] = V2
s ∇2G(z)e[iωt−nz]; → −ω2G(z) = V2

s [G′′(z)− n2G(z)]
(5.4.34)

Equation (5.4.34) can be re-arranged and expressed as

F′′(z)− q2F(z) = 0 and G′′(z)− s2G(z) = 0 (5.4.35)

where q2 = n2 − ω2/V2
p and s2 = n2 − ω2/V2

s .
Solution of Equation (5.4.35) is given by

F(z) = A1e−qz + A2eqz and G(z) = B1e−sz + B2esz (5.4.36)

where A1, A2, B1, B2 are integration constants whose values will depend upon the
boundary condition.

In Equation (5.4.36), it will be seen that the values F(z) and G(z)will tend to infinity
as z tends to infinity, and this is inadmissible. Thus for a realistic solution A2 and B2
must be equal to zero. This gives the solution as

F(z) = A1e−qz and G(z) = B1e−sz. (5.4.37)

Thus the potential functions can now be expressed as

φ = A1e−qze[iωt−nx]; ψ = B1e−sze[iωt−nz] (5.4.38)

The boundary condition of Equation (5.4.37) can be expressed as

σzz = 0, τzx = τzy = 0

σzz(z = 0) = λev + 2Gεz = λev + 2G
(
∂w
∂z

)
= 0 (5.4.39)

τzx(z = 0) = Gγzx = G
(
∂w
∂x

+ ∂u
∂z

)
= 0 (5.4.40)

Using the definition of u and w and solution of φ andψ as given in Equation (5.4.38),
Equations (5.4.39) and (5.4.40) can be written as

A1[(λ+ 2G) q2 − λn2] − 2iGnsA2 = 0 and

2iA1nq + A2(s2 + n2) = 0 (5.4.41)
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Rearranging Equation (5.4.41), we have

A1

A2

(λ+ 2G) q2 − λn2

2insG
− 1 = 0 and

A1

A2

2qin
(s2 + n2)

+ 1 = 0 (5.4.42)

Eliminating the factor A1 and A2 from Equation (5.4.42), we have

(λ+ 2G) q2 − λn2

2insG
= − 2qin

s2 + n2 (5.4.43)

This can be further simplified to

4qsn2G = (s2 − n2)[(λ+ 2G) q2 − λn2] (5.4.44)

Squaring Equation (5.4.44) and substituting the value of s and n from Equation
(5.4.35), we have

16G2n4

(
n2 − ω2

V2
p

)(
n2 − ω2

V2
s

)

=
[
(λ+ 2G)

(
n2 − ω2

V2
p

)
− λn2

]2 [
n2 +

(
n2 − ω2

V2
s

)]2

(5.4.45)

Equation (5.4.45) can be further reduced to

16

(
1 − ω2

n2V2
p

)(
1 − ω2

n2V2
s

)
=

[
2 −

(
λ+ 2G

G

)(
ω2

n2V2
p

)
− λn2

]2 (
2 − ω2

n2V2
s

)2

(5.4.46)

Before we proceed further it is essential to define certain mathematical parameters
which are derived hereafter61.

Let LR = wave length of Rayleigh wave expressed as LR = 2π/n; and VR be
the Rayleigh wave velocity of the propagating waves; n = ω/VR; R = VR/Vs and
αR = VR/VP; and V2

R/V
2
P = α2 = (1 − 2ν)/[2(1 − ν)]; ν = λ/[2(λ+ G)].

Substituting these values in Equation (5.4.46), we have

16(1 − α2R2)(1 − R2) = (2 − R2)4 (5.4.47)

On expansion and re-arrangement, Equation (5.4.47) can be expressed as

R6 − 8R4 + (24 − 16α2)R2 + 16(α2 − 1) = 0 (5.4.48)

61 We are working this out in detail for else the solution might look a bit too abrupt.
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Above is actually a cubic equation in terms of R2 which when solved for various
values of ν (Poisson’s ratio) we get the values of Rayleigh wave velocity (VR) in terms
of compression wave velocity (Vp) and shear wave velocity (Vs).

For ν = 0.5, incompressible solid Equation (5.4.48) reduces to

R6 − 8R4 + 24R2 − 16 = 0 (5.4.49)

The real root of the above equation (other two roots are complex) is given by

V2
R = 0.91275V2

s or VR = 0.95538Vs (5.4.50)

Similarly for ν = 0.25, it can be shown that three roots for the Equation (5.4.48)
are R2 = 4, 2 + 2/

√
3 and 2 − 2/

√
3 of which only the last root satisfies the condition

of the surface waves being real.
Thus for R2 = 2 − 2/

√
3, we have

VR = 0.9194Vs (5.4.51)

It has been shown by Richart et al. (1970) that for practical engineering problems
where Poisson’s ratio of soil usually varies between 0.3 and 0.4 the VR and Vs can be
considered same for all practical purpose.

5.4.3.4 Displacement due to Rayleigh waves

The basis of our above explained derivation was based on assuming potential functions
ϕ and ψ for the displacements u and w; where u = ∂φ

∂x + ∂ψ
∂z and w = ∂φ

∂z − ∂ψ
∂x , and

we had also derived earlier [vide Equation (5.4.38)] that

φ = A1e−qze[iωt−nx] and ψ = B1e−sze[iωt−nz]

Substituting the above for u and w, we have

u = −iA1 ne[−qz+i(ωt−nx)] + A2se[−sz+i(ωt−nx)] (5.4.52)

Considering the value of A2 = −2iqnA1

s2+n2 as from Equation (5.4.41), we have

u = −A1

[
−ine−qz + 2iqsn

s2 + n2 e−sz
]

ei(ωt−nx)

= A1in

[
−e

q
n (z n) + (2qs)/n2

1 + (s2/n2)
e−sz

]
ei(ωt−nx) and

w = A1n
[

(2q/n)
(s2/n2)+ 1

e[− s
n (zn)] − q

n
e[− q

n (zn)]
]

ei(ωt−nx) (5.4.53)
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Having derived the above expressions for u and w the variation with respect to
depth can be expressed as

u(z) = −e−qz + (2qs)/n2

1 + (s2/n2)
e−sz and w(z) = (2q/n)

(s2/n2)+ 1
e−sz − q

n
e−qz

(5.4.54)

Based on definitions given in Equation (5.4.35), we can re-write q and s as

q2

n2 = 1 − ω2

n2V2
p

= 1 − α2R2 and
s2

n2 = 1 − ω2

n2V2
s

= 1 − R2 (5.4.55)

Thus u(z) and w(z) can now be represented by the Poisson’s ratio and any wave
number n.

For instance for ν = 0.25, u(z) and w(z) can be represented by

u(z) = −e[−0.8475(zn)] + 0.5773e−0.3993(zn) and

w(z) = 0.8475e−0.8475(zn) − 1.469e−0.3933(zn) (5.4.56)

Rayleigh surface wave is shown in Figure 5.4.5. From the figure it may be observed
that the Rayleigh waves propagate in x-z plane and any displacement in y direction
vanishes. It can be shown from theoretical consideration that the wave perpendicular
to the plane of the motion is not possible in a homogenous half space. However such
waves- popularly known as SH waves are observed prominently on earth surface with
other surface waves.

Figure 5.4.5 View of Rayleigh surface waves.
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Figure 5.4.6 A layered half space.

Love (1944) showed that a theory sufficient to include SH surface waves can be con-
structed by having homogenous layer of medium E1 of uniform thickness H1 overlying
a homogenous half space of another medium E2 as shown Figure 5.4.6.62

5.4.3.5 Derivation of Love wave

In Figure 5.4.6, we see an elastic half space overlain by another layer of elastic medium
having height H1. As stated earlier, Love wave (SH waves) propagating in positive x
direction would render a ground motion in y direction which can be expressed as

v(x, z, t) = V(z)ei(nLx−ωt) (5.4.57)

where v is the displacement of ground in y direction, V(z) depicts the variation of

displacement with depth z and nL is the Love wave number.
The propagation of wave must satisfy the two-dimensional wave equation for both

the overburden elastic medium and the elastic half space thus the expression

∂2v
∂t2 = G

ρ1

(
∂2v
∂x2 + ∂2v

∂z2

)
is valid for 0 < z < H

and
∂2v
∂t2 = G

ρ2

(
∂2v
∂x2 + ∂2v

∂z2

)
valid for Z ≥ H (5.4.58)

The amplitude of vibration will vary with depth according to the expression
(Aki & Richards 1980)

v(z) = S1e−V1z + T1eV1z for 0 < z < H

and v(z) = S2e−V2z + T2eV2z for z > H
(5.4.59)

62 Love waves can be visualized similar to a snake wriggling on the ground.
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Here the terms S and T are amplitude of waves propagating down and up
respectively.

Here V1 =
√

n2
L − ω2

G1/ρ1
and V2 =

√
n2

L − ω2

G2/ρ2
(5.4.60)

As the layered half-space extends to infinity T2 must be equal to zero as no waves
can reflect back from infinity and considering all stresses (and consequently strain)
vanishes at the surface is satisfied if now, ∂v

∂z = 0, which on differentiation gives
(S1 − T1)V1(e−V1z + eV1z) = 0; since V1 is not equal to zero it gives S1 = T1.

The amplitude function can thus be expressed as

v(z) = S1(e−V1z + eV1z), for 0 < z < H; and

v(z) = S2e−V2z, for z H (5.4.61)

At z = H, the stress compatibility yields the equation

2iG1V1S1 sin(iV1H) = G2V2S2e−V2H (5.4.62)

Similarly displacement compatibility yields

2S1 cos(iV1H) = S2e−V2H (5.4.63)

Combining the above two equations gives

v(x, z, t) = 2S1 cos
[
ω

(√
(1/V2

1 )− (1/V2
L)

)
z
]

ei(nLx−ωt); for 0 < z < H

(5.4.64)

and

v(x, z, t) = 2S1 cos
[
ω

(√
(1/V2

1 )− (1/V2
L)

)
H

]

× e[−ω(
√
(1/V2

L)−(1/V2
2 ))(z−H)]ei(nLx−ωt) for Z > H (5.4.65)

Here V1 and V2 are shear wave velocities of the layers 1 and 2 while VL is the
love wave velocity. Equations (5.4.64) and (5.4.65) show that the amplitude of Love
wave velocity varies as a sinusoidal function for top layer of depth H, while at a depth
greater than H, it decays exponentially. It is for this they are often described as SH
waves that remain trapped in surface layers.
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The Love wave velocity is obtained by the solution of the equation

tanωH
√
(1/V2

1 )− (1/V2
L) = G2

G1

√
(1/V2

L)− (1/V2
2 )√

(1/V2
1 )− (1/V2

L)

(5.4.66)

This wave is basically dispersive in nature.

5.4.4 Propagation of waves in polar co-ordinates

This is a very important derivation and has many applications in seismology, blast
analysis, and vibration of footing and we derive the general solution herein.

With reference to Figure 5.4.7, consider r = √
x2 + y2 and vertical axis as Z, the

displacement function in cylindrical co-ordinates (r, z and t), can be expressed as

u(r, z, t) = φ(r)ψ(z)ξ(t). (5.4.67)

The equation of wave propagation in polar co-ordinate can be expressed as

∂2u
∂t2 = V2

s

[
∂2u
∂r2 + 1

r
∂u
∂r

+ ∂u
∂z2

]
(5.4.68)

Here the angular function θ is ignored for the case being axis symmetric substituting
Equations (5.4.67) in (5.4.68), we have

φ(r)ψ(z)ξ̈ (t) = V2
s

[
φ̈(r)ψ(z)ξ(t)+ 1

r
φ̇(r)ψ(z)ξ(t)+ φ(r)ψ̈(z)ξ(t)

]
(5.4.69)

r X

Y

Z

Figure 5.4.7 Propagation of elastic waves in cylindrical co-ordinate.
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Dividing each term of Equation (5.4.69) by the term φ(r) ψ(z) we have

ξ̈ (t) = V2
s

[
φ̈(r)
φ(r)

ξ(t)+ 1
r
φ̇(r)
φ(r)

ξ(t)+ ψ̈(z)
ψ(z)

ξ(t)
]

→ ξ̈ (t)
V2

s ξ(t)
=

[
φ̈(r)
φ(r)

+ 1
r
φ̇(r)
φ(r)

+ ψ̈(z)
ψ(z)

]
= −k2(say) (5.4.70)

Equation (5.4.70) can be separated into

ξ̈ (t)+ k2V2
s ξ(t) = 0 ξ̈ (t)+ λ2ξ(t) = 0 where λ2 = k2V2

s (5.4.71)

Again, let us consider

ψ̈(z)
ψ(z)

= m2 which gives ψ̈(z)− m2ψ(z) = 0 (5.4.72)

And finally, considering
[
φ̈(r)
φ(r) + 1

r
φ̇(r)
φ(r) + m2

] = −k2, we have

[
φ̈(r)
φ(r)

+ 1
r
φ̇(r)
φ(r)

]
= −k2 − m2 or

[
φ̈(r)
φ(r)

+ 1
r
φ̇(r)
φ(r)

]
= −h2 where h2 = k2 + m2

which finally results in

φ̈(r)+ 1
r
φ̇(r)+ h2φ(r) = 0 (5.4.73)

Thus the partial differential equation based on the method of separation of variables
has been broken up into three linear differential equations

d2φ

ds2 + 1
s

dφ
ds

+ φ = 0 here s = hr (5.4.74)

d2ψ

dz2 − m2ψ = 0 and
d2ξ

dt2 + λ2ξ = 0 (5.4.75)

The solutions are respectively

φ(r) = C1J0(hr)+ C2K0(hr) (5.4.76)

ψ(z) = C3emz + C4e−mz; ξ(t) = C5 cos λt + C6 sin λt (5.4.77)

where J0(hr), K0(hr) = Bessel’s function of first and second kind of order zero.
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Thus the complete solution is given by

u(r, z, t) = [C1J0(hr)+ C2K0(hr)][C3emz + C4e−mz][C5 cos λt + C6 sin λt]

For r → ∞, K0(hr) = 0
For z → ∞ as waves cannot reflect back and nor can its intensity increase, hence

we have emz = 0.
For harmonic motion as at, t = 0 u = 0, we have C5 = 0 which finally gives

u(r, z, t) = C′J0(hr)e−mz sin λt (5.4.78)

5.4.5 Reflection/Refraction

The problem we will be studying is the propagation of plane harmonic waves in
an unbounded medium consisting of two joined elastic halfspaces of different mate-
rial properties. The wave that emanates from the infinite depth in one of the media
and strikes at the interface is called the incident wave. The problem now is what
combination of additional waves is required in order that the stresses and the displace-
ments are continuous at the interface. These waves are called reflected and refracted
waves.

The medium that does not transmit elastic waves, the system waves consists of
incident and reflected waves only. It is known that the nature of the waves is in general
changed when it is reflected or refracted at the interface separating the two media. If a
purely transverse or purely longitudinal wave is incident on a surface of separation, the
result is a mixed wave containing both transverse and longitudinal parts. The nature
of the wave remains unchanged only when it is incident normally on the interface,
or a transverse wave whose oscillations are parallel to the interface, may be at any
angle.

Although all the waves are steady state traveling waves extending throughout the
two joined half spaces, the incident wave is taken to be the cause of the interface-
disturbance and the reflected and refracted waves are effects. This leads to the causality
requirement that the reflected and refracted waves must propagate away from the
interface. This is shown in Figure 5.4.8.

We consider here that the plane waves representing disturbances are uniform
in planes of constant phase, i.e. in planes normal to the propagation vector.
However, for bodies with a surface of material discontinuity there are plane
waves, which are not uniform in planes of constant phase. These waves prop-
agate parallel to the surface of discontinuity, and are called surface waves.
They have the property that the disturbance decays rapidly as the distance from
the surface increases. For free surface they are known as Rayleigh waves, as
described earlier. Surface waves at an interface of two media are called Stonely
waves.

Let us consider the consistency of the frequency and of the tangential components
of the wave vector. We may now obtain the directions of the reflected and refracted
waves. Let α1 and α2 be the angles of the incidence and reflection (or refraction) and
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Figure 5.4.8 Reflection and Refraction under a variety of conditions.

V1 and V2 the velocities of the two waves.

Then
sinα1

sinα2
= V1

V2
(5.4.79)

Let the incident wave be longitudinal: then V1 = VP1 is the velocity of longitudinal
wave in the medium ‘1’. For longitudinal reflected wave V2 = VP1 also, so that
Equation (5.4.79) gives α1 = α2, that is angle of incidence equal to angle of reflection.
For the transverse reflected wave, V2 = VS1 and hence

sinα1

sinα2
= VP1

VS1
(5.4.80)
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Figure 5.4.9 Reflection of elastic waves on the surface of a body.

For the longitudinal part of the refracted wave, V2 = VP2 and for longitudinal
incident wave

sinα1

sinα2
= VP1

VP2
(5.4.81)

Similarly the transverse part of the refracted wave, V2 = VS2

sinα1

sinα2
= VP1

VS2
(5.4.82)

The reflection coefficient for a longitudinal monochromatic wave incident at any
angle on the surface of a body is shown in Figure 5.4.9.

Reflected elastic waves have, in general both longitudinal and transverse waves.
From Figure 5.4.9 and symmetry that the displacement vector in the transverse reflected
wave lies in the plane of incidence. n0, nP and nS are the unit vectors in the direction
of propagation of the incident, longitudinal reflected and transverse reflected waves,
and u0, uP and uS, the corresponding displacement vectors. The total displacement in
the body is given (Landau & Lifshitz 1989) by

u = A0 n0 ei(k0·r−ωt) + AP nP ei(P·r−ωt) + AS a × nS ei(kS·r−ωt) (5.4.83)

in which a is a unit vector perpendicular to the plane of incidence.
Magnitude of wave vectors are k0 = kP = ω/VP; kS = ω/VS and the angle of

incidence α0 and of reflection αP, αS are related by αP = α0, sinαS = (VS/VP) sinα0.
With boundary conditions σx = τyx = 0 :: σiknk = 0, we have

AP = A0
V2

S sin 2αS sin 2α0 − V2
P cos2 2αS

V2
S sin 2αS sin 2α0 + V2

P cos2 2αS
(5.4.84)

AS = −A0
2VPVS sin 2α0 cos 2αS

V2
S sin 2αS sin 2α0 + V2

P cos2 2αS
(5.4.85)

For α0 = 0, AP = −A0 and AS = 0, i.e. the wave is reflected as a purely longitudinal
wave. The ratio of energy flux density components normal to the surface in the reflected
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and incident longitudinal wave is RP = |AP/A0|2. The corresponding ratio for the
reflected transverse wave is

RS = VS cosαS

VP cosα0

∣∣∣∣AS

A0

∣∣∣∣
2

; sum of RP and RS is 1. (5.4.86)

The same problem, but for transverse incident wave (with the vibration in the plane
of incidence).

The wave is reflected as a transverse and a longitudinal wave, with αS = α0,
VS sinαP = VP sinα0. The total displacement vector is

u = a × n0A0 ei(k0·r−ωt) + nPAP ei(kP·r−ωt) + a × nSAS ei(kS·r−ωt) (5.4.87)

The expressions for the amplitudes of the reflected waves are

AS

A0
= V2

S sin 2αP sin 2α0 − V2
P cos2 2α0

V2
S sin 2αP sin 2α0 + V2

P cos2 2α0
;

AP

A0
= 2VPVS sin 2α0 cos 2α0

V2
S sin 2αP sin 2α0 + V2

P cos2 2α0
. (5.4.88)

If the displacement vector (u, v, w, t) is represented by a scalar potential �(x, y, z, t)
and vector potential �(x, y, z, t) so that (in indicial notation with eijk as permutation
vector)

ui = ∂ϕ

∂xi
+ eijk

∂ψk

∂xj
with ψi,i = 0 (5.4.89)

they satisfy the wave equation

∂2ϕ

∂x2 + ∂2ϕ

∂y2 + ∂2ϕ

∂z2 = 1

V2
P

∂2ϕ

∂t2 (5.4.90)

∂2ψk

∂x2 + ∂2ψk

∂y2 + ∂2ψk

∂z2 = 1

V2
S

∂2ψk

∂t2 (5.4.91)

The functions � and � define dilatational (P) and distortional (S) waves. S-waves
are polarized. If an S-wave train propagates along the x-axis in the x-z plane (x-
horizontal, z-vertical), and the material particles move in the z-direction (vertical), we
name these waves as SV-waves. If the S-waves propagate along x in the x-z plane but
particles move in the y-direction (horizontal), we then speak of SH waves.

The Plane P-waves when hit the boundary z = 0, are reflected into plane P-waves
and plane S-waves. Similarly, incident SV waves are reflected as both P and SV waves.
If two elastic media are in contact and have welded interface, the P-waves will be
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Figure 5.4.10 Reflection of P-ray incident in a plane boundary.

reflected in the incident medium into P and SV waves, whereas they will be refracted
in the second medium as P and SV waves. Similar statement holds for SV waves as
well.

The SH waves behave in a simple manner; they will be reflected and refracted into
SH waves only. Reflection and refraction of elastic waves follow the same Snell’s law
of Optics.

From Figure 5.4.10 and from Snell’s law, we have for incident SV-wave

V2
S

sin f0
= V2

S

sin f
= V2

P

sin e
= V1

S

sin f1
= V1

P

sin e1
(5.4.92)

(f = f0)

For incident P-wave
V2

P

sin e0
= V2

P

sin e
= V2

S

sin f
= V1

P

sin e1
= V1

S

sin f1
(5.4.93)

(e = e0)

For incident SH-wave
V2

S

sin f0
= V2

S

sin f
= V1

S

sin f1
. (5.4.94)

5.4.5.1 SV-waves

For emerging SV waves from a free boundary, the wave front has a normal in the
direction of a unit vector with direction cosines (sin f0, 0, cos f0) whereas the normal
to the incident SV-wave front has a direction cosines (sin f0, 0, − cos f0). This change
in direction cosine excites a reflected P-wave.
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Thus

ϕ = �(x sin e + z cos e − VPt), ψ1 = ψ2 = 0, and

ψ3 = �0(x sin f0 − z cos f0 − VSt)+�(x sin f + z cos f − VSt) (5.4.95)

The displacements are

u = ∂ϕ

∂x
− ∂ψ

∂z
; w = ∂ϕ

∂z
+ ∂ψ

∂x
(5.4.96)

The stresses are given by

σz = λ

[
∂2ϕ

∂x2 + ∂2ϕ

∂z2

]
+ 2G

[
∂2ϕ

∂z2 + ∂2ψ

∂x∂z

]
; τzx = G

[
2
∂2ϕ

∂x∂z
+ ∂2ψ

∂x2 − ∂2ψ

∂z2

]

(5.4.97)

The boundary conditions are: at z = 0, σz = τzx = 0 (5.4.98)

From Equations (5.4.96), (5.7.97) and (5.7.98),

(λ+ 2G sin2 e) ϕ′′(x sin e − VPt)+ 2GVS sin f [ψ ′′(x sin f0 − VSt)

− ψ ′′(x sin f − VSt)] = 0

− 2α cos e ϕ′′(c sin e − VPt)+ (sin2 f0 − cos2 f0)ψ
′′(x sin f0 − VSt)

+ (sin2 f − cos2 f )ψ ′′(x sin f − VSt) = 0 (5.4.99)

These equations can be satisfied for all values of x and t provided the arguments of
the various ϕ and ψ functions are in a constant ratio.

Hence
VP

sin e
= VS

sin f0
= VS

sin f
. (5.4.100)

5.4.5.2 Plane waves

5.4.5.2.1 Reflections

Plane waves in the halfspace y ≥ 0. Let us assume that the wave normal n lies in the
x-y plane, call it vertical plane. For a primary wave the particle motion will be in the
direction of the wave normal and will lie completely in the vertical plane as shown in
Figure 5.4.11 (Graff 1975).

The normal displacement component is un and the transverse components are uv
and uz which are in the vertical and horizontal planes. Since every point along the
plane the plane of the wave is executing the same motion, we have that the motion is
invariant with respect to z if the wave normal is in the vertical plane.
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Figure 5.4.11 Plane wave, with wave normal in the x-y plane (vertical) advancing towards a free surface.

Following earlier notation for the wave equation, we have

ux = ∂φ

∂x
+ ∂ψz

∂y
; uy = ∂φ

∂y
− ∂ψz

∂x
; uz = −∂ψx

∂y
+ ∂ψy

∂x
;

∂ψx

∂x
+ ∂ψy

∂y
= 0

(5.4.101)

and this leads to the wave equation

∇2φ = 1

V2
P

∂2φ

∂ t2 ; ∇2ψi = 1
V2

s

∂2ψi

∂t2 (5.4.102)

i = x, y, z.

Stress-displacement relations are:

σx = (λ+ 2G)
(
∂ux

∂x
+ ∂uy

∂y

)
− 2G

∂uy

∂y
; σy = (λ+ 2G)

(
∂ux

∂x
+ ∂uy

∂y

)
− 2G

∂ux

∂x

σz = λ

2(λ+ G)

(
σx + σy

)
; τxy = G

(
∂ux

∂y
+ ∂uy

∂x

)
; τyx = ∂uz

∂y
; τxz = 0

(5.4.103)
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In terms of potentials

σx = (λ+ 2G)

(
∂2φ

∂x2 + ∂2φ

∂y2

)
− 2G

(
∂2φ

∂y2 − ∂2ψz

∂y∂x

)
;

σy = (λ+ 2G)

(
∂2φ

∂x2 + ∂2φ

∂y2

)
− 2G

(
∂2φ

∂x2 + ∂2ψz

∂x∂y

)

τxy = G

(
2
∂2φ

∂x∂y
+ ∂2ψz

∂y2 − ∂2ψz

∂x2

)
; τyz = G

(
−∂

2ψz

∂y2 + ∂2ψy

∂y∂x

)
; τxz = 0.

(5.4.104)

We have the boundary conditions:

At y = 0, σy = τyx = τyz = 0. (5.4.105)

It is to be noted that ux, uy, σx, σy and τxy depend only on ϕ and ψz and for solution
we must be dealing with two uncoupled equations in Equation (5.4.102). Again the
displacement component uz is necessary to obtain τyz which in turn depends on ψx,
ψy. This makes it possible to resolve the motion into two parts, the one is plane strain
and the other is SH wave motion.

5.4.5.2.2 Plane strain wave motion
Constraints: uz = ∂uz

/
∂z = 0. (5.4.106)

Governing equations: with ux = ∂φ

∂x
+ ∂ψz

∂y
; uy = ∂φ

∂y
− ∂ψz

∂x
(5.4.107)

σx = (λ+ 2G)

(
∂2φ

∂x2 + ∂2φ

∂y2

)
− 2G

(
∂2φ

∂y2 − ∂2ψz

∂y∂x

)
; (5.4.108)

σy = (λ+ 2G)

(
∂2φ

∂x2 + ∂2φ

∂y2

)
− 2G

(
∂2φ

∂x2 + ∂2ψz

∂x∂y

)
(5.4.109)

τxy = G

(
2
∂2φ

∂x∂y
+ ∂2ψz

∂y2 − ∂2ψz

∂x2

)
; σz = λ

2(λ+ G)

(
σx + σy

)
(5.4.110)

➔ ∇2φ = 1

V2
P

∂2φ

∂t2 ; ∇2ψz = 1
V2

s

∂2ψz

∂t2 (5.4.111)

Boundary conditions:

At y = 0; σy = τxy = 0. (5.4.112)

Assume the solution of the type: φ = f (y)ei(px−ωt); ψz = hz(y)ei(qx−ωt)

(5.4.113)
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Substituting these expressions in the governing equation, Equation (5.4.111),
we have

d2f
dy2 + α2f = 0 and

d2hz

dy2 + β2hz = 0 (5.4.114)

in which α2 = ω2/V2
P − p2 :β2 = ω2/V2

s − q2.
The plane wave solution for � and �z are given by

ϕ = A1ei(px−αy−ωt) + A2ei(qx+αy−ωt); ψz = B1ei(qx−βy−ωt) + B2ei(qx+βy−ωt)

(5.4.115)

If θ1 and θ2 are the angles between the y-axis and the wave normal of the P and S
waves, we can write

p = k1 sin θ1, q = k2 sin θ2, α = k1 cos θ1 and β = k2 cos θ2. (5.4.116)

where, k1 and k2 are the wave numbers along the respective waves. � and �z may
also be written as

ϕ = A1eik1(sin θ1x−cos θ1y−c1t) + A2eik1(sin θ1x+cos θ1y−c1t)

ψz = B1eik2(sin θ2x−cos θ2y−c2t) + B2eik2(sin θ2x+cos θ2y−c2t) (5.4.117)

The results are shown in Figure 5.4.12 for the�-wave. 2π/k1 is the wavelength along
the direction of propagation and k1 is the wave number. p and α are horizontal and
vertical wave numbers resulting in 2π/p and 2π/α horizontal and vertical wavelengths.

Substituting Equation (5.4.117) into the plane strain boundary conditions, we have
σy = 0:

k2
1(2 sin2 θ1 − k2)(A1 + A2)ei(k1 sin θ1x−k1VPt)

− k2
2 sin 2θ2(B1 − B2)ei(k2 sin θ2x−k2Vst) = 0

k2
1 sin 2θ1(A1 − A2)ei(k1 sin θ1x−k1VPt) − k2

2 cos 2θ2(B1 + B2)ei(k2 sin θ2x−k2Vst) = 0

(5.4.118)

in which k = VP
Vs

=
√
λ+2G

G .

Since ω = k1VP = k2 Vs and k2/k1 = Vp/Vs = k, we may write

(2 sin2 θ1 − k2)(A1 + A2)eik1 sin θ1x − k2 sin 2θ2(B1 − B2)eik2 sin θ2x = 0 (5.4.119)

sin 2θ1(A1 − A2)eik1 sin θ1x − k2 cos 2θ2(B1 + B2)eik2 sin θ2x = 0 (5.4.120)

—done by factoring out eiωt from the Equation (5.4.118).
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Figure 5.4.12 Incident and reflected wave system for �(x, y, t).

If Equations (5.4.119) and (5.4.120) are to hold good, for any arbitrary x, we
must have

➔ k1 sin θ1 = k2 sin θ2 (5.4.121)

This is Snell’s law for elastic waves.
As a consequence, we have the following from Equations (5.4.119) and (5.4.120)

(A1 + A2)

(B1 − B2)
= k2 sin 2θ2

(2 sin2 θ1 − k2)
:
(A1 − A2)

(B1 + B2)
= k2 cos 2θ2

sin 2θ1
(5.4.122)

These equations govern the reflection of plane waves in a half space.

5.4.5.2.3 Case (a) P-waves at oblique incidence

Here we have B1 = 0, and Equation (5.4.112) reduces to

A2

A1
= sin 2θ1 sin 2θ2 − k2 cos2 2θ2

sin 2θ1 sin 2θ2 + k2 cos2 2θ2
;

B2

A1
= 2 sin 2θ1 cos 2θ2

sin 2θ1 sin 2θ2 + k2 cos2 2θ2

(5.4.123)

The reflection angle and wave number are given by Equation (5.4.120), also θ2 is
always less than θ1.

Important outcome of this exercise is that for a single P-incident, two waves, P and
SV, are reflected. Normally two waves namely P and S waves propagate independently,
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they are uncoupled. But when a free boundary is encountered coupling of the two
waves occurs through the boundary conditions. This phenomenon is called mode
conversion.

5.4.5.2.4 Case (b) SV-waves at oblique incidence

In this case we have A1 = 0 and the boundary conditions Equation (5.4.122) result in

B2

B1
= sin 2θ1 sin 2θ2 − k2 cos2 2θ2

sin 2θ1 sin 2θ2 + k2 cos2 2θ2
;

A2

B1
= −k22 sin 2θ2 cos 2θ2

sin 2θ1 sin 2θ2 + k2 cos2 2θ2

(5.4.124)

As in the case of P-waves, mode conversion occurs again for incident SV-waves.
For normal incidence, given by θ2 = 0, we have,

A2/A1 = 0, and B2/B1 = −1. (5.4.125)

In case when θ2 = 45◦,

A2/B1 = 0, B2/B1 = 1, (5.4.125a)

It has application in plate theory. It is also possible to have an incident SV-wave
with only a reflected P-wave (B2 = 0). This occurs for

(sin 2θ1 sin 2θ2) = k2 cos2 2θ2. (5.4.126)

Again, there is a value of θ2 beyond this critical angle for which the reflected P wave
will be tangential to the surface. This result in

→ sin θ1 = k sin θ2 = 1, and k is always greater than 1. (5.4.127)

5.4.5.2.5 SH wave motion

Constraints : ux = uz = ∂
/
∂z = 0 (5.4.128)

Governing equations: with uz = −∂ψx

∂y
+ ∂ψy

∂x
;

∂ψx

∂x
+ ∂ψy

∂y
= 0

τyz = G
(
−∂

2ψz

∂y2 + ∂2ψy

∂y∂x

)
(5.4.129)

➔ ∇2ψx = 1
V2

s

∂2ψx

∂t2 ; ∇2ψy = 1
V2

s

∂2ψy

∂t2 (5.4.130)
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Boundary conditions:

At, y = 0; τyz = 0.

In the case of SH wave propagation; we may use the displacement equations directly,

∇2uz = 1
V2

s

∂2uz

∂t2 (5.4.131)

Assume the solution of the type:

ψx = hx(y)ei(px−ωt); ψy = hy(y)ei(qx−ωt) (5.4.132)

Substituting these expressions in the governing equation, Equation (5.4.130),
we have

d2hx

dy2 + η2f = 0 and
d2hy

dy2 + η2hy = 0 (5.4.133)

where, η2 = (ω2/V2
s )− p2.

The plane wave solution for �x and �y are given by

ψx = C1ei(px−ηy−ωt) + C2ei(px+ηy−ωt) : ψy = D1ei(px−ηy−ωt) + D2ei(px+ηy−ωt)

(5.4.134)

It may be noticed that ux and uy depend only on ϕ and ψz and uz depends on ψx

and ψy. Applying the divergence condition ∇ · ψ = 0, factoring out ei(px−ωt), we may
write

ip(C1e−iηy + C2eiηy)+ iη(−D1e−iηy + D2eiηy) = 0 (5.4.135)

This further leads to

(pC1 − ηD1)e−iηy + (pC2 + ηD2)eiηy = 0 (5.4.136)

In order for the above to hold good for all values of y, we must have

pC1 = ηD1, pC2 = −ηD2. (5.4.137)

Arbitrarily eliminating D1 and D2, We may write the solution as

ψx = C1ei(px−ηy−ωt) + C2ei(px+ηy−ωt); ψy = p
η

C1ei(px−ηy−ωt) − p
η

C2ei(px+ηy−ωt)

(5.4.138)
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Substituting ψx and ψy into the boundary condition we may obtain

η2(C1 + C2)+ p2(C1 + C2) = 0 (5.4.139)

Equation (5.4.139) implies that C2 = −C1.
Thus the reflection angle is equal to the incidence angle and there is no mode con-

version. This is analogous to acoustic wave reflection. If a shear wave of arbitrary
polarization strikes on a free surface, the SV portion of the wave will lose a portion of
its energy to p-waves, whereas the SH portion of the amplitude and energy will reflect
with only change of phase.

5.4.6 Where does this all lead to?

OK, so we have solved a few exotic/nasty63 looking differential equations one might
wonder where does it all lead to?

We will show some application of it subsequently, however for the present we
would only like to point out that study of Rayleigh and Love wave has great
application in seismology, geophysical prospecting and locating oil deposits below
earth.

Study of these two waves are of great importance to estimate the arrival time of
seismic waves at a particular site from which it is possible to estimate the focus and
epicenter of an earthquake.

Analysis in polar co-ordinate and expression similar to of the form as expressed in
the preceding has a lot of application especially in solution of Lamb’s problem which
was the first stepping stone for study of waves in elastic media.

Before we delve further into the topic we explain herein some integral transforms and
other mathematical theorems that form the background of subsequent development.
We do not apologize for not putting them in an appendix and would prefer you to get
through the same first for these are the stepping stones on which further developments
are shown subsequently.

We are apprehensive, that without having this background it could be difficult for
you to comprehend the further derivations and one might draw a wrong conclusion
that the subject is a utopian exercise only, having little applications.

The mathematical derivations given hereafter are surely not rigorous64 but are
presented in a heuristic form to give you a reasonable background to appreciate the
elastodynamic problems.

5.4.7 Some background on integral transforms
and other mathematical theorems

We start with Fourier series and integrals which most of us are familiar with.

63 Depends on whether you love or despise it . . . . . .
64 For which reference are furnished at appropriate place.
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5.4.7.1 Trigonometric Fourier series

A wave form expressed by a function f (t) can be represented by a trigonometric
series as

f (t) = a0 + a1 cosωt + a2 cos 2ωt + a3 cos 3ωt + · · · · · · · · + an cos nωt

+ b1 sinωt + b2 sin 2ωt + b3 sin 3ωt + · · · · · · · ·bn sin nωt (5.4.140)

The above can be further expressed in compact form as f (t) =
a0 + ∑∞

n=1 (an cosωnt + bn sinωnt), where ωn = nω and n = 1, 2, 3. . . . . . . .

Considering ωn = 2πn/T where T is the time period of the wave front we have

f (t) = a0 +
∞∑

n=1

(
an cos

2πnt
T

+ bn sin
2πnt

T

)
(5.4.141)

Now the question here is how do we evaluate a0, an, bn etc.
To this end we first define some standard integral values that we will use for

subsequent derivations.

2π∫
0

(cos nθ)dθ = −1
n

[sin nθ ]
2π

0
= 0 (5.4.142)

2π∫
0

(sin nθ)dθ = −1
n

[cos nθ ]
2π

0
= 0 (5.4.143)

2π∫
0

(sin2 nθ)dθ = 1
2

2π∫
0

(1 − cos 2nθ)dθ = 1
2

[
θ − 1

2n
sin 2nθ

]2π

0
= π (5.4.144)

2π∫
0

(cos2 nθ)dθ = 1
2

2π∫
0

(1 + cos 2nθ)dθ = 1
2

[
θ + 1

2n
sin 2nθ

]2π

0
= π (5.4.145)

2π∫
0

(sin mθ cos nθ)dθ = 1
2

2π∫
0

{sin(m + n)θ + sin(m − n)θ}dθ

= 1
2

[
− 1

m + n
cos(m + n)θ + 1

m − n
cos(m − n)θ

]2π

0
= 0

(5.4.146)
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for n 	= m. Similarly it can be proved that
2π∫
0

(cos mθ cos nθ)dθ = 0 for n 	= m and

2π∫
0

(sin mθ sin nθ)dθ = 0 for n 	= m (5.4.147)

Considering ωt = θ we can now write the trigonometric series as

f (θ) = a0 + a1 cos θ + a2 cos 2θ + a3 cos 3θ + · · · · · · · · + an cos nθ + b1 sin θ
+ b2 sin 2θ + b3 sin 3θ + · · · · · · · ·bn sin nθ

Now integrating both sides between limits 2π to 0 we have

2π∫
0

f (θ)dθ =
2π∫
0

(a0 + a1 cos θ + a2 cos 2θ+ a3 cos 3θ + · · · · · · · · + an cos nθ

+ b1 sin θ + b2 sin 2θ + b3 sin 3θ + · · · · · · · · bn sin nθ)dθ

2π∫
0

f (θ) = a0 [θ ]2π
0 = 2πa0 (Other coefficient values becomes zero on integration)

→ a0 = 1
2π

2π∫
0

f (θ)dθ (5.4.148)

Thus over one complete cycle of period T, a0 = 1
T

∫ T
0 f (t)dt which also can be

expressed, as

a0 = 1
T

T
2∫

− T
2

f (t)dt = a0 = 1
T

T+τ∫
0τ

f (t)dt (5.4.149)

where τ is any arbitrary value.
To determine an we multiply both sides by cos nθ and integrating between 2π to 0

we have
2π∫
0

(f (θ) cos nθ)dθ =
2π∫
0

(a0 cos nθ + a1 cos θ cos nθ + a2 cos 2θ cos nθ

+ · · · · · · + an cos2 nθ + b1 sin θ sin nθ + b2 sin 2θ sin nθ

+ · · · · · · · · bn sin2 nθ)dθ
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→
2π∫
0

(f (θ) cos nθ)dθ = a0 · 0 + a1 · 0 + a2 · 0 + · · · · · · + an · π

+ b1 · 0 + b2 · 0 + · · · · · · · ·bn0

→ an = 1
π

2π∫
0

(f (θ) cos nθ)dθ or, an = 2
2π

2π∫
0

(f (θ) cos nθ)dθ

Thus for one complete cycle of period T we have

an = 2
T

T∫
0

f (t) cos
2πnt

T
dt or an = 2

T

∫ T
2

− T
2

f (t) cos
2πnt

T
dt (5.4.150)

To determine bn we multiply both sides by sin nθ and integrating between 2π to 0
proceeding in similar manner as shown above we have

2π∫
0

(f (θ) sin nθ)dθ = a0 · 0 + a1 · 0 + a2 · 0 + · · · · · · + an0π

+ b1 · 0 + b2 · 0 + · · · · · · · · · bnπ

→ bn = 1
π

2π∫
0

(f (θ) sin nθ)dθ

Thus for one complete cycle of period T we have

bn = 2
T

T∫
0

f (t) sin
2πnt

T
dt → bn = 2

T

T/2∫
−T/2

f (t) sin
2πnt

T
dt (5.4.151)

Thus, from above we see that any wave form which is a periodic function can be
subjected to Fourier analysis to evaluate the coefficient and express it as a continuous
function.

5.4.7.2 Fourier series in complex form

We have shown earlier that a wave form can be represented (Pipes & Harvill 1970) as

f (t) = a0 +
∞∑

n=1

(an cosωnt + bn sinωnt) (5.4.152)
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Now as eiθ = cos θ + i sin θ and e−iθ = cos θ − i sin θ , we can express cosine and
sine function as

cos θ = eiθ + e−iθ

2
and sin θ = ei θ − e−i θ

2i

Substituting above formula in Equation (5.4.152), we have

f (t) = a0 +
∞∑

n=1

(
an

eiωt + e−iωt

2
+ bn

eiωt − e−iωt

2i

)

= a0 +
∞∑

n=1

(
1
2
(an − ibn)eiωt + 1

2
(an + ibn)e−iωt

)

= a0 +
∞∑

n=1

(
1
2

âneiωt + 1
2

b̂ne−iωt
)

where ân = 1
2
(an − ibn) and b̂n = 1

2
(an + ibn) (5.4.153)

Substituting the value of an and bn obtained from Equations (5.4.150) and (5.4.151)
in Equation (5.4.153), we have

ân = 1
T

⎡
⎣ T∫

0

f (t) cosωtdt − i

T∫
0

sinωtdt

⎤
⎦ or ân = 1

T

⎡
⎣ T∫

0

f (t)e−iωtdt

⎤
⎦

(5.4.154)

Proceeding in similar fashion we can arrive at the solution

b̂n = 1
T

⎡
⎣ T∫

0

f (t)eiωtdt

⎤
⎦ (5.4.155)

Now looking at ân and b̂n, it can be seen that b̂n is nothing but complex conjugate
of ân.

Thus b̂n = â−n when the function f (t) can be expresses (Kreyszig 2001) as

f (t) = a0 + â1eiωt + â2e2iωt + · · · · + âneniωt + â−1e−iωt + â−2e−2iωt + â−ne−niωt

→ f (t) =
∞∑

−∞
âneiωt

where ân is as given in Equation (5.4.154).
Above is usually termed as complex representation of Fourier series.
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5.4.7.3 Fourier Integral-Trigonometric form

We had seen that any periodic function can be expressed by Fourier series expressed
(Riley et al. 2002) by the form

f (t) = a0 +
∞∑

n=1

(an cosωnt + bn sinn t), where a0 = 1
T

∫ T
2

− T
2

f (t)dt;

an = 2
T

∫ T
2

− T
2

f (t) cos
2πnt

T
dt and bn = 2

T

∫ T
2

− T
2

f (t) sin
2πnt

T
dt

Thus for any function f (x) we represent it in Fourier series as

f (x) = a0 +
∞∑

n=1

(
an cos

2πnx
T

+ bn sin
2πnx

T

)

Substituting the value of a0, an and bn we have

f (x) = 1
T

∫ T/2

−T/2
f (t)dt +

∞∑
n=1

(
2
T

∫ T/2

−T/2
f (t) cos

2πnt
T

cos
2πnx

T
dt

+ 2
T

∫ T/2

−T/2
f (t) sin

2nπ t
T

sin
2πnx

T
dt

)

or f (x) = 1
T

∫ T/2

−T/2
f (t)dt + 2

T

∞∑
n=1

(∫ T/2

−T/2
f (t)

{
cos

2πn
T
(x − t)dt

})
.

Now we are interested to find out what happens to the function f (x)when T → ∞?
For T → ∞(T/2, −T/2) → (+∞, −∞). Taking limit of T → ∞ for the first term

in f (x) tends to 0, when we have

f (x) = 2
T

∞∑
n=1

(∫ T/2

−T/2
f (t)

{
cos

2πn
T
(x − t)dt

})

Now considering ωn = 2πn
T and ωn+1 = 2π(n+1)

T , we have

�ω = ωn+1 − ωn = 2π
T

→ T = �ω

2π

Thus the function can be represented as f (x) = ∑∞
n=1

�ω
2π

( ∫ ∞
−∞ f (t){cos 2πn

T (x − t)
)
dt

which can be further expressed as

f (x) = 1
2π

∞∫
0

dω

∞∫
−∞

f (t) cosω (x − t)dt (5.4.156)

Above is known as the trigonometric form of Fourier integral.
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5.4.7.4 Fourier integral complex form

We had shown above that, based on trigonometric form f (x) =
1

2π

∫ ∞
0 dω

∫ ∞
−∞ f (t) cosω (x − t)dt, which can be again expressed between (±)∞

as f (x) = 1
2π

∫ ∞
−∞ dω

∫ ∞
−∞ f (t) cosω (x − t)dt while it can be shown (Arfken &

Weber 2001) that the integral

1
2π

∞∫
−∞

dω

∞∫
−∞

f (t) sinω (x − t)dt = 0

Thus the function f (x) can be expressed as

f (x) = 1
2π

∞∫
−∞

dω

∞∫
−∞

f (t) cosω (x − t)dt − 1
2π

∞∫
−∞

dω

∞∫
−∞

f (t)i sinω (x − t)dt

or, f (x) = 1
2π

∞∫
−∞

dω

∞∫
−∞

f (t) [cosω(x − t)− i sinω(x − t)] dt i.e.

f (x) = 1
2π

∞∫
−∞

dω

∞∫
−∞

f (t)e−iω(x−t)dt

➔ f (x) = 1
2π

∞∫
−∞

e−iωxdω

∞∫
−∞

f (t)eiωtdt (5.4.157)

Above is known as complex form of Fourier integral.

5.4.7.5 Fourier transform

We had shown above that in complex form the Fourier integral is expressed as

f (x) = 1
2π

∞∫
−∞

e−iωxdω

∞∫
−∞

f (t)eiωtdt

Considering 
(ω) = 1√
2π

∫ ∞
−∞ f (t)eiωtdt, we can write

f (t) = 1√
2π


(ω)
∞∫

−∞
e−iωxdω

where 
(ω) = Fourier transform
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Inverse of Fourier transform 
(ω) is given by

f (t) = 1√
2π

∞∫
−∞


(ω)e−iωtdω. (5.4.158)

Two other Fourier transforms which are very useful, are as mentioned hereafter


(ω) =
√

2
π

∞∫
−∞

f (t) cosωtdt, and inverse is given as f (t) =
√

2
π

∞∫
−∞


(ω) cosωtdω

(5.4.159)

this is known as cosine Fourier transform.
Similarly 
(ω) =

√
2
π

∫ ∞
−∞ f (t) sinωtdt whose inverse is given as

f (t) =
√

2
π

∞∫
−∞


(ω) sinωtdω (5.4.160)

this is known as sine Fourier transform.

5.4.7.6 Fourier transform in three dimensions

Fourier transformation in three-dimension can be expressed as


(kx, ky, kz) = 1

(2π)
3
2

∫∫∫
f (x, y, z)eikxeikyeikzdx · dy · dz

where, the inverse of the same is given by

f (x, y, z) = 1

(2π)
3
2

∫∫∫

(kx, ky, kz)e−ikxe−ikye−ikzdkx · dky · dkz (5.4.161)

5.4.7.7 Laplace transform

Basics

If f (t) is a function which is piecewise and continuous, then f (t) is said to be of
exponential order α, if there exists a real and finite positive number N such that

lim t→∞
∣∣f (t)∣∣ e−αt ≤ N ⇒ ∣∣f (t)∣∣ = 0(eαt)



Concepts in structural and soil dynamics 679

If f (t) be a continuous single valued function of the real variable t defined for all t,
when 0 < t < ∞ and is also of exponential order. Then the Laplace Transform f (t) is
defined as

L{f (t)} = f̄ (s) =
∞∫

0

e−stf (t)dt (5.4.162)

The above is valid subject to the condition that the integral on the right hand side
exists. Here s is a parameter that could be real or imaginary (complex number) and
f̄ (s) is a function of s.

Table 5.4.1. gives the Laplace Transform and its inverse for a number of functions.
There are many cases where the results cannot be obtained directly from the table. In

such case the first principle method of inverting a transformed solution can be applied
irrespective of the availability of the tabulated values. To develop the needed inversion
process it is essential to extend the theory of Laplace Transform by letting s represent
a complex variable and then on extension of Cauchy Integral formula provides the
desired result.

For complex variable Cauchy’s integral formula states that if f (z) is an analytic
function inside a closed curve C and if z0 is a point within C then

Table 5.4.1 Typical Laplace transform and its inverse.

No. f (t) f̄ (s) = L {f (t)} f̄ (t) = L−1 {f (t)}
1 0 0 0
2 1 1

/
s 1

3 t 1
/

s2 t
4 tn �(n)

/
sn+1 tn

5 eat 1/(s − a) eat

6 sin at a/(s2 + a2) sin at
7 cos at s/(s2 + a2) cos at
8 sin h at a/(s2 − a2) sin h at
9 cos h at s/(s2 − a2) cos h at
10 t sin at 2as/

(
s2 + a2

)2 t sin at
11 t cos at (s2 − a2)/(s2 + a2)2 t cos at
12 H(t − a) e−as/s, s > 0 H(t − a)
13 f (t − a)H(t − a) e−asf (s) f (t − a)H(t − a)
14 δ(t − a) e−as, a > 0 δ(t − a)
15 J0(t) 1/

√
1 + s2 J0(t)

16 tJ0(t) s/(1 + s2)3/2 tJ0(t)
17 eatf (t) f (s + a) eatf (t)
18 tnf (t) (−1)n dn

dsn f (s) tnf (t)

19 eatf (t) 1
s e

s2
4 erfc

( s
2

)
eatf (t)

20
t∫

0
f (t − u)g(u)du f (s)g(s)

t∫
0

f (t − u)g(u)du

21
f (t)

t

�∫
s

f (s)ds
f (t)

t
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f (z0) = 1
2π i

∫
C

f (z)dz
z − z0

(5.4.163)

If f (z) be analytic for all real values of z ≥ γ where γ is a real constant greater than
0 than for all real z > γ

f (z0) = 1
2π iLtβ→∞

γ+iβ∫
γ−iβ

f (z)dz
z − z0

(5.4.164)

This can be proved by choosing a closed rectangular contour C = C1+C2+C3+C4
enclosing the point z0 and having sides parallel to the real and imaginary axes as
shown in Figure 5.4.13.

Based on above figure we have

f (z0) = 1
2π i

⎡
⎣ ∫

C1

+
∫

C2

+
∫

C3

+
∫

C4

⎤
⎦ f (z)

z − z0
dz (5.4.165)

By some limiting arguments and inequalities it can be shown that the contribution
from the paths C1, C2 and C3 vanishes on letting β → ∞ and the expression becomes

f (s) = 1
2π iLtβ→∞

∫ γ+iβ

γ−iβ

f (z)
s − z

dz,

where z has been replaced by s = x + iy and f (s) is assumed to be analytic in the
half-plane, Re(s) > γ .

Applying inverse of Laplace transform on both sides of this equation we get,

f (t) = L−1{f (s)} = 1
2π i

L−1

⎧⎪⎨
⎪⎩Ltβ→∞

γ+iβ∫
γ−iβ

f (z)
s − z

dz

⎫⎪⎬
⎪⎭

Y

C3

C4   C2

-i -i X 

C1

Figure 5.4.13 Path of integration.
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= 1
2π iLtβ→∞

γ+iβ∫
γ−iβ

f (z)L−1
(

1
s − z

dz
)

= 1
2π iLtβ→∞

γ+iβ∫
γ−iβ

estf (s)ds
[
∵ L−1

(
1

s − z

)
= est

]

Thus in general Laplace transform is given by

f (t) = 1
2π i

γ+i∞∫
γ−i∞

est f̄ (s)ds (5.4.166)

for t >0 and γ being a positive constant.
The path of integration in this inversion integral of Laplace Transform, is often

called “Bromwich contour” since Bromwich first devised this method of handling
certain integrals that arose in operational mathematics.

Example 5.4.1

Obtain a LT of function f(t) = c for t > 0.

L[f (t)] =
∞∫

0

e−stf (t)dt =
∞∫

0

e−stcdt = c
s

exists for Real (s) > 0.

If c = unity, we have unit step function, u(t).

Thus u(t) = 0, for t < 0

= 1, for t > 0 → L[u(t)] = 1
s

Example 5.4.2

Obtain LT for f(t) = t, for t > 0.

L[f (t)] =
∞∫

0

t e−stdt =
∣∣∣∣−te−st

s

∣∣∣∣
∞

0
+ 1

s

∞∫
0

e−stdt = 1
s2 , for Real (s) > 0.
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5.4.7.8 Laplace transform for derivatives

If L[f (t)] = f̄ (s) exists, where f (t) is continuous, then f (t) tends to f (0) as t → 0 and
the LT of its derivative f ′(t) = df (t)

dt is L [f′(t)] = sf̄ (s)− f (0).

[f ′(t)] =
∞∫

0

e−stf ′(t)dt = ∣∣e−stf (t)
∣∣∞
0 + s

∞∫
0

e−stf (t)dt = −f (0)+ sf̄ (s) (5.4.167)

Similarly

L[f ′′(t)] can be written as L[f ′′(t)] = s2 f̄ (s)− sf (0)− f ′(0). (5.4.168)

5.4.7.9 Shifting theorem

L[eatf (t)] =
∞∫

0

e−st[eatf (t)]dt =
∞∫

0

e−(s−a)tf (t)dt = f̄ (s − a) (5.4.169)

➔ multiplication of f (t) by eat shifts the transform by a, where a may be any number,
real or complex.

5.4.7.10 Ordinary differential equation (ODE)

Consider: mẍ + cẋ + kx = f (t) (5.4.170)

LT of l.h.s. and r.h.s. can be written as

m[s2x̄(s)− sx(0)− ẋ(0)] + c[sx̄(s)− x(0)] + kx̄(s) = f̄ (s)

This can be rearranged to

x̄(s) = f̄ (s)
ms2 + cs + k

+ (ms + c)x(0)+ mẋ(0)
ms2 + cs + k

(5.4.171)

force response due to initial condition.
This is called subsidiary equation of the ODE. x(t) is found by the inverse

transformation i.e. L−1[f̄ (s)].
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The subsidiary equation, in general, can be written as,

x̄(s) = A(s)
B(s)

(5.4.172)

Let B(s) has n-roots ak, k = 1, 2, . . ., n, which are distinct [known as simple poles
in x̄(s)]

→ B(s) = (s − a1)(s − a2). . .(s − an).

x̄(s) can be written as

x̄(s) = A(s)
B(s)

= c1

(s − a1)
+ c2

(s − a2)
+ · · · + cn

(s − an)
(5.4.173)

To determine ck, multiply both the sides by (s − ak). Every term on the right hand
side of the above will then be zero except ck. Thus in the limit

Ck = lim
s→ak

(s − ak)
A(s)
B(s)

(5.4.174)

Since L−1
[ ck

s−ak

] = ckeakt, inverse of x̄(s) will be

x(t) =
n∑

k=1

lim s → ak (s − ak)
A(s)
B(s)

eakt. (5.4.175)

Again, say, B(s) = (s−ak)B1(s); hence B′(s) = (s−ak)B
′
1(s)+B1(s) : lims→ak B′(s) =

B1(ak)

Since, (s − ak)
A(s)
B(s)

= A(s)
B1(s)

⇒ x(t) =
n∑

k=1

A(ak)

B′(ak)
eakt. (5.4.176)

5.4.7.11 Poles of higher order

Consider x̄(s) = A(s)
B(s) and x̄(s) has an mth order pole.

Assuming that there is an mth order pole at a1, B(s) will have the form: B(s) =
(s − a1)

m (s − a2)(s − a3) . . .

The partial fraction expansion of x̄(s) then becomes

x̄(s) = C11

(s − a1)m
+ C12

(s − a1)m−1 + · · · + C1m

(x − a1)
+ C2

(x − a2)
+ · · · (5.4.177)

The coefficients C11 is determined by multiplying both the sides of the equation by
(x − a1)

m and letting s = a1
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(s−a1)
mx̄(s) = C11+(s−a1)C12+· · ·+(s−a1)

m−1C1m+ (s−a1)
m

(s−a2)
C2+ (s−a1)

m

(s−a3)
C3+· · ·

∴ C11 = [(s − a1)
mx̄(s)]s=a1

The coefficient C12, by differentiating (s − a1)
mx̄(s), w.r.t. s and setting s = a1,

C12 =
[

d(s − a1)
m

ds
x̄(s)

]
s=a1

→ C1n = 1
(n − 1)!

[
dn−1(s − a1)

m

dsn−1 x̄(s)

]
s=a1

(5.4.178)

The remaining C2, C3, etc. are evaluated as in the previous section for simple poles.

Since by the shifting theorem L−1
[

1
(s − a1)n

]
= tn−1

(n − 1)!a1t

Inverse of x̄(s) becomes

x(t) =
[

C11
tm−1

(m − 1)! + C12
tm−2

(m − 2)! + · · ·
]

ea1t + C2ea2t + C3ea3t + · · ·
(5.4.179)

5.4.7.12 Viscously damped spring-mass system with x(0) and ẋ(0)

Consider, mẍ + cẋ + kx = f (t) (5.4.180)

Taking LT of both the sides, we have,

m[s2x̄(s)− sx(0)− ẋ(0)] + c[sx̄(s)− x(0)] + kx̄(s) = f̄ (s)

Subsidiary equation:

��

Forced Vibration Transient solution due to end

x̄(s) = f̄ (s)
ms2 + cs + k

+ (ms + c)x(0)+ mẋ(0)
ms2 + cs + k

(5.4.181)

x(t) = L−1[x̄(s)] (5.4.182)

Subsidiary equation is: x(s) = A(s)
B(s) , where A(s) and B(s) are polynomials in s and

B(s) is of higher order than A(s).
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5.4.7.13 Forced vibration

f̄ (s)
x̄(s)

= z(s) = ms2 + cs + k = Impedance transform. (5.4.183)

Its reciprocal is admittance Transform given by H(s) = 1
z(s)

. (5.4.184)

Usually this is shown by
Input f̄ (s)−→ H(s)

Output x̄(s)−→ (5.4.185)
With initial conditions zero; H(s) can be called system transfer function.

Example 5.4.3

Spring-mass system subjected to a step function excitation = F0u(t)

mẍ + cẋ + kx = F0u(t)

Taking LT of both sides (ms2 + cs + k)x̄(s) = F0/s
If initial conditions are zero then

x(s) = F0

m
1

s(s2 + 2Dωns + ω2
n)

= F0

m

[
A1

s
+ A2s + A3

s2 + 2Dωns + ω2
n

]

in which A1 = 1
ω2

n
; A2 = − 1

ω2
n
; A3 = −2Dωn

ω2
n

.

➔ x(t) = F0

k

[
1 − e−Dωn t

(
cosωndt + D√

1 − D2
sinωnd t

)]
.

Important outcomes:

∞∫
0

f (t)δ(t − a)dt = f (a): if f (t) = e−st, we have

∞∫
0

e−stδ(t − a)dt = e−as.

5.4.7.14 Hankel transform

Hankel transform is basically an analog to Fourier transform which often arises in
problems involving Bessel’s function. This is also otherwise known as Fourier Bessel’s
transform.
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To elaborate it further we start with two dimensional Fourier transform.

f (x, y) = 1
2π

∞∫
−∞

∞∫
−∞


(ξ , η)ei(ξx+ηy)dξdη where


(ξ , η) = 1
2π

∞∫
−∞

∞∫
−∞

f (x, y)e−i(ξx+ηy)dxdy (5.4.186)

Changing the above Cartesian co-ordinate system to polar co-ordinate we have
f (x, y) = F(r) where x = r cos θ , y = r sin θ , ξ = κ cosφ, η = κ sinφ

∴ ξx + ηy = rκ(cos θ cosφ + sin θ sinφ) = rκ cos(θ − φ) (5.4.187)

Since in polar co-ordinate differential area dA can be expressed as

dA = rdr · dθ we have 
(ξ , η) = 1
2π

∞∫
−∞

2π∫
0

F(r)e−irκ cos(θ−φ)(rdr · dθ)

Let β = θ − φ thus as θ → 2π ,β → 2π − φ and

As θ → 0,β → −φ and dβ → dθ

Thus65


(ξ , η) = 1
2π

∞∫
−∞

2π−φ∫
−φ

F(r)e−irκ cos(θ−φ)(rdr · dθ) = 1
2π

∞∫
−∞

rF(r)dr

2π∫
0

e−irκ cosβ · dβ

Without going into detailed derivation, it can be shown that

2π∫
0

eirκ cosβdβ = 2πJ0(κr) which gives 
(ξ , η) = 1
2π

∞∫
−∞

rF(r)J0(κr) · dr

Since the last integral is clearly a function of the single variable κ, this shows that

(ξ , η) is actually a function of ξ and η only through the combination, κ = √

ξ2 + η2.
Thus considering H(κ) = 
(ξ , η) and we can write

H(κ) =
∞∫

−∞
rF(r)J0(κr) · dr. (5.4.188)

65 Since the last integral in periodic it does not matter where it begins so long as it completes one full
period.
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Here H(κ) is known as the Hankel Transform pair for Bessel function of order
ν = 0

Thus, f (x, y) = F(r) = 1
2π

∞∫
−∞

2π∫
0


(ξ , η)eirκ cos(θ−φ)κdκdφ =
∞∫

0

κH(κ)J0(κr)dκ

(5.4.189)

More generally it can be shown that if F(r) is a piecewise continuous function and
provided

∫ ∞
0 F(r) · dr exists then

F(r) =
∞∫

0

κH(κ)Jv(κr)dκ and H(κ) =
∞∫

0

rF(r)Jv(κr)dr. (5.4.190)

5.5 HALFSPACE ELASTODYNAMIC SOLUTION

5.5.1 Lamb’s solution for two-dimensional problem

Having cleared the basic mathematical background required for study of the subject
of soil dynamics we are now ready to study the pioneering work of Lamb (1904) on
response of an infinite and semi infinite media under action of dynamic load66.

This though basically is of only historical importance now forms the basis on which
Reissner and others developed the solution of response of machine foundations under
dynamic load while seismologists realized why a major earthquake shock is preceded
by a minor shock or tremor.

5.5.1.1 Action of dynamic vertical load in an inf inite 2-D medium

Consider an infinite two-dimensional medium shown in Figure 5.5.1. While deriving
the propagation of Rayleigh’s wave we have shown that

∂2φ

∂t2 = λ+ 2G
ρ

∇2φ and
∂2ψ

∂t2 = G
ρ

∇2ψ (5.5.1)

where ∇2 = ∂2

∂x2 + ∂2

∂z2 , the Laplacian operator in two-dimension.

Considering the load to be of the nature, P0eiωt, it would be logical to assume that
displacement nature shall also be of the form � = φeiωt and � = ψeiωt.

Now expressing the above equation of motion in the form

∂2�

∂t2 = V2
p ∇2� and (Vp is the compression wave velocity)

∂2�

∂t2 = V2
s

G
ρ

∇2� (Vs is the shear wave velocity)

66 This is also otherwise known as dynamic Boussinesq’s Problem.
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X

Z

Figure 5.5.1 Vertical dynamic load acting on a two-dimensional semi-infinite elastic medium.

Considering� = φeiωt and substituting in equation of motion, we have −ω2eiωtφ =
V2

p ∇2φeiωt or − ω2

V2
p
φ = ∇2φ, using h2 = ω2

V2
p

we have67

∇2φ + h2φ = 0

Similarly considering � = ψeiωt we have

∇2ψ + k2ψ = 0 where k2 = ω2/V2
s .

Now considering the differential equation

∇2φ + h2φ = 0

we can express this as
∂2φ

∂x2 + ∂2φ

∂y2 + h2φ = 0

Let φ = X(x)Z(z) ∼= X · Z which, on substitution gives

ẌZ + Z̈X + h2XZ = 0

Dividing each of the above term by XZ (where XZ 	= 0), we have

Ẍ
X

+ Z̈
Z

+ h2 = 0 → Ẍ
X

= −
(

Z̈
Z

+ h2

)
= −α2 (say) (5.5.2)

67 Here h is actually the inverse of compression wave length.
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This gives two linear differential equations

d2X
dx2 + α2X = 0 and

d2Z
dz2 − ξ2Z = 0 (5.5.3)

where ξ2 = (α2 − h2)

The solutions is, X = C1eiαx + C2e−iαx and Z = C3eξz + C4e−ξz

The complete solution is given by

φ = X · Z = (C1eiαx + C2e−iαx)(C3eξz + C4e−ξz) (5.5.4)

Proceeding in an identical fashion as done earlier, it can be shown that

ψ = (C5eiαx + C6e−iαx)(C7eηz + C8e−ηz) where η2 = α2 − k2 (5.5.4a)

Thus for Z > 0 as wave intensity cannot build up at infinity we have

� = Aeiαxe−ξzeiωt and ψ = Beiαxe−ηzeiωt

where A and B are integration constants.
To determine the integration constants A and B, we go back to the following stress

strain relation derived earlier.

σxx = λev + 2Gεxx, τzx = Gγzx and σzz = λev + 2Gεzz

where, ev = εxx + εzz in two-dimension,

in which εxx = du
dx

, εzz = dw
dz

and γzx = du
dz

+ dw
dx

.

While deriving propagation of Rayleigh waves we have shown that u and w can
expressed in terms of potential as

u = ∂φ

∂x
+ ∂ψ

∂z
and w = ∂φ

∂z
− ∂ψ

∂x

Thus, εxx = du
dx

= ∂2φ

∂x2 + ∂2ψ

∂x∂z
; εzz = dw

dz
= ∂2φ

∂z2 − ∂2ψ

∂x∂z
and (5.5.5)

γzx = du
dz

+ dw
dx

= ∂2φ

∂z∂x
+ ∂2ψ

∂z2 + ∂2φ

∂x∂z
− ∂2ψ

∂x2 (5.5.6)

Thus, γzx = ∂2ψ

∂z2 + 2
∂2φ

∂x∂z
− ∂2ψ

∂x2 = ∇2ψ + 2
∂2φ

∂x∂z
− 2

∂2ψ

∂x2 (5.5.7)

ev = εxx + εzz = ∇2φ (5.5.8)
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Substituting the above in stress equation, we have

σxx

G
= λ

G
∇2φ + 2

∂2φ

∂z2 + 2
∂2ψ

∂x∂z
(5.5.9)

σzz

G
= λ

G
∇2φ + 2

∂2φ

∂z2 − 2
∂2ψ

∂x∂z
(5.5.10)

τxz

G
= ∇2ψ + 2

∂2φ

∂x∂z
− 2

∂2ψ

∂x2 (5.5.11)

5.5.1.2 Lamb’s simplif ication by considering ν = 0.25 for which λ = G

Considering the above assumption, the stress equation simplifies (Kausel 2005) to

σxx

G
= ∇2φ + 2

∂2φ

∂z2 + 2
∂2ψ

∂x∂z
(5.5.12)

σzz

G
= ∇2φ + 2

∂2φ

∂z2 − 2
∂2ψ

∂x∂z
(5.5.13)

τxz

G
= ∇2ψ + 2

∂2φ

∂x∂z
− 2

∂2ψ

∂x2 (5.5.14)

Since, ∇2φ+h2φ = 0 and ∇2ψ+k2ψ = 0 we can further write the stress equations as

σxx

G
= −h2φ + 2

∂2φ

∂z2 + 2
∂2ψ

∂x∂z
(5.5.15)

σzz

G
= −h2φ + 2

∂2φ

∂z2 − 2
∂2ψ

∂x∂z
(5.5.16)

τxz

G
= −k2ψ + 2

∂2φ

∂x∂z
− 2

∂2ψ

∂x2 (5.5.17)

Next we determine the displacement and stress at z = 0.
Considering the time function the displacements in x and z direction can be

expressed as

u = ∂�

∂x
+ ∂�

∂z
and w = ∂�

∂z
− ∂�

∂x
.

Thus, u = ∂

∂x
Aeiαxe−ξzeiωt + ∂

∂z
Beiαxe−ηzeiωt

→ u = Aiαeiαxe−ξzeiωt − ηBeiαxe−ηzeiωt (5.5.18)



Concepts in structural and soil dynamics 691

For z = 0 we thus have

(u)z=0 = (Aiα − ηB)eiαxeiωt

Considering,

w = ∂�

∂z
− ∂�

∂x
→ w = ∂

∂z
Aeiαxe−ξzeiωt − ∂

∂x
Beiαxe−ηzeiωt

➔ w = −Aξeiαxe−ξzeiωt − iBαeiαxe−ηzeiωt (5.5.19)

For z = 0 thus we have

(w)z=0 = −(Aξ − iBα)eiαxeiωt

Again, considering the stress in vertical direction, we have

σzz

G
= −h2φ + 2

∂2φ

∂z2 − 2
∂2ψ

∂x∂z

On substitution of the values of function � and ψ we have

σzz = G
[−h2Aeiαxe−ξzeiωt + 2Aξ2eiαxe−ξzeiωt + 2Biαηeiαxe−ηzeiωt

]

At z = 0 the above value simplifies to

(σzz)z=0 = G
[
(2ξ2 − h2)A + 2Biαη

]
eiαxeiωt

Proceeding in identical fashion it can be shown that

(τxz)z=0 = G
[
(2α2 − k2)B − 2Aiαξ

]
eiαxeiωt

For Z < 0 the function � and ψ an be expressed by replacing A and B by A′
and B′. Now for a force P0eiαxeiωt acting per unit area in vertical Z direction on the
plane Z = 0, the normal stress will thus have a jumped discontinuity and can be
expressed as

(σzz)z=0+ − (σzz)z=0− = −P0eiαxeiωt
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Thus substituting the value of σzz, we have

(2ξ2 − h2)(A − A′)+ 2iαη(B − B′) = −P0/G, this plane is continuous.
(5.5.20)

For z = 0 as τxz = 0 we have for Z < 0 and Z > 0

−2iαξ(A + A′)+ (2α2 − k2)(B + B′) = 0 (5.5.21)

For displacement compatibility we have

(u)z=0+ − (u)z=0− = 0 and (5.5.22)

(w)z=0+ − (w)z=0− = 0 this gives (5.5.23)

iα(A − A′)− η(B − B′) = 0 and ξ(A − A′)+ iα(B − B′) = 0 (5.5.24)

Now knowing ξ2 = (α2 − h2) and for ν = 0.25 3h2 = k2, we have on substitution
in Equation (5.4.187), four equation with four unknowns (A, A′, B, B′) to solve.

(2α2 − k2)(A − A′)+ 2iαη(B − B′) = −P0/G (5.5.25)

− 2iαξ(A + A′)+ (2α2 − k2)(B + B′) = 0 (5.5.26)

iα(A − A′)− η(B − B′) = 0 (5.5.27)

ξ(A − A′)+ iα(B − B′) = 0 (5.5.28)

Solutions of these four equations give

A = −A′ = P0

2k2G
and B = B′ = iP0α

2k2Gη
(5.5.29)

Hence for Z > 0 the potential functions are expressed as

� = P0

2k2G
eiαxe−ξzeiωt and � = iP0α

2k2Gη
eiαxe−ξzeiωt (5.5.30)

The above values will now be used for subsequent derivation for various load cases.
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5.5.1.3 Action of concentrated dynamic vertical load
in an inf inite 2D medium

Consider an infinite 2D medium under dynamic vertical load shown in Figure 5.5.2.
While explaining the Fourier integral we have shown that any general function in
complex form can be expressed as

f (x) = 1
2π

∞∫
−∞

e−iωxdω

∞∫
−∞

f (t)eiωtdt

With respect to our derivation for general vertical load as shown above we modify
f (x) to write

f (x) = 1
2π

∞∫
−∞

e−iαxdα

∞∫
−∞

f (t)eiωtdt

Assuming
∫∞
−∞ f (t)dt = Q0 we have, f (x) = 1

2π

∫∞
−∞ Q0eiωteiαxdα

Now considering P0 = Q0dα
2π , we have

� = Q0eiωt

4πk2G

∞∫
−∞

eiαxe−ξzdα and � = iQ0eiωt

4πηk2G

∞∫
−∞

αeiαxe−ηzdα (5.5.31)

Q0e

X

Z

Figure 5.5.2 Vertical concentrated load acting in two-dimensional infinite elastic medium.
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X

Z

Figure 5.5.3 Vertical dynamic load acting on a two-dimensional semi-infinite elastic media.

5.5.1.4 Line load on a semi-inf inite elastic media68

In this case as shown in Figure 5.5.3, we consider a force P0eiαxeiωt is a periodic force
acting at z = 0 per unit area. The boundary conditions are at z = 0, (τxz)z=0 = 0 and
(σzz)z=0 = 0.

Based on our derivation earlier for infinite elastic media we had shown that

(σzz)z=0 = G[(2ξ2 − h2)A + 2Biαη]eiαxeiωt and

(τxz)z=0 = G[(2α2 − k2)B − 2Aiαξ ]eiαxeiωt

Imposing the boundary conditions as mentioned above, we have

[(2ξ2 − h2)A + 2Biαη] = 0 and [(2α2 − k2)B − 2Aiαξ ] = 0

Solution of these two equations gives

A = 2α2 − k2

(2α2 − k2)2 − 4α2ξη

P0

G
and B = 2iαξ

(2α2 − k2)2 − 4α2ξη

P0

G

Thus the surface displacements can now be expressed as

(u)z=0 = iα(2α2 − k2 − 2ξη)
(2α2 − k2)2 − 4α2ξη

P0

G
eiαxeiωt and (5.5.32)

(w)z=0 = ik2ξ

(2α2 − k2)2 − 4α2ξη

P0

G
eiαxeiωt (5.5.33)

5.5.1.5 Concentrated load on a semi-inf inite elastic media

In this case we assume a concentrated load acting at x = z = 0 as shown in Figure 5.5.4.

68 A semi-infinite medium is also known as elastic half space which could be 2D or 3D.
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Q0e

X

Z

Figure 5.5.4 Concentrated load acting on a two-dimensional semi-infinite elastic media.

Similar to as shown in elastic full space, consider P0 = Q0dα
2π and we have

(u)z=0 = Q0eiωt

2πG

∞∫
−∞

α(2α2 − k2 − 2ξη)
(2α2 − k2)2 − 4α2ξη

eiαxdα and (5.5.34)

(w)z=0 = Q0eiωt

2πG

∞∫
−∞

k2ξ

(2α2 − k2)2 − 4α2ξη
eiαxdα (5.5.35)

5.5.1.6 Tangential Load on a semi-inf inite elastic media

For this case, shown in Figure 5.5.5, we have the boundary condition as at z = 0,
(τxz)z=0 = Pxeiαxeiωt and (σzz)z=0 = 0.

Imposing the above boundary conditions to determine A and B the integration
constants and proceeding in identical fashion as in previous case we have

(u)z=0 = Pxeiωt

2πG

∞∫
−∞

k2η

(2α2 − k2)2 − 4α2ξη
eiαxdα (5.5.36)

(w)z=0 = iPxeiωt

2πG

∞∫
−∞

α(2α2 − k2 − 2ξη)
(2α2 − k2)2 − 4α2ξη

eiαxdα (5.5.37)

A very interesting phenomenon may be observed now if we put Px = Q0, it can
be observed that the horizontal displacement due to the vertical force is equal to the
vertical displacement due to the tangential load. This is known as dynamic reciprocity
property.
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Pxe
X

Z

Figure 5.5.5 Tangential load acting on a two-dimensional semi-infinite elastic media.

The above were the solution proposed by Lamb for 2 dimensional problems. It
will be observed that the solutions are theoretical for the integrals involved in the
displacement functions are indeterminate.

5.5.1.7 Lamb’s solution for 3-dimensional problems

We had shown earlier vide Equations (5.4.14) and (5.4.15) that equation of motion
in 3D in an elastic body is given by the expression

ρ
∂2u
∂t2 = ∂ev

∂x
(λ+ G)+ G∇2u; ρ

∂2v
∂t2 = ∂ev

∂y
(λ+ G)+ G∇2v and

ρ
∂2w
∂t2 = ∂ev

∂z
(λ+ G)+ G∇2w

Here u, v, w are displacement vectors in x, y and z co-ordinate, λ and G = Lame’s
constant

ev = εxx + εyy + εzz = ∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

and

∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 the Laplacian operator.

Now considering the displacement vector is of the nature eiωt we have

(λ+ G)
∂ev

∂x
+ G∇2u = −ρuω2 (5.5.38)

(λ+ G)
∂ev

∂y
+ G∇2v = −ρvω2 (5.5.39)

(λ+ G)
∂ev

∂z
+ G∇2w = −ρwω2 (5.5.40)
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The above equations of motion are satisfied if we put

u = ∂φ

∂x
+ u′; v = ∂φ

∂y
+ v′; w = ∂φ

∂z
+ w′;

This gives

εxx = ∂2φ

∂x2 + ∂u′

∂x
; εyy = ∂2φ

∂y2 + ∂v′

∂y
and εzz = ∂2φ

∂z2 + ∂w′

∂z

from which we have

ev = εxx + εyy + εzz = ∇2φ + ∂u′

∂x
+ ∂v′

∂y
+ ∂w′

∂z
= ∇2φ + e1

Substituting the above in the first equation of motion we have

(λ+ G)
∂

∂x
∇2φ + (λ+ G)

∂e1

∂x
+ G∇2 ∂φ

∂x
+ G∇2u′ + ρω2 ∂φ

∂x
+ ρω2u′ = 0

The above can be re-structured and expressed as

(λ+ 2G)

[
∂

∂x
∇2φ + ρω2

λ+ 2G
∂φ

∂x

]
+ G

[
∇2u′ + ρω2

G
u′
]

+ (λ+ G)
∂e1

∂x
= 0

Now considering h2 = ρω2

λ+2G , k2 = ρω2

G , we have

(λ+ 2G)
∂

∂x
[∇2φ + h2φ] + G[∇2u′ + k2u′] + (λ+ G)

∂e1

∂x
= 0 (5.5.41)

Similarly for y and z direction we have

(λ+ 2G)
∂

∂y
[∇2φ + h2φ] + G[∇2v′ + k2v′] + (λ+ G)

∂e1

∂y
= 0 and (5.5.42)

(λ+ 2G)
∂

∂z
[∇2φ + h2φ] + G[∇2w′ + k2w′] + (λ+ G)

∂e1

∂z
= 0 (5.5.43)
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Since (λ+ 2G) , G �= 0 the above equations can only be satisfied, if

[∇2 + h2]φ = 0 (5.5.44)

[∇2 + k2]u′ = 0 (5.5.45)

[∇2 + k2]v′ = 0 (5.5.46)

[∇2 + k2]w′ = 0 (5.5.47)

and e1 = ∂u′

∂x
+ ∂v′

∂y
+ ∂w′

∂z
= 0 (5.5.48)

The last equation e1 = 0 shows that u′, v′, w′ are equi-voluminal rotational compo-
nents of displacement thus a functional value has to be so chosen that it satisfies the
other equations

[∇2 + k2](u′, v′, w′) = 0.

Let us consider69

u′ = ∂2ψ

∂x∂z
, v′ = ∂2ψ

∂y∂z
and w′ = ∂2ψ

∂z2 + k2ψ thus we have

e1 = ∂3ψ

∂x2∂z
+ ∂3ψ

∂y2∂z
+ ∂3ψ

∂z3 + k2 ∂ψ

∂z
= 0; or

e1 = ∂

∂z

(
∂2ψ

∂x2 + ∂2ψ

∂y2 + ∂2ψ

∂z2 + k2ψ

)
= 0

➔ e1 = ∂

∂z
(∇2 + k2)ψ = 0 (5.5.49)

which shows the function satisfies the required boundary condition.

Thus u = ∂φ

∂x
+ u′; v = ∂φ

∂y
+ v′; w = ∂φ

∂z
+ w′; gets modified to

u = ∂φ

∂x
+ ∂2ψ

∂x∂z
; v = ∂φ

∂x
+ ∂2ψ

∂x∂z
and w = ∂φ

∂z
+ ∂2ψ

∂z2 + k2w

Having derived the above, we have now developed enough background to derive
Lamb’s solution in three-dimension, which was actually derived in polar co-ordinates.

69 This is where the mathematicians show that unusual Extra Sensory Perceptions (ESP) which makes
complex problems solvable. . . . . .
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The advantage with polar co-ordinate as would be seen, is that it reduces the problem
from three variable to two and is easier to handle than in x, y and z co-ordinate.

In cylindrical or polar co-ordinate, r = √
x2 + y2, such that x, y, z = f (r, θ , z), where

f is a function of r, θ and z. Moreover for axis-symmetric case it becomes indepen-
dent of θ .

The Laplacian operator ∇2 in polar co-ordinate becomes

∇2 = ∂2

∂r2 + 1
r
∂

∂r
+ ∂2

∂z2 (5.5.50)

Let displacement function be q(r, z) and w(r, z), then with analogy to u, v, w as
derived earlier we can say that

q(r, z) = ∂φ

∂r
+ ∂2ψ

∂r∂z
(5.5.51)

w(r, z) = ∂φ

∂r
+ ∂2ψ

∂z2 + k2ψ = 0 (5.5.52)

We had shown earlier that one of the conditions that satisfies the differential
equation of motion is

[∇2 + h2]φ = 0,

substituting the value of Laplacian operator in polar co-ordinate, we have

[
∂2

∂r2 + 1
r
∂

∂r
+ ∂2

∂z2 + h2

]
φ = 0 (5.5.53)

Let φ = R(r)Z(z) ∼= R · Z which gives

R̈Z + 1
r

ṘZ + RZ̈ + h2RZ = 0

Since R and Z are not equal to zero dividing each of the above term by RZ we have

R̈
R

+ 1
r

Ṙ
R

+ Z̈
Z

+ h2 = 0 ➔
R̈
R

+ 1
r

Ṙ = −h2 − Z̈
Z

= −α2 (say)

The above gives two linear differential equations Z̈ − ξ2Z = 0, where ξ2 = α2 −
h2 and R̈ + 1

r Ṙ + α2R = 0
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The solution to these equations are given by

Z = C1eξz + C2e−ξz (5.5.54)

The second equation is Bessel’s equation whose solution is given by

R = C3J0(αr)+ C4K0(αr) (5.5.55)

Here J0(αr) = Bessel’s function of first kind of order zero and K0(αr) = Bessel’s
function of second kind of order zero.

For Z > 0 as waves cannot increase in intensity and nor can it reflect back, thus to
satisfy this condition we have C1 = 0.

For r → ∞, K0(αr) = 0 when we have

φ = Ae−ξzJ0(αr)eiωt (5.5.56)

Proceeding in similar manner one can prove that

ψ = Be−ηzJ0(αr)eiωt, here η2 = α2 − k2 (5.5.57)

Considering q(r, z) = ∂φ
∂r + ∂2ψ

∂r∂z we have

q(r, z) = α�−Ae−ξz + ηBe−ηz	J1(αr)eiωt (here
∂

∂r
J0(αr) = J1(αr)) (5.5.58)

w(r, z) = �−ξAe−ξz + α2Be−ηz	J0(αr)eiωt (5.5.59)

Also the stress at Z = 0 is given by (τrz)z=0 = G
[
∂q
∂z + ∂w

∂r

]
z=0

or (τrz)z=0 =
G�2αξA − (2α2 − k2)αB	J1(αr)eiωt and (σzz)z=0 = λe + 2G ∂w

∂z or, (σzz)z=0 =
G�(2α2 − k2)A − 2α2ηB	J0(αr)eiωt, it should be noted here again ν = 0.25 for which
λ = G.

For region Z < 0 the functions can be expressed as

φ = A′e−ξzJ0(αr)eiωt and ψ = B′e−ηzJ0(αr)eiωt.

Now applying a force of P0J0(αr)eiωt per unit area along z direction a tz = 0 and
considering the stress jump

(σzz)z=0+ − (σzz)z=0− = −P0J0(αr)eiωt

We have, (2α2 − k2)(A − A′)− 2α2η(B + B′) = P0
G .

For the tangential stress to be continuous in this plane we have

2ξ(A + A′)− (2α2 − k2)(B − B′) = 0
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The displacement continuity along r and z direction gives

(A − A′)− η(B + B′) = 0 and ξ(A + A′)− α2(B − B′) = 0

Solution of these four equations give A = −A′ = P0
2k2G and B = B′ = P0

2k2Gη .
Hence for region Z > 0 we have

φ = P0

2k2G
e−ξzJ0(αr) and ψ = P0

2k2Gη
e−ηzJ0(αr) (5.5.60)

5.5.1.8 Application of point load in inf inite elastic space

Shown in Figure 5.5.6 is an elastic full space with point load Q0 eiωt. We make use
here a special function called Fourier-Bessel Integral based on which

f (r) =
∞∫

0

J0(αr)αdα

∞∫
0

f (λ)J0(αλ)λdλ (5.5.61)

For lim λ → 0, considering
∫∞

0 f (λ)2πλdλ = Qeiωt

Considering P0 = Qαdα
2π , we have

φ = Q0 eiωt

4πω2ρ

∞∫
0

e−ξzJ0(αr)αdα and ψ = Q0 eiωt

4πω2ρ

∞∫
0

e−ηz

η
J0(αr)αdα (5.5.62)

where ρ = mass density of the elastic medium.

X

Z

Q0e

Figure 5.5.6 Elastic full space with concentrated load at Z = 0.
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5.5.1.9 Application of point load in elastic half space

Shown in Figure 5.5.7, is an elastic half space subjected to a point load. Let us consider
the point load applied at Z = 0 as P0J0(αr)eiωt.

Then at the surface

(σzz)z=0 = P0J0(αr)eiωt and (τrz)z=0 = 0

Based on the above boundary condition and referring to previous case of elastic full
space we get

(2α2 − k2)A − 2α2ηB = P0

G
and 2ξA − (2α2 − k2)B = P0

G

Solutions of these two equations give

A = 2α2 − k2

(2α2 − k2)2 − 4α2ξη

P0

G
and B = 2ξ

(2α2 − k2)2 − 4α2ξη

P0

G

The surface displacement can thus be computed for Z > 0 as

q(r, z) = −α(2α2 − k2 − 2ξη)
(2α2 − k2)2 − 4α2ξη

J1(αr)
P0

G
eiωt

w(r, z) = k2ξ

(2α2 − k2)2 − 4α2ξη
J0(αr)

P0

G
eiωt

For a concentrated load Qeiωt considering P0 = −Qαdα/2π and integrating it
between ∞ to 0 we have

Q0e

Figure 5.5.7 Point load on elastic half space.
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(q)z=0 = Q0eiωt

2πG

∞∫
0

α2(2α2 − k2 − 2ξη)
(2α2 − k2)2 − 4α2ξη

J1(αr)dα and

(w)z=0 = Q0eiωt

2πG

∞∫
0

k2αξ

(2α2 − k2)2 − 4α2ξη
J0(αr)dα (5.5.63)

These are the Lamb’s solution in three-dimension.

So what we have achieved?

All right, so we have managed to propose the solution as furnished by Lamb for the
propagation of waves in an elastic medium in two and three dimension.

And in the process we believe we have managed to sufficiently infuriate the
professional engineers, for after all those ghastly and boring Del, Zi, Phi, Fourier
transform etc. we arrive at a solution

• Which is an indefinite integral
• Whose solution is not known and difficult to solve analytically
• Whose boundary limits are either (±)∞ or 0 → ∞!

The first reaction would be OK after all this complex mathematical manipulation
can we compute or find out the surface displacement for the applied load directly from
those results? The answer would surely be an embarrassing −NO.

So where do we go from here?

Being a mathematician Lamb’s job was to find a solution that could be finite in terms
of our technical perception. He solved the problem in generic term and it was left
to others like Reissner and Pekeris to solve those maddening indefinite integrals and
interpret the problem in a form understandable to others.

5.5.2 Pekeris’ solution for surface pulse

As discussed in the previous section Lamb gave the basic solution for impulsive force
acting on or within an elastic full space. It was left to Pekeris (1955) and others to
further enhance it and give solutions, which are readily usable.

As shown in Figure 5.5.8, at source (a buried point shown by a shaded box) a pulse
load which is varying with time as a Heaveside function H(t) is applied. The solution
for surface pulse is obtained by letting the depth of the surface approach zero.

Choosing a cylindrical co-ordinate system with origin at depth H below surface,
zone below the source is depicted as zone-1 and that above the source as zone-2.

The surface integral of the applied vertical stress is expressed as

2π

∞∫
0

[(σzz)1 − (σzz)2]r · dr = Z (5.5.64)
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Z = – H Surface

SourceZ = 0

Z

2

1

Figure 5.5.8 Conceptual model for Pekeris’ solution for surface pulse.

While solving Lamb’s problem in 3D we have shown that if q(r, z) and w(r, z) are
the displacements in horizontal and vertical direction then

q(r, z) = ∂φ

∂r
+ ∂2ψ

∂r∂z
and w(r, z) = ∂φ

∂r
+ ∂2ψ

∂z2 + k2ψ (5.5.65)

where φ and ψ are dilatational and equi-voluminal motion respectively.
Here Pekeris used slightly different notation70 than what we used earlier. As per his

derivation

q(r, z) = ∂φ

∂r
+ ∂2ψ

∂r∂z
and w(r, z) = ∂φ

∂r
+ ∂2ψ

∂z2 − k2ψ (5.5.66)

➔ ∇2φ − h2φ = 0; ∇2ψ − h2ψ = 0 (5.5.67)

where, h2 = ω2

V2
p

; k2 = ω2

V2
s

; V2
s = G

ρ
; V2

p = λ+ 2G
ρ

= 3V2
s , for ν = 0.25.

(5.5.68)

The normal and shear stress in polar co-ordinate based on elasticity equation is
given by

σzz = λh2φ + 2G

[
∂2φ

∂z2 + ∂3ψ

∂z3 − k2 ∂ψ

∂z

]
and τrz = G

∂

∂r

[
2
∂φ

∂z
+ 2

∂2ψ

∂z2 − k2ψ

]

(5.5.69)

70 This depends on how one considers the vector function. Here considered as e−iwt by Pekeris.
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Thus in time domain applying the general Fourier transform we have

w(r, z, t) = 1
2π i

α+i∞∫
α−i∞

[
eωt

ω

]
w(r, z,ω)dω (5.5.70)

Solution to φ and ψ in zone 1 and 2 are given by

φ1 = Ae−kαzJ0(ξr), ψ1 = Be−kβzJ0(ξr) (5.5.71)

φ2 = [Ce−kαzJ0(ξr)+ Dekαz] J0(ξr); ψ2 = [Ee−kβzJ0(ξr)+ FekβzJ0(ξr)]
(5.5.72)

where kα =
√
ξ2 + h2 and kβ =

√
ξ2 + k2 (5.5.73)

It is to be noted here that Pekeris’ notation are slightly different than what we solved
for Lamb’s problem earlier. We are trying to derive this with same notation of Pekeris
while trying to keep the form similar to what we derived earlier as far as possible.

At z = 0 considering the displacement and stress compatibility, we have

|q1|z=0 = |q2|z=0 and |w1|z=0 = |w2|z=0 (5.5.74)

|τrz1|z=0 = |τrz2|z=0 (5.5.75)

This gives

[
∂φ

∂r
+ ∂2ψ

∂r∂z

]
1

=
[
∂φ

∂r
+ ∂2ψ

∂r∂z

]
2

(5.5.76)

[
∂φ

∂r
+ ∂2ψ

∂z2 − k2ψ

]
1

=
[
∂φ

∂r
+ ∂2ψ

∂z2 − k2ψ

]
2

(5.5.77)

∂

∂r

[
2
∂φ

∂z
+ 2

∂2ψ

∂z2 − k2ψ

]
1

= ∂

∂r

[
2
∂φ

∂z
+ 2

∂2ψ

∂z2 − k2ψ

]
2

(5.5.78)

Considering |σzz|z=0+ − |σzz|z=0− =
(

Z
2π

)
J0(ξr)dξ and integrating with respect to

from 0 → ∞. Again considering at Z = −H σzz = 0 and τrz = 0 we can solve for
six(6) boundary conditions to get A, B, C, D, E and F when
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F = Zξ
12πGkβh2 , D = −kβF, B = E + F, A = C − D (5.5.79)

ekαHC = kβF
M

[{(2ξ2 + k2)2 + 4k2ξ2αβ}e−kαH − 4ξ2(2ξ2 + k2)e−kβH] (5.5.80)

ekβHE = F
M

[4k2(2ξ2 + k2)αβe−kαH − {(2ξ2 + k2)2 + 4k2ξ2αβ}e−kβH] (5.5.81)

where M = [(2ξ2 + k2)2 − 4k2ξ2αβ] (5.5.82)

Substituting these values for φ and ψ in Equation (5.5.61) and for q(r, z) and w(r, z)
we have

w(r, z) = Zk
2πG

∞∫
0

J0(ξr)ξ [−(2ξ2 + k2)e−kαH + 2ξ2e−kβH]
( α

M

)
dξ (5.5.83)

q(r, z) = − Z
2πG

∞∫
0

J1(ξr)ξ2[(2ξ2 + k2)e−kαH − 2k2αβe−kβH]
(

dξ
M

)
(5.5.84)

5.5.2.1 Vertical displacement at surface

Thus vertical displacement at surface is given by considering the depth H = 0, when
we have

w(r) = Zk
2πG

∞∫
0

J0(ξr)ξ [−(2ξ2 + k2)+ 2ξ2]
( α

M

)
dξ

w(r) = − Zk3

2πG

∞∫
0

J0 (ξr)
ξα

[(2ξ2 + k2)2 − 4k2ξ2αβ]dξ (5.5.85)

Considering ξ = kx the above expression can be simplified to

w(r) = − Zk
2πG

N(kr) (5.5.86)

where N(kr) =
∞∫
0

J0(krx)xm(x)dx, m(x) = α
[(2x2+1)2−4x2αβ] ,

α =
√

1
3

+ x2, β =
√

1 + x2 and k = ω

Vs
(5.5.87)

Having derived the above it is now left to determine the indefinite integral N(kr).
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Solution of N(kr) requires a special theorem called Bateman-Pekeris (1945) theorem
involving analytical functions in complex domain when N(kr) gets converted into

N(kr) =
∞∫

0

J0(krx)xm(x)dx = −
(

2
π

)
IP

∞∫
1√
3

K0(krv)vm(iv)dv (5.5.88)

Here, I denotes the imaginary part of the function and P is the principal value.
We will not go into the detail of mathematical derivation of this integral but will

present the subsequent results as mentioned hereafter.
Considering τ = vst

r where Vs = shear wave velocity of the soil, t = time, and r =
radial distance from the surface pulse source, we have

w(τ ) = 0 for τ <
1√
3

(5.5.89)

w(τ ) =
(

3Z
π2Gr

)
G1 (τ ) for

1√
3
< τ < 1 and (5.5.90)

w(τ ) =
(

3Z
π2Gr

)
[G1(τ )+ G2(τ )] for τ > 1 where (5.5.91)

G1(τ ) = P

τ∫
1√
3

v(1 − 2v2)

√
v2 − 1

3(
3 − 24v2 + 56v4 − 32v6

)√
τ2 − v2

dv (5.5.92)

G2(τ ) = P

τ∫
1

v3
(
4v2 − 4

3

)√
v2 − 1

(3 − 24v2 + 56v4 − 32v6)
√
τ2 − v2

dv (5.5.93)

Taking v2 = 1
3 + χ2 sin2 θ and χ2 = τ2 − 1

3 we have

G1(τ ) = P
96

π

2∫
0

[
−12 + 1

1
12 + χ2 sin2 θ

− B

−b + χ2 sin2 θ
− C

c + χ2 sin2 θ

]
dθ

(5.5.94)

Here B = 3 + 5√
3
, C = 3 − 5√

3
, b = 5

12 +
√

3
4 and c =

√
3

4 − 5
12 .

Now considering,

π

2∫
0

dθ

α2 + χ2 sin2 θ
= π

2α
1√

α2 + χ2
and,
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P

π

2∫
0

dθ

−β2 + χ2 sin2 θ
= 0 for β < χ

= − π

2β
1√

β2 − χ2
for β > χ we obtain

G1(τ )= π

96

⎡
⎢⎣−6+

√
3√

τ2 − 1
4

+
√

3
√

3 + 5√
1
4 (3 + √

3)− τ2
−

√
3
√

3 − 5

τ2 − 1
4 (3 − √

3)

⎤
⎥⎦ for τ < γ

(5.5.95)

and G1(τ ) = π

96

⎡
⎢⎣−6 +

√
3√

τ2 − 1
4

−
√

3
√

3 − 5

τ2 − 1
4 (3 − √

3)

⎤
⎥⎦ for τ > γ (5.5.96)

Here γ = 1
2

√
3 + √

3.

Similarly considering, v2 = 1
3 + χ̄2 sin2 θ where χ̄2 = τ2 − 1, we have

G2(τ ) = 1
24

π

2∫
0

[
−3 − 3

(3 + 4χ̄2 sin2 θ)
− (1 + √

3)

1 − √
3 + 4χ̄2 sin2 θ

]
dθ (5.5.97)

Integrating above we have

G2(τ ) = π

96

⎡
⎢⎣−6 −

√
3√

τ2 − 1
4

+
√

3
√

3 + 5√
1
4 (3 + √

3)− τ2
+

√
3
√

3 − 5

τ2 − 1
4 (3 − √

3)

⎤
⎥⎦ for τ < γ

(5.5.98)

and G2(τ ) = π

96

⎡
⎢⎣−6 −

√
3√

τ2 − 1
4

+
√

3
√

3 − 5

τ2 − 1
4

(
3 − √

3
)
⎤
⎥⎦ for τ > γ (5.5.99)

Substituting these values for w(r) finally gives

w(r) = 0 for τ <
1√
3

(5.5.100)

w(r) =
(

3Z
π2Gr

)⎡
⎢⎣−6 −

√
3√

τ2 − 1
4

−
√

3
√

3 + 5√
3
4 +

√
3

4 − τ2
+

√
3
√

3 − 5√
τ2 +

√
3

4 − 3
4

⎤
⎥⎦
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for
1√
3
< τ < 1

w(r) = −
(

Z
16πGr

)⎡
⎢⎣6 − 3

√
3 + 5√

3
4 +

√
3

4 − τ2

⎤
⎥⎦ for 1 < τ < γ = 1

2

√
3 + √

3

(5.5.101)

w(r) = −
(

3Z
8πGr

)
for τ > γ (5.5.102)

If we observe the values of w(r) now we see that all the values are definite and finite.
It is possible to find out the value of w(r) for a surface pulse at H = 0 for any instant
of time t or τ at any radial distance r from the source.

5.5.2.2 Horizontal displacement at surface

We had shown earlier that

q(r, z) = − Z
2πG

∞∫
0

J1(ξr)ξ2[(2ξ2 + k2)e−kβH − 2k2αβe−kβH]
(

dξ
M

)
(5.5.103)

At the surface for H = 0 we have

q(r) = − Z
2πG

∞∫
0

J1(ξr)ξ2[(2ξ2 + k2)− 2k2αβ]
(

dξ
M

)
(5.5.104)

where M is as defined earlier.
Considering ξ = kx we can simplify q(r) as

q(r) = Z
2πG

∂

∂r

∞∫
0

J0(krx)n(x)xdx (5.5.105)

Here n(x) =
(
2x2 + 1

) − 2
√

1 + x2
√

1
3 + x2

(
2x2 + 1

)2 − 4x2
√

1 + x2
√

1
3 + x2

(5.5.106)

Again based on Bateman-Pekeris theorem it can be shown that

∞∫
0

J0(krx)n(x)xdx = − 2
π

I

∞∫
0

K0(krv)n(iv)vdv − 1
4

K0(kr) (5.5.107)
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Skipping the details of derivation of the above integral in complex domain based
on analytical function it can be finally shown that

q(τ ) = 0 for τ <
1√
3

(5.5.108)

q(τ ) = −
(

Z
2π2Gr

)
τR1 (τ ) for

1√
3
< τ < 1 (5.5.109)

q(τ ) = −
(

Z
2π2Gr

)
τR2(τ ) for 1 < τ < γ (5.5.110)

q(τ ) = −
(

Z
2π2Gr

)
τR2(τ )+ Z

8πGr
1√

τ2 − γ 2
for τ > γ (5.5.111)

where

R1(τ ) =
τ∫

1√
3

v
√

v2 − 1
3

√
1 − v2

(
12 − 24v2

)
√
τ2 − v2

(
3 − 24v2 + 56v4 − 32v6

)dv and (5.5.112)

R2(τ ) =
1∫

1√
3

v
√

v2 − 1
3

√
1 − v2

(
12 − 24v2

)
√
τ2 − v2

(
3 − 24v2 + 56v4 − 32v6

)dv (5.5.113)

By decomposing the above integrals in partial fraction and again assuming v2 =
1
3 + χ̄2 sin2 θ where χ̄2 = τ2 − 1 we have

R1(τ ) = −1
8

√
3
2

π

2∫
0

dθ√
1 − k2 sin2 θ

×
{

6 − 18

1 + 8k2 sin2 θ
+ (6 − 4

√
3)

[1 − (12
√

3 − 20)k2 sin2 θ ]

+ (6 + 4
√

3)

[1 + (12
√

3 + 20)k2 sin2 θ ]

}

R1(τ ) = −1
8

√
3
2

π

2∫
0

{6K(k)− 18�(8k2, k)+ (6 − 4
√

3)�[−(12
√

3 − 20)k2, k]

+ (6 + 4
√

3)�[(12
√

3 + 20)k2, k]}
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where k2 = 1
2
(3τ2 − 1), (5.5.114)

K(k) =
π

2∫
0

dθ√
1 − k2 sin2 θ

; �(n, k) =
π

2∫
0

dθ

(1 + n sin2 θ)
√

1 − k2 sin2 θ
(5.5.115)

Here K(k) and �(n, k) are complete elliptical integral of first and third kind
respectively.

Similarly substituting v2 = 1+2 sin2 θ
3 , we have

R2 (τ ) = − 1
4χ

π

2∫
0

dθ√
1 − κ2 sin2 θ

{
3 − 9

1 + 8 sin2 θ
+ (3 + √

3)

[8 sin2 θ − 5 − 3
√

3]

+ (3 − √
3)

[8 sin2 θ − 5 + 3
√

3]

}

R2 (τ ) = − 1
4χ

{
3K(κ)− 9�(8, κ)− (2

√
3 − 3)�[−(12

√
3 − 20), κ]

+ (2
√

3 + 3)�(12
√

3 + 20, κ)
}

where κ2 = 2
3τ2 − 1

. (5.5.116)

Now substituting the values of R1(τ ) and R2(τ ) in displacement equation we have

q(r) = 0 for τ <
1√
3

(5.5.117)

q(r) = −
⎛
⎜⎝ Zτ

√
3
2

16π2Gr

⎞
⎟⎠ {6K(k)− 18�(8k2, k)+ (6 − 4

√
3)�[−(12

√
3 − 20)k2, k]

+ (6 + 4
√

3)�(12
√

3 + 20)k2, k)} for
1√
3
< τ < 1

(5.5.118)

q(r) = −
⎛
⎜⎝ Zτ

√
3
2

16π2Gr

⎞
⎟⎠ {6K(κ)− 18�(8, κ)+ (6 − 4

√
3)�[−(12

√
3 − 20), κ]

+ (6 + 4
√

3)�(12
√

3 + 20), κ)} for 1 < τ < γ

(5.5.119)
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q(r) = −
⎛
⎜⎝ Zτ

√
3
2

16π2Gr

⎞
⎟⎠ {6K(κ)− 18�(8, κ)+ (6 − 4

√
3)�[−(12

√
3 − 20), κ]

+ (6 + 4
√

3)�(12
√

3 + 20), κ)} + Zτ

8πGr
√
τ2 − γ 2

for τ > γ (5.5.120)

Looking at the value of q(r) above it will be observed that all values in right hand
side of the equation are finite and definite as such it is possible to find out values of
q(r) for any finite value of τ or t at any distance r provided we are in a position to find
out the values of those complete elliptical integrals of first and third kind.

Well, mathematicians have not been so heartless. To ease our work, tables giv-
ing values of these elliptic integrals are available which may be effectively used
(Abramowitz & Stegan 1964) or else, they can be solved numerically based on
Simpson’s 1/3rd rule or other standard algorithm.

5.5.3 Pekeris’ solution for buried pulse

Pekeris (1955) also gave solution for buried pulse. We present here however a modified
version of the same which is more amenable to numerical analysis (Pekeris & Lifson
1957).

While solving for the surface pulse we had shown that

2π

∞∫
0

[(σzz)1 − (σzz)2]r · dr = Z (5.5.121)

We had also shown that vertical and horizontal displacement in polar co-ordinate
is given by

w(r, z) = Zk
2πG

∞∫
0

J0(ξr)ξ [−(2ξ2 + k2)e−kαH + 2ξ2e−kβH]
( α

M

)
dξ and

(5.5.122)

q(r, z) = − Z
2πG

∞∫
0

J1(ξr)ξ2[(2ξ2 + k2)e−kαH − 2k2αβe−kβH]
(

dξ
M

)
(5.5.123)

where M = [(2ξ2 + k2)2 − 4k2ξ2αβ].
Considering ξ = kx and substituting the same for ξ , after some simplification we

can write

w(r, z) = Zk
2πG

∞∫
0

J0(krx)x[−f1(x)e−kαH + f2(x)e−kβH]dx (5.5.124)
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where,

f1(x) = α(2x2 + 1)
(2x2 + 1)2 − 4x2αβ

and f2(x) = 2αx2

(2x2 + 1)2 − 4x2αβ

for ν = 0.25 Vp = Vs
√

3 (5.5.125)

To determine the displacement due to buried pulse it is necessary to solve the integral
equation

ω

∞∫
0

e−ωt w(t, r, H) = Zk
2πG

∞∫
0

J0(krx)x[−f1(x)e−kαH + f2(x)e−kβH] (5.5.126)

We do not intend to solve the above integral, but present the results directly which
is amenable to numerical solution.

w(t, r, H) = 3ZW
π2GR

, where R =
√

r2 + H2 and W = (−Wp + Ws)

(5.5.127)

Here Wp represents the compressional component of the wave and Ws represents
the shear component of the wave.

3Wp = 0 for τ < 1/
√

3 (5.5.128)

3Wp = Re

π

2∫
0

(hτ + iv0 sinφ)f1(x)dφ for τ > 1/
√

3 (5.5.129)

where

h = H/R; v0 = (1 − h2)(τ2 − 1/3); α = hτ + iv0 sinφ;

x =
√
α2 − 1/3 and β =

√
α2 + 2/3 (5.5.130)

Here the word Re means that while performing the numerical integration only the
real part of the final value need to be considered only.

Before we proceed further it would worthwhile to study the characteristics of waves
as obtained from the expressions above.

Since vp = vs
√

3 meaning vp > vs, it is evident that compression waves (represented
by the function Wp) first reaches the surface and varies monotonically throughout its
course. The shear wave traveling with velocity <Vp reaches latter and its variation is
much more complicated due to diffraction. We study the characteristics for some of
the cases below.
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Case-1 Buried Pulse at r < H/
√

2

As shown in Figure 5.5.9 a shear wave S incident on the surface which is traveling
in vertical direction (often depicted as SV waves) when r < H/

√
2. The wave gets

partially reflected as an S′ wave which is shearing in nature and a compressive wave
P′ where P′ travels with velocity Vp.

Case-2 Buried pulse at r = H/
√

2

As shown in Figure 5.5.10, at r = H/
√

2 the P wave grazes the free surface and owes
its existence entirely due to diffraction.

Case-3 Buried pulse at r > H/
√

2

When r > H/
√

2 like point B shown in Figure 5.5.11, in addition to direct shear wave
S which travels along OB another wave with velocity vs travels along OA and the
horizontal distance AB with velocity Vp. This diffracted wave is often termed as SP
wave. It can be shown that SP wave reaches point B earlier than S wave (traveling
along OB) though it travels a longer distance OAB.

Thus for r < H/
√

2 the order of arrival of waves are P and S and for r > H/
√

2 the
order of arrival is P, SP and S.

2/H

             r  Free surface 

H   S P ’

 S ’

Figure 5.5.9 Reflection of waves from buried source at distance r < H/
√

2.

r = 2/H

H  S S ’

Free surface

Figure 5.5.10 Reflection of waves from buried source at distance r = H/
√

2.
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r = H / 2 A Vp B Free surface

H VS   S S’

O

Figure 5.5.11 Reflection of waves from buried source at distance r > H/
√

2.

It is obvious based on above discussion that when r<H/
√

2 or r > H/
√

2 the
characteristics of Ws would vary significantly.

For Vertical direction

For r < H/
√

2

3Ws = 0 for τ < 1 (5.5.131)

3Ws = Re

∞∫
0

(
hτ + iμ0 sinφ

)
f2(x)dφ for τ > 1 (5.5.132)

Here μ0 =
√
(1 − h2)(τ2 − 1), h = H

R
, R =

√
H2 + r2 (5.5.133)

β = hτ + iμ0 sinφ, x =
√
(β2 − 1),α =

√
β2 − 2/3 and (5.5.134)

f2(x) = 2αx2

(2x2 + 1)2 − 4x2αβ
(5.5.135)

For r > H/
√

2 as explained earlier SP waves arrive first at surface and starts at
time function τ = τ ∗ where

τ ∗ =
[
h
√

2/3 +
√
(1 − h2)/3

]
(5.5.136)

3Ws = 0 for τ < τ ∗ (5.5.137)

3Ws = −I

π

2∫
0

β f2(x)

⎡
⎢⎣ cosφ√

κ2 + sin2 φ

⎤
⎥⎦ dφ for τ < τ ∗ < 1 (5.5.138)

Here I denotes that only the imaginary/complex part of the integration needs to be
considered.
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After arrival of the S waves (following the SP waves) Ws is given by

3Ws = Re

π

2∫
0

(hτ+iμ0 sinφ)f2(x)dφ−δ

×
⎡
⎢⎣I

π

2∫
0

(hτ+δ sinψ)f2(x)
cosψ√

μ2
0 + δ2 sin2 ψ

dψ

⎤
⎥⎦

for 1 < τ <

√
2/3
h

(5.5.139)

Here δ = (
√

2/3 − hτ), m =
√
δ2 − κ2m2, κm =

√
(1 − h2)(1 − τ2)

(5.5.140)

β =
[
hτ + m

√
κ2 + sin2 φ

]
, x = i

√
1 − β2, α = i

√
2/3 − β2 (5.5.141)

3Ws = Re

π

2∫
0

(hτ + iμ0 sinφ)f2(x)dφ for τ >

√
2/3
h

(5.5.142)

In the first integral of Equation (5.5.136) and in Equation (5.5.139), we substitute
equation (5.5.132), while in second integral of Equation (5.5.137), we put

β = [hτ + δ sinψ], x = i
√

1 − β2, and α = i
√

2/3 − β2 (5.5.143)

For Horizontal direction

Similar to the vertical displacement, the horizontal displacement at the surface is
given by

q (ω) = Zk
2πG

∞∫
0

J1(krx)x2[g1(x)e−kαH − g2(x)e−kβH]dx (5.5.144)

where g1(x) = 2αβ
(2x2 + 1)2 − 4x2αβ

and g2(x) = 2x2 + 1
(2x2 + 1)2 − 4x2αβ

(5.5.145)

Also, we can write

q(t, r, H) = − 3Z
π2Gr

Q (5.5.146)

where, Q = −Qp + Qs the compressional and shear component of the waves.
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Again without going into the details of the solution of the integral equation, we
proceed to give directly the solution of Qp and Qs.

3Qp = 0 for τ <
1√
3

(5.5.147)

3Qp = −Re

π

2∫
0

(hτ + iv0 sinφ)[τ − h(hτ + iv0 sinφ)]g1(x)dφ (5.5.148)

for τ >
1√
3

where τ = Vst
R

, h = h
R

, α = hτ + iv0 sinφ, β =
√
α2 + 2

3
, (5.5.149)

v0 =
{
(1 − h2)

√
τ2 − 1

3

}
, x =

√
α2 − 1

3
(5.5.150)

For r < H√
2

Qs is given by

3Qs = 0 for τ < 1 (5.5.151)

3Qs = −Re

π

2∫
0

(hτ + iμ0 sinφ)[τ − h(hτ + iμ0 sinφ)] g2(x)dφ for τ > 1

(5.5.152)

where g2(x) = 2x2 + 1
(2x2 + 1)2 − 4x2αβ

(5.5.153)

x =
√
α2 − 1

3
, α = hτ + iμ0 sinφ, β =

√
α2 + 2

3
(5.5.154)

For r < H√
2
, Qs is given by

3Qs = 0 for τ < τ ∗ (5.5.155)

3Qs = I

π

2∫
0

β(τ − hβ)g2(x)

⎡
⎢⎣ cosφ√

κ2 + sin2 φ

⎤
⎥⎦ dφ for τ ∗ < τ < 1 (5.5.156)

3Qs = −Re

π

2∫
0

(hτ + iμ0 sinφ)[τ − h(hτ + iμ0 sinφ)]g2(x)dφ
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+ δI

π

2∫
0

β(τ − hβ)g2(x)

⎡
⎢⎣ cosψ√

μ2
0 + δ2 sin2 ψ

⎤
⎥⎦ dψ for 1 < τ <

√
2/3
h

(5.5.157)

3Qs = −Re

π

2∫
0

(hτ + iμ0 sinφ)[τ − h(hτ + iμ0 sinφ)]g2(x)dφ for τ >

√
2/3
h

(5.5.158)

In Equations (5.5.153) and (5.5.155), we substitute expressions of (5.5.146) while
for the second integral in Equation (5.5.154), expression (5.5.141) is to be substituted.

5.5.4 Interpretation of Pekeris’ solution

You may solve the above equations and plot them to find out the nature of wave
propagation for different values of τ and r/H.

We give below the basic essence of Pekeris’ findings at a far off distance from the
source.

As shown in Figure 5.5.12, when the waves arrive at a site, the first to arrive are the
compression (P) waves followed by the shear (S) waves which produce a minor tremor
and finally with the arrival of the Rayleigh surface wave a major tremor is produced.
This has been indeed observed when a far field earthquake occurs at a site.

When the focus of the source point is shallow, Pekeris’ solution for the surface pulse
can be used to estimate the amplitudes and stress induced in the medium.

A
m

pl
it

ud
e Rayleigh Wave

S wave

P wave 

Elapsed Time

Minor Tremor  Major Tremor   

Figure 5.5.12 Propagation of wave from a far field source.
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Elapsed Time

Rayleigh Wave      

Figure 5.5.13 Propagation of wave for source at r/h = 1000.

Other than this, underground explosion in mines and its effect on surface structures,
underground nuclear explosion71 and its effect on surface can well be estimated by
Pekeris’ solution.

At a distance of r/H greater or equal to 1000, the characteristics of wave propa-
gation is as shown Figure 5.5.13. Based on above it is clear that it is Rayleigh wave
propagating on the surface is the major disturbing source and creates havoc during a
major earthquake.

5.5.5 Chang’s Solution to dynamic response
for horizontal surface loading

While Pekeris gave solution to pulse load buried or on the surface of an elastic half
space, Chang (1960) gave solution to dynamic response of a half-space subjected to
tangential force acting on the surface of the half space. This surface loading cannot be
simplified to axial symmetry. Chang obtained a closed form solution for the surface
displacements and displacements (u, v, w in the x, y and z-directions, respectively)
directly below the applied force varying with time as the Heaviside unit function. In
order to simplify the calculations, Lame’s constants λ is assumed to be equal to G
i.e. Poisson’s ratio, ν = 1/4.

The boundary conditions on the elastic half-space z ≥ 0 with traction-free surface
z = 0, when a concentrated force, F, parallel to the x-axis is applied inside the medium
and varies with time as a Heaviside unit function.

Case 1 z = 0, i.e. the surface displacements corresponding to a tangential force F,
acting at a point on the surface:

Parameters used are: r2 = x2 + y2; τ = vst/r; and v2
s = G

/
ρ

71 A common occurrence in 1960–70 however banned presently under CTBT convention.
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Here G and ρ are the shear modulus and mass density of the elastic half-space;
vs is the shear wave velocity. The solutions are mentioned hereafter.

u1 = 0 τ < 1/
√

3

u1 = F
πGr

⎡
⎢⎣ 9τ2

8
√

3τ2 − 3
4

− τ2
√

6
√

3 + 10

16
√
τ2 − β2

− τ2
√

6
√

3 − 10

16
√
γ 2 − τ2

⎤
⎥⎦ for 1/

√
3 < τ < 1

u1 = F
πGr

[
1
2

− τ2
√

6
√

3 − 10

8
√
γ 2 − τ2

]
for 1 < τ < γ (5.5.159)

u1 = F
2πGr

for γ < τ

u2 = 0 for τ < 1/
√

3

u2 = F
πGr

[
− 3

16
+ 3

8

√
3
(
τ2 − 1

4

)
− 1

16

√
(10 + 6

√
3)(τ2 − β2)

+ 1
16

√
(10 − 6

√
3)(γ 2 − τ2)

]
for 1/

√
3 < τ < 1

u2 = F
πGr

[
−3

8
+
√
(6

√
3 − 10)(γ 2 − τ2)

]
for 1 < τ < γ (5.5.160)

u2 = − 3F
8πGr

for γ < τ

u3 = 0 for τ < 1/
√

3

u3 = Fτ
√

6
32π2Gr

[6K(m)− 18�(8m2, m)− (4
√

3 − 6)�{−(12
√

3 − 20)m2, m}]

+ (4
√

3 + 6)�{(12
√

3 + 20)m2, m} for 1/
√

3 < τ < 1

u3 = Fτ
√

6n
32π2Gr

[6K(n)− 18�(8, n)− (4
√

3 − 6)�{−(12
√

3 − 20), n}]

+ (4
√

3 + 6)�{(12
√

3 + 20), n} for 1 < τ < γ

u3 = Fτ
√

6n
32π2Gr

[6K(n)− 18�(8, n)− (4
√

3 − 6)�{−(12
√

3 − 20), n}]

+ (4
√

3 + 6)�{(12
√

3 + 20), n} + Fτ

8πGr
√
τ2 − γ 2

for γ < τ (5.5.161)
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in which m = 3τ 2−1
2 ; n = 1

m and, K(k) = ∫ π/2
0

dθ√
1−k2 sin2 θ

, �(n, k) =∫ π/2
0

dθ(
1+n sin2 θ

)√
1−k2 sin2 θ

are complete elliptical integral of the first and third kinds.

Case 2 r = 0, the displacements are along the z-axis directly below an applied
tangential force which acts at a point (the origin) on the surface:

u3 = 0

u1 = −u2 = 0 τ1 < 1/
√

3

u1 = −u2 = − F
2πGz

⎡
⎢⎣ τ1

(
τ2

1 − 1
3

)√
τ2

1 + 2
3(

2τ2
1 + 1

3

)2 − 4τ1
(
τ2

1 − 1
3

)√
τ2

1 + 2
3

⎤
⎥⎦

for 1/
√

3 < τ1 < 1

u1 = −u2 = F
(
τ2

1 + 1
)

4πGz
− F

4πGz

⎡
⎢⎣ 2τ1

(
τ2

1 − 1
3

)√
τ2

1 + 2
3(

2τ2
1 + 1

2

)2 − 4τ1
(
τ2

1 − 1
3

)√
τ2

1 + 2
3

⎤
⎥⎦

+ F
4πGz

⎡
⎢⎢⎣

2τ2
1

(
τ2

1 − 1
) [

2τ1
√
τ2

1 − 2
3 − (

2τ2
1 − 1

)]
(
2τ2

1 − 1
)2 − 4τ1

(
τ2

1 − 1
)√
τ2

1 − 2
3

⎤
⎥⎥⎦ for 1 < τ1,

where τ1 = vst
z

. (5.5.162)

ur, uθ and uz in (r, θ , z) coordinate system may be written as:

ur = u1 cos θ ; uθ = u2 sin θ and uz = u3 cos θ . (5.5.163)

The non-zero displacement directly below the applied force is ux = ur cos θ – uθ sinθ .
The solution shows that there exist three distinct wave fronts, traveling with velocities
vp = √

(λ+ 2G)/ρ, vs = √
G/ρ and vs/γ respectively. For Poison’s ratio, ν = 1/4,

γ 2 = (3+
√

3)/4 (γ is the root of Rayleigh equation). These waves are identified as the
pressure wave (P), the shear wave(S) and the Rayleigh surface wave (R), respectively.

Before the arrival of the P-wave, the medium was in complete rest. At the arrival
of the P-wave the velocities experience a sudden jump. The arrival of the S-wave
is marked by a finite jump in v; however, for displacements ur and uθ [in (r, θ , z)
coordinate system] , it is marked only by discontinuities in the corresponding velocity
components. The arrival of the R-wave is marked by infinite discontinuity in ur and
uθ while for uθ , only a discontinuity in velocity occurs.
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In the neighbourhood of R-wave front, the major portion of the displacement is ur
and uθ is proportional to

1
r2[τ2 − γ 2]1/2 = 1

[γ (τ + γ )]1/2
1√
r rR

(5.5.164)

where |rR| = |r − vst/γ | is the distance from the R-wave front and the displacement
vary as (1/rrR)

1/2 in the neighbourhood of the wave front of the surface wave. At large
distances from the applied force, only small uθ displacement occurs, while the other
components still assume very large values when the surface wave arrives.

In steady-state solution, it can be observed that on the surface of the elastic half-
space, the quantity [uθ /Fcosθ ], corresponding to a tangential force on the surface, is
equal to the quantity [ur/F], corresponding to a vertical force on the surface. Such a
reciprocal relation is seen to be preserved for all time for the dynamic case by com-
paring the quantity [uθ /Fcos θ ] of this derivation to the corresponding quantity [ur/F]
of Pekeris (1957).

5.6 GEOTECHNICAL EARTHQUAKE ANALYSIS

5.6.1 Soil dynamics and earthquake

Even thirty years ago mechanics of propagation of wave due to earthquake was a
subject that remained an exclusive haven of geologists and seismologists with civil
engineers hardly having any idea as to the propagation mechanics. However times
have changed. Civil engineers of today have to make a much more detailed assessment
of seismic hazard a project would face if build in a seismic prone zone. He has to make
a reasonable assessment of the risk involved and give feedback to the investors who are
investing significant amount of money in such projects. In today’s global scenario, oil
and power companies are investing billions of dollars to develop oil and gas facilities
and power plants across the world, where surely they would like to know the risk
involved in case such happenstance occurred.

It is for this we have seen civil engineers in last three decades increasingly sitting
with seismologists, geologists, geophysicists and trying to understand the mechanics
and try to rationalize and seek the design parameters which affect his design procedure.

In this context how soil dynamics comes into play in understanding such mechanics
is our topic of discussion in this section.

5.6.1.1 The seismological mechanics of earthquake

We have given some background on this in Chapter 3 (Vol. 2) while discussing earth-
quake resistant design of structures and foundations. In this chapter we only restrict
the same by saying that strains build up in rock due to geologic upheaval finally comes
to a point at which the rock no longer can sustain the strain and generates a crack
in it72, the strain energy built up within the body thus gets released as kinetic energy

72 These are called Fault lines in Geological science.
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generating stress waves within the rock which propagates all around and causes the
earthquake.

Let us consider further a scenario. . .
A power plant is being built at a place where it is known that there exists a fault

say 150 kilometer away from the site? The fault has a history of generating a few
minor tremors (M < 5.0 say) in the past what is the risk involved for an earthquake
of M ≥= 6.5 to occur? One does not need to be a mathematical genius to guess that
the problem is probabilistic.

However, a few questions immediately emerge out of the problem which could be
summarized as follows:

• What chance is there that a major earthquake would emerge from the fault?
• What could be its intensity (usually measured in Richter scale)?
• What would be duration of shaking?
• What would be the peak ground acceleration at the site which is 150 KM away?
• The waves normally attenuate with distance thus the shock that would be felt at

the site – would it decrease?
• Or the local geological condition of the site is such that it may amplify the response?

Before we answer these questions, we need to know a few seismological terms based
on which we would try to quantify and answer the above-mentioned queries.

1 Focus: This is the point O or source on the fault line from where the earthquake
generates. This is the point from where the rupture first generates.

2 Focal distance: The distance OA as shown in Figure 5.6.1 is called the focal
distance. Based on this distance an earthquake may be deep focused (when OA

A

X

 Seismic waves (typical)    A = Epicenter
OA = Focus
AX = Epicentric distance
OX = Hypocentric distance

 

O

    
Fault line

Figure 5.6.1 Common seismological terms used for evaluation of an earthquake for a given site.
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>300 to700 km), intermediate focused (when OA >60 to 300 km) and short
focused when (OA is ≤60 Km).

3 Epicenter : The point A that is vertically above the focus or point of rupture is
called the epicenter.

4 Epicentric Distance: The horizontal distance AX from the epicenter to the given
site (X) is called the epicentric distance. This distance is usually depicted by D.

5 Hypo-centric distance: The distance OX from the focus to the site is called the
hypo-centric distance. For shallow focused earthquake and far field response hypo-
centric distance becomes almost equal to epicentric distance. Hypocentric distance
is usually depicted by R.

6 Earthquake Intensity: How strong is an earthquake when it shakes the ground?
Richter (1958) was the first to propose a scale named after him as Richter scale
which qualitatively measures the earthquake intensity. You may refer to IS-1893
the Indian standard for code of earthquake resistant design or similar interna-
tional code, which gives the description of the scales. This is usually depicted
by M, earthquake of intensity greater than 6 is usually known as strong motion
earthquake which affects our civil engineering structures and foundation.

5.6.1.2 Energy released due to earthquake

Energy released due to an earthquake is given by the expression as per Richter as

log10 E = 11.4 + 1.5M (5.6.1)

Here E is the energy in ergs and M is the intensity of earthquake in Richter scale. Bath
(1966) corrected the above formula as

log10 E = 12.24 + 1.44M (5.6.2)

5.6.1.3 Relation between length of fault rupture and earthquake
intensity

Tocher (1958) based on observation of a number of earthquakes in California gave
the relation as

log L = 1.02M − 5.77 (5.6.3)

Here L is the length of fault rupture in km.
Variation of length of rupture with Earthquake magnitude is shown in Figure 5.6.2.

5.6.1.4 Duration of earthquake

Duration of strong motion earthquake normally increase with the earthquake intensity
and distance from the source and could also increase from rock to soil sites. How-
ever estimates are mostly probabilistic and based on observed data, which are the
fitted based on regression analysis. Duration of earthquake with magnitude is given
in Figure 5.6.3.
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Figure 5.6.2 Length of rupture at earthquake source.
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Figure 5.6.3 Duration of earthquake with magnitude.

Donovan (1974) based on data as observed for US and Japanese earthquake
proposed a relationship

D = 4 + 11(M − 5) for M > 5 (5.6.4)

Dobry and other researchers based on observation of earthquake in US has given a
relationship

log D = 0.432M − 1.83 (5.6.5)

Bullen & Bolt(1985) has proposed an expression based on the observed ground
acceleration at site given by

D = 17.5 tan h(M − 6.5)+ 19 (5.6.6)
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for a > 0.05 g where a = ground acceleration,

D = 7.5 tan h(M − 6)+ 7.5 for a >0.10 g (5.6.7)

Here the epicentric distance is considered to be less or equal to 25 km.

5.6.1.5 Predominant period of rock motion

Gutenberg & Richter(1956) based on study of a number of Californian earthquake
presented the following data vide Table 5.6.1 for the predominant periods of accel-
erations developed at different epicentral distances by earthquakes with magnitude
ranging from 5.5 to 6.5.

Table 5.6.1

Epicentral distance in kM 0–50 51–100 101–150 151–200 201–250

Predominant period in seconds 0.25 0.3 0.4 0.4 0.6

5.6.1.6 Peak ground acceleration and velocity

The peak ground acceleration a and velocity v is related the to earthquake magnitude
and hypo-centric distance as

a = 5600e0.8M

(R + 40)2
and v = 32eM

(R + 25)1.7 (5.6.8)

The above is valid for a case when the focal distance is less than 15 km.
Esteva & Rosenblueth (1973) has given a modified version of the peak ground

accelelration as

a = 110e0.8M

(R)1.6 (5.6.9)

A very popular formulation that is in used in design office is one proposed by
Mcguire (1974) and is expressed as

log a = 2.649 + 0.278M − 1.301 log(R + 25) (5.6.10)

where, a is expressed in cm/sec2.
It is to be noted that all these formulas are for acceleration in bedrock or through

soil having stiffness as strong as rock (i.e. Vs > 600m/sec).
The Peak ground acceleration variations are shown in Figures 5.6.4 and 5.

5.6.1.7 Attenuation factor

Earthquakes have been observed to attenuate with distance. For predicting the design
earthquake at particular site it is essential to know as to how it attenuates with distance.



Concepts in structural and soil dynamics 727

0.00

1.00

2.00

3.00

4.00

5 6 6.5 7 7.5 8 8.5 9

Earthquake Magnitude

S
a/

g
Esteva &
Villeverde (R=10)

Esteva &
Rosenblueth (R=10)

Figure 5.6.4 Peak ground acceleration at epicentric distance at R = 10 km.
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Figure 5.6.5 Peak ground acceleration at epicentric distance at R = 15 km.

Blume (1965) has given an attenuation factor as

Fd = 1
1 + (D/h)2

(5.6.11)

in which, h = depth of the earthquake source at focus, and D epicentral distance.
Gutenberg & Richter (1956) has given an expression for acceleration at the

epicenter as

log a0 = −2.1 + 0.81M − 0.027M2 (5.6.12)

aD = Fd a0 (5.6.13)

where Fd =
[

1.25
1+D/y0

]n
in which n = 1 + 1

2.5Tp
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where Tp = predominant time period which varies with distance as given earlier
y0 = 48 miles; D = site distance which should be greater or equal to 12 miles.

5.6.1.8 One dimensional ground motion under earthquake

Engineers working in a design office are normally not called upon to tackle response of
ground under earthquake. Their working interface starts from the simplified response
curve as shown in Figure 5.6.6.

As per IS code peak force expected in a site with a probability of severe shock is
given by

Ah = ZI
2R

(
Sa

g

)
(5.6.14)

for severe case taking Z = 0.24 I/R = 1.0, maximum peak ground acceleration (Sa/g)
expected is 0.3 g.

There are however cases due to local geological condition the acceleration at ground
level can be much higher especially when bedrock is overlain by soft soil. This is usually
known as local ground amplification.

Ground motion study is thus an estimate of what peak acceleration a particular site
can generate. In special cases73 it is also used to generate site specific response spectra
for design of structures constructed on it.

Unless the site has peculiar configuration like being a valley or confined, one dimen-
sional analysis of wave propagation is good enough to give an estimate of ground
motion at a particular site.

We present herein two common techniques which are being used for finding out the
response at surface of a soil underlain by rock.

1 Developed by Schnabel et al. (1972) based on frequency domain analysis.74 Which
usually considers the soil as linear and elastic.

2 Developed by Idriss and Seed (1968) based on time domain analysis75 which also
takes into cognizance the non linearity of the soil.

5.6.1.9 Schnabel’s method of estimation of response of horizontal
soil over over rigid rock

This technique was developed by Schanbel (1972) and is implemented in the software
SHAKE.

We develop the method step by step starting with the simplest case and progressing
to the complex one.

73 Like Nuclear Power plants.
74 The technique is often used across the world based on the software SHAKE developed at Dept of Civil

Engineering University of California Berkeley.
75 The technique is implemented in the software called MASH developed by Martin and Seed at University

of California Berkeley.
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Figure 5.6.7 Horizontal soil layer of depth H underlain by rigid rock.

Case-1

Uniform undamped soil over rigid rock as shown in Figure 5.6.7.
We consider a soil column through which due to harmonic load the waves are

propagating vertically. The soil layer has depth H and is considered undamped. The
differential equation of motion in this case is thus

ρ
∂2u
∂t2 = G

∂2u
∂z2 (5.6.15)

The solution to above equation in complex form is expressed as

u(z, t) = X1ei(ωt+kz) + X2e−i(ωt−kz) (5.6.16)

where ω = Circular frequency of ground motion; k = wave number @ ω/vs; vs = shear
wave velocity of the soil.
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At free surface as the shear stress must be equal to zero we have

τ(0, t) = G
∂u
∂z

= 0 which gives, Gik(X1eik0 − X2e−ik0)eiωt = 0

It is evident that above can only be zero provided X1 − X2 = 0 or X1 = X2.
Thus, u(z, t) = 2X1

eikz+e−ikz

2 eiωt, considering X1 = X, we have

u(z, t) = 2X cos kzeiωt (5.6.17)

The above equation can be used to define a transfer function that can describe ratio
of displacement amplitudes at any two points in the soil layer. Choosing these two
points at top and bottom of the soil layer we have the transfer function as

H(ω) = u(0, t)
u(H, t)

= 1
cos kH

(5.6.18)

Since the denominator cannot be more than 1 it shows that surface motion at worst
can be equal to the amplitude of the bedrock and for other values more than 1.

Resonance will obviously occur when the denominator is zero i.e.

cos
ωnH

vs
= 0 ⇒ ωnH

vs
= (2n − 1) π

2
or

⇒ ωn = (2n − 1) πvs

2H
(5.6.19)

which is the free field natural frequency of the soil layer.
The variation of amplification factor with kH is as shown in Figure 5.6.8.
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Figure 5.6.8 Amplifications of undamped soil overlaying rigid rock.
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Case-2

Horizontal soil layer with damping underlain by rigid rock
In this case the differential equation of motion is given by

ρ
∂2u
∂t2 = G

∂2u
∂z2 + η

∂3u
∂z2∂t

(5.6.20)

Considering u = φeiωt, when substituted in the above equation we have

−ρω2φ = (G + iωη)
d2φ

dt2 or −ρω2φ = G∗ d2φ

dt2 (5.6.21)

Here G∗ is known as the complex Shear Modulus of the soil76.
Solution to the above equation can thus be expressed as

u(z, t) = X1ei(ωt+k·z) + X2e−i(ωt−k·z) (5.6.22)

Here k∗ is the complex wave number expressed as, k∗ = ω/v∗
s , where v∗

s =
√

G∗/ρ
the complex shear wave velocity of the soil.

It can be shown that considering the soil constitutive model as a Kelvin-Vogt
Model the viscosity factor η = 2GD

ω
where D is the material damping ratio of the

soil. Substituting this value of D, we have G∗ = G(1 + 2iD). Now considering the
expression

v∗
s = √

G∗/ρ we can approximate the complex shear wave velocity as

v∗
s = vs (1 + iD). (5.6.23)

At free surface as the shear stress must be equal to zero we have

τ(0, t) = G∗ ∂u
∂z

= 0 which gives, G∗ik∗(X1eik0 − X2e−ik0)eiωt = 0

This results in X1 − X2 = 0 or X1 = X2 = X.
Thus, u(z, t) = 2X cos k∗zeiωt

76 One need not get confused or puzzled with the concept of complex shear modulus – just treat it as a
mathematical symbol you will finally see that it all boils down to real numbers in the end.
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The transfer function in this case is thus expressed as

H(ω) = u(0, t)
u(H, t)

= 1
cos k∗H

or H(ω) = 1/[cos(ωH/v∗
s )]

where k∗ = ω

v∗
s

= ω

vs(1 + iD)

i.e. k∗ = ω

vs
(1 + iD)−1 ≈ ω

vs
(1 − iD) = k (1 − iD) (5.6.24)

Thus the transfer function can now be expressed as

H(ω) = 1
cos k (1 − iD)H

= 1
cos(kH − iDkH)

Considering kH = a and −DkH = b, we have |cos(a + ib)| = |cos2 a + sin h2b|

which gives, |H (ω)| = 1√
cos2 kH + sin h2kH

(5.6.25)

The variation of amplification factor for various damping ratio and kH are as shown
in Figure 5.6.9.

Observing the above figure it will be seen that when bedrock is overlain by soil
there can be significant amplification of acceleration at ground level which can be
many times more than the bedrock motion. At resonance due to the presence of
damping the value is magnified yet remains finite. A number of researches conducted
(Zeevart 1983) with previous earthquakes show that is indeed the case and has been
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Figure 5.6.9 Soil amplification factor for damped soil overlying rigid rock.
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the cause of significant destruction of a number of structures and facilities built on
such ground.

Other than above, Schnabel’s technique also takes into cognizance, layered soil
strata overlying rock. Based on recursive technique one can compute the transfer
functions at any point within the soil at any particular layer. Details of the same are
available in Kramer (2004) or in the User manual of SHAKE, which gives the derivation
in quite detail.

One of the major objections by many researchers in use of frequency domain analysis
in geo-technical earthquake engineering is that the transfer function theory is valid only
when the system is linear and elastic while soil (especially soft soil) is notorious for its
non-linearity, specifically when the strain rate is high.

All strong ground motion induces enough strain in ground to make it behave in non
linear fashion and compounded by the fact that soil undergoes stiffness degradation
with progressive increment of strain and increases in damping ratio, many researchers
perceive that frequency domain analysis remains only a qualitative assessment of the
behavior of soil under such earthquake force.

Nevertheless the theory and the software still remains quite popular in design office
for assessment of ground amplification due to local site condition that can affect the
surface motion.

5.6.1.10 Idriss and Seed (1968)’s method of determination
of ground motion

This is a time domain analysis where the differential equation of motion is considered as

ρ(z)
∂2u
∂t2 + c(z)

∂u
∂t

− G(z)
∂2u
∂z2 = −ρ(z)∂

2ug

∂t2 (5.6.26)

in which, ρ(z) = mass density of soil in z direction; c(z) = damping of soil in z
direction; G(z) = dynamic shear modulus varying with depth ∼= Gzα; gu = relative
displacement of ground with respect to bedrock; ug = displacement at bed rock level.

Considering u(z, t) = ∑∞
n=1 φn(z)ψn(t) and applying the law of separation of vari-

able the above partial differential equation can be broken up into two liner differential
equations whose solutions are given by

φn(z) =
(

1
2
βn

)b

�(1 − b)
( z

H

)b
/
θ

J−b

[
βn

( z
H

)1/θ
]

(5.6.27)

and ψ̈n(t)+ 2Dωnψ̇n(t)+ ω2
nψn(t) = −Pnüg (5.6.28)

Here J−b is the Bessel’s function of first kind of order −b, βn represents the roots
of the equation J−b(βn) = 0 for n = 0, 1, 2, 3. . . . . . (Abramowitz and Stegan1964)77.

77 The roots are standard values available in many Mathematical Handbooks.
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� is the gamma function

ωn =
βn

√
G
/
ρ

(θH)1/θ
and D = c/2

ρωn
and Pn =

[
(βn/2)1+b �(1 − b)J1−b (βn)

]−1

θ = 2
2 − α

and b = α − 1
α − 2

(5.6.29)

For calculating displacements the steps followed are as follows

1 Find out α, G, H, c etc.
2 Determine φn for various modes78

3 Perform time history response analysis for a given bedrock earthquake data to
find out ψn(t). This can be very easily done by Wilson–θ or Newmark-β method
as shown earlier

4 Obtain u(z, tp = φν · D)ψν(τ )
5 Determine u̇(z, t) and ü(z, t) by differentiating above
6 The absolute total acceleration, velocity and displacement can be obtained as

utot(z, t) = u(z, t)+ ug(z, t); u̇tot(z, t) = u̇(z, t)+ u̇g(z, t);

ütot(z, t) = ü(z, t)+ üg(z, t) (5.6.30)

For cohesion less soil considering α = 1/3 Idriss and Seed has given following
expression for sandy soil

φn(z) =
(

1
2
βn

)0.4

�(0.6)
( z

H

)1/3
J−0.4

[
βn

( z
H

)5/6
]

(5.6.31)

ψ̈n(t)+ 2Dωnψ̇n(t)+ ω2
nψn(t) = −üg

[
(βn/2)1.4 �(0.6)J0.6 (βn)

]−1
(5.6.32)

ωn = βn

√
G/ρ

1.2H5/6 and β1 = 1.751, β2 = 4.8785, β3 = 11.157 for the first three mode.

For purely cohesive soil i.e. α = 0 the expression gets modified to

φn(z) = cos
[

1
2
(2n − 1)

( y
H

)]
and

ψ̈n(t)+ 2Dωnψ̇n(t)+ ω2
nψn(t) = (−1)nüg

[
4

(2n − 1) π

]
ωn =

(2n − 1)π
√

G
/
ρ

2H
.

(5.6.33)

78 In most of the practical case fundamental mode should suffice.
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For fundamental mode the time period is thus given by

T = 4H/Vs where G = ρVs2 (5.6.33a)

One of the advantages with time domain method is that incorporating non-linearity
of soil is quite straight forward.

At every step of integration based on incremental displacement average strain in the
soil can be estimated and based on the reference strain at which G was obtained the new
G can be obtained as Gi+1 = Gmax/ [1 + ψi/ψmax] and Di+1 = Di/ (1 − Gi/Gmax)

where ‘i’ is the number of the step of the iteration79.

5.6.1.11 A practical method for linear and non-linear dynamic
analysis of ground due to earthquake

We show in Figure 5.6.7, a practical method (Chowdhury & Dasgupta 2007) for
evaluation of ground response due to earthquake which gives a qualitative assessment
of the behavior of soil under earthquake.

The strain energy of body in three dimensions is given by

V = λe2

2
+ G(ε2

x + ε2
y + ε2

z )+ G
2
(γ 2

xy + γ 2
yz + γ 2

xz) (5.6.34)

where V = strain energy density of the soil body; λ = 2Gν/(1 − 2ν); G = dynamic
shear modulus of the soil medium and νg its Poisson’s ratio; e = εx + εy + εz; εx,y,z =
strain in the x, y and z direction and γxy,yz,zx = shear strains in the xy, yz and zx planes
respectively.

Assuming the condition of plane strain the strain energy equation can be
rewritten as

V = Gν
1 − 2ν

(εx + εz)
2 + G(ε2

x + ε2
z )+ G

2
(γ 2

xz)

For impulsive seismic response, εz = 0 which reduces the above equation further to

V = G(1 − ν)

1 − 2ν
ε2

x + G
2
γ 2

xy (5.6.35)

Considering u(x, z) = φ(x, z)q(t), one can have

∂V
∂qr

= 2G(1 − ν)

1 − 2ν
∂u
∂x

∂

∂qr

(
∂u
∂x

)
+ G

∂u
∂z

∂

∂qr

(
∂u
∂z

)

79 We will elucidate this further later, in the chapter titled Geotechnical Consideration for DSSI.
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That is

∂V
∂qr

= 2G(1 − ν)

1 − 2ν
∂φi

∂x
∂φr

∂x
qiqr + G

∂φi

∂z
∂φr

∂z
qiqr (5.6.36)

where φ(x, z) = generalized shape function with respect to x and z co-ordinate; q(t) =
displacement function with respect to time in generalized co-ordinate.

From which the stiffness and mass matrix can be written as

Kir =
H∫

0

a∫
0

[
2G (1 − ν)

1 − 2ν
∂φi

∂x
∂φr

∂x
+ G

∂φi

∂z
∂φr

∂z

]
dx dz, and

Mir = γs

g

H∫
0

a∫
0

φiφrdx · dz (5.6.37)

where K = stiffness matrix of the soil medium; M = mass matrix of the soil medium; i
and r are different modes 1, 2, 3. . .. . .K and M for the fundamental mode are given by

K11 =
H∫

0

a∫
0

[
2G (1 − ν)

1 − 2ν

(
∂φ

∂x

)2

+ G
(
∂φ

∂z

)2
]

dx · dz and

M11 = γs

g

H∫
0

a∫
0

(φ)2 dx · dz.

For one dimensional analysis when lim a → ∞, the first term can be dropped and
the stiffness and mass expression can be reduced to

K11 =
H∫

0

[
G
(
∂φ

∂z

)2
]

· dz; M11 = γs

g

H∫
0

(φ)2 dz (5.6.38)

Considering the shape function as given, φ(z) = cos (2n−1)πz
2H and substituting it in

the above Equations for a constant G value and by integrating we have

K11 = π2G
8H

and M11 = γsH
2g

(5.6.39)

Considering T = 2π
√

M/K one can arrive at the same expression as T = 4H/Vs
derived earlier vide Equation (5.6.33a).

This shows that the stiffness and mass matrix formulation as represented here is
correct.
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Considering a suitable damping ratio of soil as D the damping of the soil C may be
arrived at from the expression

C = 2D
√

KM (5.6.40)

Having formed the mass (M), damping (C) and stiffness matrix (K) one can now
easily form the equation

Mü + Cu̇ + Ku = −Müg (5.6.41)

where u = displacement of the soil body at ground level; u̇ = velocity of the soil body
at ground level; ü = acceleration of the soil at ground level; üg = bedrock acceleration
usually available as a time history data.

The above equation of motion can very easily be solved by one of the time history
analysis methods to obtain the acceleration response at the ground level.

5.6.1.12 Linear and Non linear analysis

For linear behavior the analysis is now quite straightforward for G(dyn) and damping
remaining invariable with time.

We show below some results of a soil layer of height 40 meter overlying bedrock
having shear wave velocity of 120 m/sec subjected to the time history response of San
Fernanado earthquake.

The density of soil is 20 kN/m3. The shear wave velocity vis-a-vis dynamic shear
modulus and damping @ 10% was obtained at a reference strain of 0.001.

For non linear analysis the strain was calculated at each time step and Dynamic
Modulus of soil was upgraded as per Seed and Idriss expression while damping was
upgraded based on Ishibashi and Zang’s expression80.

The comparative results are shown in Figures 5.6.10 to 13 for first 5 second of
shaking.

Looking at the results we see that in this case peak bed rock acceleration is 0.31 g
and this gets amplified to 0.71 g at ground level during elastic analysis however when
non linear behavior of soil is considered the amplification is only marginal @ 0.34 g.

The variations of shear stress characteristics are markedly different for linear and
non linear case.

Thus from above following conclusions can be made.

• Soil overlying rock, response gets amplified during an earthquake.
• The amplification is more pre-dominant if the soil remains with elastic range (i.e.

stress strain relationship remains linear.)
• The behavior may attenuate under non linear behavior the variation of stress strain

with time is quite different for linear and non-linear response.

80 Refer Chapter 1 (Vol. 2) the section on Geotechnical aspects of dynamic soil structure interaction for
these expressions.
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Figure 5.6.12 Amplified Sa/g at ground level.
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Figure 5.6.14 Variation of average shear stress for linear and nonlinear soil.

Other than the soil dynamics, many theories are extensively used to generate
dynamic earth pressures on retaining structures, linear and non linear behavior of
earth dam etc. These we have dealt separately later in Chapter 3 (Vol. 2) of earthquake
resistant design and may be referred to further.

5.6.2 Waves induced by underground blast

Soil displacements at points located some distance away from the surface due to
an underground disturbance is an interesting study. The waves emanating from the
centre of the dynamic source, produced by an explosion, may be either longitudinal
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or transverse waves propagating in an infinite media. Such a phenomenon refers to a
military term ‘Camouflet’ and indicates an underground blast, the effect of which do
not produce any visible displacement on the soil surface.

Barkan (1962) analysed the problem by treating the initial zone of excitement of the
soil as spherical. The radial components of displacements are large in comparison with
the tangential components. Thus for camouflet explosion the boundary condition of
wave propagation, when r = r0 may be taken as

u = x
r

f (t); v = y
r

f (t); w = z
r
f (t) (5.6.42)

where f (t) is an assigned function of t.
Since the displacement is occurring only in the radial direction, only longitudinal

waves will propagate from the explosion centre.
The displacement may be written as

ur = − r2
0aα

r2(βr0 − a)

[
r
a

{
1 −

(
t − r

a
+ r0

βr0 − a

)
β

}
+ t − r

a
+ r0

βr0 − a

]

× e[−β(t− r
a )] for r > at. (5.6.43)

where α and β depend on the properties of the explosion charge to be obtained
experimentally.

The displacement of the camouflet surface created by the explosion is given by
f (t) = αte−βt, a is the velocity of compressional wave.

Equation (5.6.43) may be used to obtain the effect of an explosion at any distance
from the charge. At small distance from the explosion centre the displacement dies out
fast and the decrease is approximately proportional to the square of the distance. At
large distance the decrease of the amplitude is inversely proportional to the distance.

5.7 GEOTECHNICAL ANALYSIS OF MACHINE FOUNDATIONS

5.7.1 Soil dynamics and machine foundation

Vibration of foundations under the influence of rotating machine is one of the most
important developments in soil dynamics. We have dedicated one complete chapter
in this book titled “Analysis and design of machine foundation”, wherein we have
shown various design techniques used for analysis and design of such foundations.

In this section we show some of the major theoretical development that took place
in this area and how it got transformed from abstract and complex mathematical
expression to what we see today in design offices around the world.

5.7.2 Reissner’s method

We had shown earlier derivation of wave propagation in three dimensions as proposed
by Lamb (1904). Based on Lamb’s solution Reissner (1936) first developed the vertical
response of a rigid footing resting on an elastic half space.
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Shekter, as reported by Barkan (1962), corrected a mistake in Reissner’s work and
she presented a solution for the dynamic response of a uniformly loaded circular foot-
ing. The vertical displacement of the centre of a uniformly loaded [Q0eiωt = πr2

0q0eiωt]
circular disc resting on the surface of an elastic halfspace obtained by Reissner is
given by

w(0, 0, t) = Q0eiωt

Gr0
[f1 + if2] (5.7.1)

in which, w(0, 0, t) = the vertical displacement at the centre of the cicular disc of radius
r0; Q0 = force amplitude of the dynamic load; ω = circular frequency of the dynamic
load; G = shear modulus of the elastic solid; and f1, f2 = compliance functions.

w and Q are in the same direction, downward (say z).
Reissner also defined non-dimensional parameters:

Dimensionless frequency = a0 = ωr0

√
ρ
/

G = ωr0
/

VS; VS being the velocity of

propagation of the shear wave in the elastic medium; ρ is its mass density, and mass
ratio, b1 = m

/
ρr3

0; m is the total mass of the vibrating footing and exciting mechanism
on the elastic halfspace.

Reissner’s solution for the amplitude of oscillator motion is given by

az = Q0

Gr0

√
f 2
1 + f 2

2

(1 − b1a2
0f1)2 + (b1a2

0f2)2
(5.7.2)

The phase angle φ between the exciting force Q = Q0eiωt and the dynamic response
z0 is given by

tan ϕ = f2

−f1 + b1a2
0(f

2
1 + f 2

2 )
(5.7.3)

The power input required is given by

PR = Q2
0

r2
0

a0f1

(1 − b1a2
0f1)2 + (b1a2

0f2)2
(5.7.4)

For rotating mass type of oscillator (DEGEBO type), Q0 = meeω2, as described
earlier.

Though Reissner’s analysis and hence solution shown in Figs. 5.7.1 to 4, is an
important landmark and has been the basis of subsequent development in this area it
did not receive immediate credibility for application.

For when subjected to field test the theortical results varied significantly from
observed data, and possibly the assumption of uniform contact pressure and appli-
cation of the theory to only foundations of circular shape made its use very
limited.
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Figure 5.7.1 Coefficient f1 for flexible foundation (Reissner 1936).
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Figure 5.7.3 Coefficient f1 for rigid foundation (Reissner 1936).

There was hardly any development for next 17 years81 as the focus turned elsewhere
possibly due to outbreak of Second World War.

81 At least there is no documentary evidence of this recorded.
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Figure 5.7.4 Coefficient f2 for rigid foundation (Reissner 1936).
Note: Here n stands for Poisson’s ratio in Figure 5.7.1 to 5.7.4.

5.7.3 Sung and Quinlan’s method

Sung (1953) and Quinlan (1953) independently presented solutions for the dynamic
response of a circular footing on an elastic halfspace shown in Figure 5.7.5. They con-
sidered three probable contact pressures at the footing-soil interface (Figure 5.7.6).
These pressures are the dynamic equivalent to their static counterparts, namely, uni-
form, parabolic and the one corresponding to rigid base condition. They were able
to evaluate the resonant frequency, amplitude, power input necessary to maintain
the vibration and the displacement at the centre of the footing. A constant as well as
frequency dependent loading was also considered in the analysis.

Sung extended Reissner’s solution and developed equations for all the three cases
of contact pressure distributions on a circular loaded area and reported the solution
in series form with varying Poisson ratios. Sung considered an axially symmetric dis-
tributed total force Q(r, t) with frequency ω, the footing-soil contact stress (stress
boundary condition for elastic halfspace) can be expressed as given in the following.

Quinlan, although established equations for all three contact pressures, presented
only the results for rigid base approximation. He also proposed the solution for a long
rectangular vibrator assuming various contact pressure distributions using a different
approach.

For numerical computation the functions f1 and f2 as proposed by Sung are as given
Table 5.7.1 and shown in Figure 5.7.7.

The displacement at center of contact area of a circular foundation resting on half
space is expressed as

w(0, 0, t) = Q0eiωt

Gr0

[
f1 + if2

]
(5.7.5)
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Figure 5.7.6 Contact pressure distributions.

where, w(0, 0, t) = the vertical displacement at the centre of the cicular disc of radius
r0; Q0 = force amplitude of the dynamic load; ω = circular frequency of the dynamic
load; G = shear modulus of the elastic solid; and f1, f2 = compliance functions.

5.7.4 Bycroft’s solution for dynamic response of foundation

Arnlod et al. (1955) computed the dynamic response of a rigid circular foundation on
an elastic halfspace in the vertical mode of vibration as well as other modes namely,
rocking and sliding. Contact pressures used by Quinlan and Sung are the equivalent
dynamic pressure of their static counterparts. In rigid base a uniform dynamic displace-
ment beneath the footing is not always true. It varies with frequency. With this in view,
a weighted average of displacement under the footing and an average magnitude of
displacement functions were evaluated. The weighted average solution corresponds
to applying the total dynamic force, [say Q = ∫ pdA, where p and A are the contact
pressure and area, respectively] to a rigid block whose area is such that the work done
by the dynamic applied force is just equal to the work done by the contact pressures.
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Table 5.7.1 Compliance functions f1 and f2.

Rigid Base ν = 0 −f1 = 0.2500 − 0.100375 a2
0 + 0.010205 a4

0
ν = 1/4 −f1 = 0.187500 − 0.0703131 a2

0 + 0.006131 a4
0

ν = 1/3 −f1 = 0.166667 − 0.060761 a2
0 + 0.005085 a4

0
ν = 1/2 −f1 = 0.125000 − 0.046875 a2

0 + 0.003581 a4
0

Uniform ν = 0 −f1 = 0.318310 − 0.092841 a2
0 + 0.007405 a4

0
Loading ν = 1/4 −f1 = 0.238733 − 0.059683 a2

0 + 0.004163 a4
0

ν = 1/3 −f1 = 0.212207 − 0.051578 a2
0 + 0.003453 a4

0
ν = 1/2 −f1 = 0.159155 − 0.039789 a2

0 + 0.002432 a4
0

Parabolic ν = 0 −f1 = 0.424414 − 0.074272 a2
0 + 0.004232 a4

0
Loading ν = 1/4 −f1 = 0.318310 − 0.047747 a2

0 + 0.002379 a4
0

ν = 1/3 −f1 = 0.282942 − 0.041262 a2
0 + 0.001973 a4

0
ν = 1/2 −f1 = 0.212207 − 0.031831 a2

0 + 0.001389 a4
0

Rigid Base ν = 0 f2 = 0.214714 a0 − 0.039116 a3
0 + 0.002414 a5

0
ν = 1/4 f2 = 0.148594 a0 − 0.023677 a3

0 + 0.001291 a5
0

ν = 1/3 f2 = 0.130630 a0 − 0.020048 a3
0 + 0.001052 a5

0
ν = 1/2 f2 = 0.104547 a0 − 0.014717 a3

0 + 0.000717 a5
0

Uniform ν = 0 f2 = 0.214474 a0 − 0.019708 a3
0 + 0.001528 a5

0
Loading ν = 1/4 f2 = 0.148591 a0 − 0.017557 a3

0 + 0.000808 a5
0

ν = 1/3 f2 = 0.130630 a0 − 0.015037 a3
0 + 0.000658 a5

0
ν = 1/2 f2 = 0.101547 a0 − 0.011038 a3

0 + 0.000441 a5
0

Parabolic ν = 0 f2 = 0.214474 a0 − 0.019708 a3
0 + 0.000761 a5

0
Loading ν = 1/4 f2 = 0.148591 a0 − 0.011837 a3

0 + 0.000405 a5
0

ν = 1/3 f2 = 0.130630 a0 − 0.010024 a3
0 + 0.000328 a5

0
ν = 1/2 f2 = 0.104574 a0 − 0.007358 a3

0 + 0.000222 a5
0

Bycroft computed the weighted average of the displacements beneath the foot-
ing to obtain the vaules of the compliance functions f1 band f2. All these solutions
are valid for small frequency ratios (a0 < 1.5), and it was shown by Richart
(1962) that this range includes the operational frequencies of most of the practical
problems. The compliance functions mentioned in Equation (5.7.1) are shown in
Figure 5.7.8.

Bycroft (1977) extended his studies to the forced vibrations of a rigid circu-
lar plate attached to the surface of an elastic halfspace for large values of the
frequency. Response under a non-sinusoidal forced motions of a system may be eval-
uated from the steady state solutions using a Fourier synthesis of the steady state
solutions and a Fast Fourier Transform procedure to evaluate the resulting infinite
integrals with their oscillatory integrands. The integrals are formally taken over an
infinite range in the frequency domain, and this means that one needs the steady
state solutions over finite fruency range depending upon the system and the fre-
quency content of the input function. Again, while solving soil-structure interaction
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Figure 5.7.8 Displacement functions for rigid circular footing vibrating vertically on the surface of an
elastic half-space (Bycroft 1956).

problems, such situation arises when high-frequency components of earthquakes are
associated with a relatively rigid foundation of large base area and located on a soft
terrain.

The displacements U, V and W of the plate is given by the real part of

U, V , W = (−Peiωt/Gr0)(f1 + if2) (5.7.6)
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and the rotation is given by

� = (−Meiωt/Gr3
0)(f1 + if2) (5.7.7)

where the compliance functions f1 and f2 are functions of a0 and τ , and are different
for each of the four modes, τ = √

(1 − 2ν)/2(1 − ν) and ν is the Poisson’s ratio.

5.7.4.1 Vertical translation

5.7.4.1.1 For compressible medium

The average displacement of the plate w is given by

w = Peiωt

2πGr0

⎡
⎢⎣

∞∫
0

√
θ2 − τ2J2

1(a0θ1)

a0θ1f ′(θ1)
dθ −

iπ
√
θ2

1 − τ2J2
1(a0θ1)

a0θ1f ′(θ1)

⎤
⎥⎦ (5.7.8)

where θ1 is the root of the equation: f (θ) = (θ2 − 1/2)2 − θ2
√
(θ2 − τ2)

√
(θ2 − 1).

Here the principal value of the infinite integral is to be taken and for large a0 i.e for
high frequency f1 and f2 may be evaluated as

f1 = KV/a2
0; f2 = τ/πa0 (5.7.9)

in which KV may be obtained from Table 5.7.2.

5.7.4.1.2 Incompressible medium

The average vertical displacement is given by

w = Peiωt

2πGr0

⎡
⎣ ∞∫

0

[ sin a0θ
a0θ

− cos a0θ
]2dθ

a3
0θ

2f (θ)
− iπ

[ sin a0θ1
a0θ1

− cos a0θ1
]

a3
0θ

2
1 f ′(θ1)

⎤
⎦ (5.7.10)

where θ1 is as defined above.
Following the similar arguments as in the previous case,

f1 = 3/4a2
0; f2 = 1.93/a2

0 (5.7.11)

The surface wave contributes to the function f2.

Table 5.7.2 Coefficients KV .

τ 2 ν KV

0.250 0.333 −0.0596
0.333 0.25 −0.0820
0.500 0 −0.928
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5.7.4.2 Rotation about a vertical axis

Only the shear wave exists in this case. For high frequencies the shear stress distribution
is proportional to the radius from the axis of rotation. The average angle of rotation
of the plate can be expressed as

φ = − 8M

πGr3
0

∞∫
0

J2
2(a0θ)dθ

a0θ
√
θ2 − 1

from which it follows that

f1 = −8
π

∞∫
1

J2
2(a0θ)dθ

a0θ
√
(θ2 − 1)

(5.7.12)

Finally,

f1 = −8

π2a2
0

(
1 + 2.34

a2
0

)
; f2 = 2

πa0
(5.7.13)

5.7.4.3 Rotation about a horizontal axis

5.7.4.3.1 Compressible medium

Wave lengths are taken to be small in comparison with the dimensions of the plate.
The criterion for the shear waves to have a relatively short wave length is that the
frequency factor a0 is large and for the compressional waves that a0τ be large. As long
as τ is finite, which means that the medium is compressible, than these criteria are
satisfied by large values of a0. The shear stresses on the surface are set equal to zero.
The average angle of rotation of the plate is given by

φ = 4Mei p t

Gπ r3
0

⎡
⎢⎣

∞∫
0

(√
θ2 − τ2

)
J2
2(a0θ)dθ

a0θ f (θ)
−

iπ
(√
θ2

1 − τ2
)
J2
2(a0θ1)

a0θ1f ′(θ1)

⎤
⎥⎦ (5.7.14)

where f (θ) has been written earlier and the principal part of the integral is to be taken.
Compliance functions f1 and f2 reduce to

f1 = 4
π

⎡
⎣ 1∫
τ

(
√
θ2 − τ2)(θ2 − 1/2)2J2

2(a0θ)dθ

a0θ [(θ2 − 1/2)4 − θ4(θ2 − τ2)(θ2 − 1)] +
∞∫

1

(
√
θ2 − τ2)J2

2(a0θ)dθ

a0θ f (θ)

⎤
⎦

(5.7.15)



Concepts in structural and soil dynamics 749

Table 5.7.3

τ 2 ν KR

0.250 0.333 −0.476
0.333 0.25 −0.654
0.500 0 −0.741

f2 = 4
πa0

a0τ∫
0

√[
τ2 − (ξ2/a2

0)
]

J2
2(ξ)dξ

ξ{[(ξ2/a2
0)− 1/2]2 − (ξ2/a2

0)[
√
(ξ2/a2

0)− 1][
√
(ξ2/a2

0)− τ2]}

= 16τ
πa0

∞∫
0

J2
2(φ)dφ

φ
(5.7.16)

When a0τ is large asymptotic values of f1 and f2 reduce to

f1 = KR

a2
0

and f2 = 4τ
πa0

(5.7.17)

The values of KR is shown in Table 5.7.3.
The function f2 represents the energy propagated. The free wave term or Rayleigh

wave term shown in Equation (5.7.14) is of the order of 1/a2
0. Thus for high frequencies

the energy tend to propagate vertically.

5.7.4.3.2 Incompressible medium

φ = 450Meipt

32πμr3
0

⎡
⎢⎣

∞∫
0

{
sin a0θ

[
3

(a0θ)2
− 1

]
−
[

3 cos a0θ
a0θ

]}2

a3
0θ

2f (θ)
dθ

−
iπ

{
sin a0θ1

[
3

(a0θ1)2
− 1

]
−
[

3 cos a0θ1
a0θ1

]}2

a3
0θ

2
1 f ′(θ1)

⎤
⎥⎦ (5.7.18)

Compliance functions f1 and f2 may be written as

f1 = 45

8a2
0

; f2 = 24.7

a3
0

(5.7.19)
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This case is in contrast to the compressible case where f2 decreases as a−1
0 .

5.7.4.4 Horizontal translation

If a horizontal force is applied to the centre of the plate, both horizontal translation
and rotation about a horizontal axis will occur. To simplify the matter a constraint
will be imposed to prevent rotation. In this case shear predominates, and the stress
distribution under the plate may be shown to be constant for both the compressible
and incompressible cases.

The horizontal displacement is then given by

U = −P
πμr0

∞∫
0

J2
1(a0θ)

a0θ

[
θ2

√
θ2 − τ2

−
√
θ2 − 1 + 1√

θ2 − 1

]
dθ (5.7.20)

5.7.4.4.1 Compressible media

f1 = −1

π2a2
0

[2 − log τ ]; f2 = 1/πa0 (5.7.21)

The expression for f1 diverges as ν → 0.5 and τ → 0 and a different asymptotic
value must be determined.

5.7.4.4.2 Incompressible media

In this case the expression for f2 is the same as before, but f1 has a different form

f1 = −1
πa0

1∫
0

J2
1(πa0)dθ − 1

π

∞∫
1

J2
1(πa0)

πa0

(
θ −

√
θ2 − 1 + 1√

θ2 − 1

)
dθ (5.7.22)

The first integral does not have an asymptotic value and must be evaluated
numerically.

The second term may be evaluated and may be written as

f1 = −1

π2a2
0

[2 − log 2] − 1
πa0

1∫
0

J2
1(πa0)dθ (5.7.23)

5.7.5 Reissner and Sagoci’s method of torsional oscillation

Reissner & Sagoci (1944) gave the solution for the torsional mode of vibration of a
rigid circular footing resting on the surface of the elastic half-space. The oscillation is
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Figure 5.7.9 Compliance functions for torsional mode of rigid circular foundations (Reissner & Sagoci
1944).

about a vertical axis through the center of the contact area. Compliance functions for
torsional mode of rigid circular Foundations are shown in Figure 5.7.9.

A linear variation of the displacement from the center of the rigid foundation to the
periphery was assumed. The angle of rotation is given by

ϕ = T0eiωt

Gr3
0

[f1 + if2] (5.7.24)

in which φ = angle of rotation; T0 = amplitude of torsional moment; G = shear
modulus of the soil; ω angular frequency of vibration; f1 and f2 = compliance
functions.

It has been observed that compliance functions are invariant to the variation of
Poisson’s ratio.

Again by using the dimensionless frequency ratio a0 = ωr0/VS and the mass ratio
bθ = Iθ /ρr5

0, where Iθ is the mass moment of inertia of the footing about the axis of
rotation, the dynamicmic response has been computed.

5.7.6 Hseih’s method for dynamic response of foundation

We will not work out in detail the derivation here as this has already been discussed
in detail in Chapter 2 (Vol. 2) Analysis and Design of Machine Foundation.
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Suffice it to say that Hseih (1962) first showed the possibility of an elastic half space
that may be converted to a mechanical analog of spring and dashpot.

He first considered a weightless circular disc of radius r0 resting on a elastic half
space, subjected to a vertical oscillating force Q = Q0eiωt.

The vertical displacement is given by

z = Q0eiωt

Gr0
(f1 + if2) (5.7.25)

Differentiating Equation (5.7.25) with respect to time one gets

dz
dt

= ωQ0eiωt

Gr0
(if1 − f2)

which leads to f1ωz − f2
dz
dt

= Q0ωeiωt

Gr0
(f 2

1 + f 2
2 ) (5.7.26)

and gives Q0eiωt = −Gr0

ω

f2

f 2
1 + f 2

2

dz
dt

+ Gr0
f1

f 2
1 + f 2

2

z. (5.7.27)

The above can be represented in terms of mechanical analog now as

Q = Gr0

ω

−f2

f 2
1 + f 2

2

dz
dt

+ Gr0
f1

f 2
1 + f 2

2

z = c
dz
dt

+ kz (5.7.28)

where c = Gr0
ω

−f2

f 2
1 +f 2

2
= r2

0
a0

√
ρG −f2

f 2
1 +f 2

2
and k = Gr0

f1

f 2
1 +f 2

2
.

It is seen that both c and k are dependent on the Poisson’s ratio(ν) and dimensionless
frequency number a0.

Hsieh also considered a rigid circular footing of weigh W resting on an elastic half
space for which he derived the equation

W
g

d2z
dt2 + c

dz
dt

+ kz = P0eiωt (5.7.29)

where c and k are as derived above.

5.7.7 Lysmer and Richart’s model for dynamic response
of foundation

By 1960 the mathematics behind mechanics of a spring and dashpot connected to a
lumped mass and its behavior under dynamic load was sufficiently developed. Civil
engineers working in the area of structural dynamics were regularly using this model for
analyzing the behavior of structures having single and multi-degrees of freedom. This
model had great advantage, for in this case the equivalent springs developed to describe
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the structural stiffness were frequency independent. This made the mathematical
calculations much simplified and their physics relatively easy to interpret.

On the contrary applying the elastic half space theory with frequency dependent
springs and dashpot not only made the foundation analysis tedious but also called for
significant amount of trial and error which made its application very limited. Thus
obviously a search was on to find an equivalent mechanical analog for the elastic half
space theory which would be simple to apply yet give a result close to the rigorous
solution based on the classical theory.

Lysmer and Richart (1966) considered a class of elastic systems a typical is shown
in Figure 5.7.10. It consists of a linear elastic system S that is excited by a periodic
vertical force P(t), of frequency ω and amplitude P0. The system may or may not
contain viscous damping (Figure 5.7.11) and it may have finite or infinite dimensions.

(a) System S

O

P = P0 e
iωt

Q = Q0 e
iωt

iωtP = P0 e

m

(b) System S + m

Figure 5.7.10 Typical linear system in elastic half space.

K
C

m

k
c

(a) System S (b) System S + m

P = P0 e
iωt

iωtQ = Q0 e

Figure 5.7.11 Simpled mechanical analog.
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The force is given by P = P0 exp(iωt) is assumed to act at a point O, which is such
that the displacement az of point O is vertical at all times.

Following Bycroft, Lysmer started with compliant functions

f = f1 + if2

He however noticed that when the above function is multiplied by a factor 4
1−ν the

functions became independent of Poisson’s ratio. Thus he defined a new compliance
function

F = 4
1 − ν

f = F1 + iF2. (5.7.30)

Based on above, the Bycroft’s-curves (presented earlier) merge to almost a unique
curve as shown in Figure 5.7.12.

When az = P
k F as per analog figure as shown above

Lysmer also introduced a modified dimensionless mass ratio

Bz = 1 − ν

4
m

ρr3
0

(5.7.31)

Figure 5.7.12 Compliance functions F (Lysmer & Richart 1966).
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Substituting the above parameters in Reissner’s solution for displacement

az = Q0

Gr0

√
f 2
1 + f 2

2

(1 − b1a2
0f1)2 + (b1a2

0f2)2
, (5.7.32)

Lysmer finally obtained an epxression

az = 1 − ν

4Gr0
P0M (5.7.33)

where M is the magnification factor by which the equivalent static displacement
produced by P0 is mutiplied to give the dynamic dispalcement amplitude.

For a mechanical analog with spring and dashpot subjected to a dynamic force P0
the amplitude is given by82

az = P0

k
√
(1 − r2)+ 2D r2

(5.7.34)

where r is the frequency ratio D is damping ratio, k is static spring stiffness and the
magnification factor M is given by

M = 1√
(1 − r2)+ 2Dr2

(5.7.35)

thus above equation can now be expressed as az = P0
k M; equating this with half space

equation we have az = P0
k M = 1−ν

4Gr0
P0M, which gives

k = 4Gr0

1 − ν
(5.7.36)

which is a frequency independent static spring value for the soil83.
Based on above Lysmer made a comparison of amplitudes for various mass ratio

and the values are as shown in Figure 5.7.13.
Here the firm lines represent the response based on elastic half space theory, while the

dotted lines show the corresponding response due to mechanical analog as proposed
by Lysmer – the results are surely very encouraging.

The above, to our perception is a landmark contribution in analysis of machine
foundation. It not only made the analysis much simplified but also brought the physics

82 For derivation of this expression refer Chapter 3 (Vol. 1).
83 It is interesting to note that though many engineers use these spring value in their day to day to work

almost routinely for design of machine foundation or perform analysis of other structures considering
dynamic soil-structure interaction, very few have the background on how this is arrived at. Many even
believe that this value is empirical!
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Figure 5.7.13 Steady state spectra for footing-soil system.

of the phenomenon well within the grasp of an average engineer undertaking analysis
and design of such foundations.

Lysmer also compared the values of damping and found that the best fit value for
the damping in the range of 0 < a0 < 1.0 is given by

cz = 3.4r2
0

1 − ν

√
ρG (5.7.37)

based on which the equation of motion for a foundation under dynamic loading can
now be expressed as

m
dz2

dt2 + 3.4r2
0

1 − ν

√
ρG

dz
dt

+ 4Gr0

1 − ν
z = P(t) (5.7.38)

5.7.8 Hall’s analog for sliding and rocking vibration

Following Lysmer’s success in developing an equivalent mechanical analog for elastic
half space theory in vertical mode, Hall (1967) followed a similar procedure to develop
equivalent static springs for sliding and rocking mode.

Starting with the solution to the motion of a rigid circular plate on the surface of
an elastic half space given by Bycroft (1956), Hall developed coupled rocking and
sliding motion for all Poisson’s ratios. Shown in Figure 5.7.14 is a weightless disc on
the surface of an elastic half space with shear modulus G, Poisson’s ratio ν and mass
density ρ.

Let the horizontal displacement of the disc be

x = x0eiωt, (5.7.39)

where, x0 = the amplitude of the displacement; ω = the circular frequency and
t = time.
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Figure 5.7.14 Sliding motion.

The reaction developed on the base of the disc may be written as

RH = RH0eiωt (5.7.40)

The displacement and reaction relation may be expressed as

x = RH0

Gr0

(
f1 + if2

)
eiωt (5.7.41)

where the displacement functions f1 and f2 are the functions of ν and dimensionless
frequency given by

a0 = ωr0
√
ρ/G (5.7.42)

Following Hsieh’s (1962) analysis Hall took the soil reaction as

RH0 = −Gr0

ω

f2

f 2
1 + f 2

2

dx
dt

+ Gr0
f1

f 2
1 + f 2

2

x (5.7.43)

The velocity term arises from the fact that the energy is transmitted into the half
space without being returned back to the footing and provides an apparent damping
in the system known as radiation damping.
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Equation (5.7.17) is further simplified by introducing the notation

F1 = −f1

f 2
1 + f 2

2

and F2 = f2

a0
(
f 2
1 + f 2

2

) (5.7.44)

From Bycroft’s (1956) solution and using the best least-square approximation using
seven points in the interval 0 to 1.5 for ν = 0, and 0 ≤ a0 ≤ 1.5, Hall obtained F1 and
F2 as follows

F1 = 4.573 − 0.02004a0 − 0.2122a2
0; F2 = 2.610 − 0.01257a0 + 0.1025a2

0

(5.7.45)

When the footing has a mass as shown in above figure a force QH = QH0eiωt acts
on the mass, the equation of motion can be written as

m
d2x
dt2 + r2

0

√
Gρ F2

dx
dt

+ Gr0F1x = QH0eiωt (5.7.46)

A similar equation used for a single degree-of-freedom system with viscous damping,
only difference is that the damping and spring constants are frequency dependent.

Thus comparing the equations derived from elastic half space with the mechanical
analog we have kx = Gr0F1 and cx = r2

0

√
ρGF2.

For static case when a0 = 0, F1 = 4.573 for ν = 0 thus the spring stiffness can now
be expressed as kx = 4.573Gr0 this can thus be further expressed as kx = (32Gr0)/7.
For ν �= 0 the value is further expressed as

kx = 32 (1 − ν)

7 − 8ν
Gr0 (5.7.47)

For damping we had shown above that cx = r2
0

√
ρGF2.

This can be further expressed cx = r2
0F1

√
ρGF2
F1

for static case this becomes

cx = r2
0F1

√
ρG2.61
4.573

= 0.5707413r2
0F1

√
ρG

For ν �= 0 this can be further approximated to

cx = 18.4(1 − ν)

7 − 8ν
r2
0

√
ρG (5.7.48)
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5.7.8.1 Rocking motion

Figure 5.7.15 below shows a disc on an elastic half space with mass polar moment of
inertia I0 about a horizontal axis through the center of the base.

If c.g. is assumed to lie in the plane of the base, the equation of motion will be

I0
d2θ

dt2 + r4
0

√
ρG F′

2
dθ
dt

+ Gr3
0 F′

1 θ = T0eiωt (5.7.49)

Values of F′
1 and F′

2 were obtained from Bycroft’s solution. However, Bycroft’s
solution was confined to ν = 0 and the results were given in the range 0 ≤ a0 ≤ 1.5
and they are

F′
1 = 2.67 − 0.253a0 − 0.493a2

0 + 0.196a3
0

F′
2 = −.000353 + 0.1288a0 + 0.557a2

0 − 0.244a3
0

(5.7.50)

At zero frequency, the static condition exists F′
1 = 2.67, when static spring constant

can be defined by

kθ = 2.67Gr0 ⇒ kθ = 8
3

Gr3
0 when Poisson’s ratio, ν = 0. (5.7.51)

When ν �= 0 this value is expressed as

kθ = 8
3 (1 − ν)

Gr3
0 (5.7.52)

Comparing the elastic half space equation with the mechanical analog model
we have

cθ = r4
0

√
ρGF′

2 (5.7.53)

G, 

Mass m

M

TI0

r0

, 

Figure 5.7.15 Rocking motion.
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Figure 5.7.16 Comparison of Exact and Analogue solutions for coupled rocking and sliding (Hall 1967).

Hall, like Lysmer, found a dimensionless mass ratio

Bψ = 3(1 − ν)

8
Iψ
ρr5

0

(5.7.54)

based on which he modified the above equation of damping to derive

cθ = 0.80r4
0

√
ρG

(1 − ν) (1 + Bψ)
. (5.7.55)
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5.7.8.2 Coupled analysis under rocking and sliding

Foundations undergoing sliding and rocking motion usually have their response
coupled. This equation of motion in Matrix form84 can be expressed as

[
m 0
0 Jxφ

]{
ẍ
φ̈

}
+
[

Cx −CxZc

−CxZc Cφx + CxZ2
c

]{
ẋ
φ̇

}
+
[

Kx −KxZc

−KxZc Kφx + KxZ2
c

]

{
x
φ

}
=
{

P0
M0

}
sinωmt (5.7.56)

Based on the stiffness and damping derived by Hall for mechanical analog he
compared the dynamic response of foundation based on elastic half-space and the
mechanical analog for coupled motion. The results derived by him are shown in
Figure 5.7.16.

It will again be seen that the results obtained are quite encouraging and can well be
used for practical design without any significant error.

5.7.9 Vibration of rectangular footings resting on elastic
half-space

The following solution for calculating the displacements inside and outside a uniformly
loaded rectangular footing resting on an elastic half space was proposed by Holzlöner
(1969). The solution is approximate and can be obtained for any accuracy. The rect-
angular area is of side lengths 2a and 2b. Half-space is provided with a rectangular
system of coordinates (x, y, z), whose z-axis points vertically inwards.

With the modulus of elasticity E, the shear modulus G and Poisson’s ratio ν for the
half space, the vertical surface displacement at the surface (z = 0), w0 was found as

w0 = Q
Ga

· 1
16π2b0

⎡
⎢⎣2

h∫
0

√
h

2 − ξ
2

(2ξ
2 − 1)

+ 4ξ
2 ·

√
h

2 − ξ
2 ·

√
1 − ξ

2
φ(a0ξ)dξ

+ 8

1∫
h

(ξ
2 − h

2
) ·

√
1 − ξ

2 · ξ2

(2ξ
2 − 1)4 + 16(ξ

2 − h
2
)(1 − ξ

2
)ξ

4
φ(a0ξ)dξ

⎤
⎥⎦ eiωt

+ Q
Ga

· 1
16π2b0

⎡
⎢⎣ c2π(2χ2 − 1)2

√
χ2 − h

2

8χ{1 − (6 − 4h
2
)χ2 + 6(1 − h

2
)χ4}

φ(a0χ)

⎤
⎥⎦ eiωt (5.7.57)

84 Refer Chapter 2 (Vol. 2) on Design and Analysis of Machine foundation wherein this equation has been
derived in detail.
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in which

φ
(
a0, ξ

) =
4∑

j=1

(−1)j+1

θj,1∫
θj,2

e−ia0ξ(aj cos θ+cj sin θ)

ia0ξ cos θ sin θ
dθ

and [aj cos θ + cj sin θ ] > 0; tan θj,1,2 = −aj

cj
(5.7.58)

The non-dimensional quantities used here are as follows:

ak = ao,
b
a

= b0, Ajk = xk ± ak = ak
(x

a
± 1

)
= a0aj

Bjk = yk ± bk = bk
(y

b
± 1

)
= ak

b
a

(y
b

± 1
)

= a0b0bj = a0cj

h2 =ω2ρ/λ+ 2G; k2 =ω2ρ/G; α=
√
ζ

2 − h
2 = α

k
; β̄ = β

k
=
√
ζ

2 − 1;

λ = νE/[(1 + ν)(1 − 2ν)]; a0 = ak = aω
√
ρ/G; h =

√
(1 − 2ν)
2 (1 − ν)

;

F (ξ) =
(
2ξ2 − k2

)2 − 4αβξ2

where α =
√
ξ2 − h2, β=

√
ξ2 − k2 (5.7.59)

The relation F(ξ) = 0 is the Rayleigh’s equation and χ is a zero position of F(ξ).

5.7.9.1 Static displacement

The integration with respect to θ is done by term-by-term integration of the Taylor
series of the exponential function.

We have: a0 = ak = aω
√
ρ/G; in the static limiting case ω = 0, i.e. a0 = 0.

The integral over the first term of the integrand in Equation (5.7.57) is given by

θj,1∫
θj,2

dθ

ia0ξ cos θ sin θ
= lim

a0→0

θj,1∫
θj,2

dθ
ia0ξ cos θ sin θ

= 0 (5.7.60)

The second term is independent of a0 and ξ and can be expressed as

θj,1∫
θj,2

−ia0ξ
(
aj cos θ + cj sin θ

)
ia0ξ cos θ sin θ

dθ = −aj

θj,1∫
θj,2

dθ
sin θ

− cj

θj,1∫
θj,2

dθ
cos θ

= −aj�n

√
a2

j + c2
j + cj

aj
− cj�n

√
a2

j + c2
j + aj

cj
(5.7.61)
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Table 5.7.4 Dependence of different quantities on the Poisson’s
ratio ν.

ν 0 1/4 1/3 1/2

h 0.707107 0.577350 0.5 0
χ 1.1444 1.0875 1.072 1.047
C2 2.00 2.00 2.00 2.00

The following terms are all equal to zero for a0 = 0. Hence, for a0 = 0, we have:

φ (0) = −
4∑

j=1

(−1)j+12

⎡
⎢⎣ajln

√
a2

j + c2
j + cj

aj
+ cjln

√
a2

j + c2
j + aj

cj

⎤
⎥⎦

aj =
(x

a
± 1

)
; cj = b

a
.
(y

b
± 1

)
(5.7.62)

C2 is found to be independent of Poisson’s ratio ν. Table 5.7.4 gives numerical
values for other quantities.

5.7.9.2 The displacement in the general dynamic case (a0 �= 0)

The Taylor series of the integrated of Equation (5.7.57) is

e−ia0ξ(aj cos θ+cj sin θ)

ia0ξ cos θ sin θ
= −

∞∑
N=0

(
aj cos θ + cj sin θ

)N

cos θ sin θ N!
(−ia0ξ

)N−1
(5.7.63)

When the expression (aj cos θ + cj sin θ)N is multiplied out the integrals of the
individual summands can then be determined easily. Using abbreviation for the term

(m; d; κ) = m(m + d)(m + 2d) . . . (m + {κ − 1}d); κ = 1, 2, . . . (5.7.64)

We have for even N,

RN,j =
α+π∫
α

(
aj cos θ + cj sin θ

)N

cos θ sin θ · N! dθ

= π

2N−2
(

N−2
2

)
!

N−2∑
n=0

(
an+1

j cN−(n+1)
j

)
(n + 1) (N − [n + 1])

(n
2

)! (N−[n+2]
2

)
!

(5.7.65)

(N, n ≥ 0 and even and arbitrary).
For N = 0, the sum in (5.7.64) is zero, hence R0,j = 0.
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For odd N (N ≥ 1),

RN,j =
θj,1∫
θj,2

(
aj cos θ + cj sin θ

)N

cos θ sin θ · N! dθ = 2
ajcj

|ajcj|

⎧⎨
⎩|cj|N

⎛
⎝ln

1 + sin θj

cos θj
−

(N−1)/2∑
ϑ=1,2,3...

sin2ϑ−1 θj

2ϑ − 1

⎞
⎠ 1

N!

+ |aj|N
⎛
⎝ln

1 + cos θj

sin θj
−
(N−1)/2∑
ϑ=1

cos2ϑ−1 θj

2ϑ − 1

⎞
⎠ 1

N!

+

⎡
⎢⎢⎣
(N−3)/2∑

n=0

n!
(2n + 2)! (N − [2n + 2])!

⎛
⎜⎝ |ajcj|√

a2
j + c2

j

⎞
⎟⎠

N−(2n+2)
⎤
⎥⎥⎦

+
[
|aj|2n+2

n∑
ϑ=0

2ϑ cos2n−2ϑ θj

(n − ϑ)! (N − 2; −2;ϑ + 1)

+ |cj|2n+2
n∑

ϑ=0

2ϑ sin2n−2ϑ θj

(n − ϑ)! (N − 2; −2;ϑ + 1)

]}
(5.7.66)

with, θj = tan−1[|aj/cj|], 0 < θj <
π
/
2 (5.7.67)

Note that for N = 1, some sums become zero. For aj = 0 or/and cj = 0, with even
and odd N, and we get RN,j = 0.

With the results in Equations (5.7.63) to (5.7.66), we can write Equation (5.7.58) as

φ
(
a0, ξ

) = −
4∑

j=1

(−1)j+1
M∑

N=1

(−ia0ξ
)N−1

RN,j (5.7.68)

The number M is to be selected such that the terms following (−ia0ξ)
M−1RM,j no

longer have any influence on φ
(
a0ξ

)
within the desired accuracy of calculation. Natu-

rally, M depends on the argument
(
a0ξ

)
. The integration with respect to ξ in (5.7.446)

can be carried out numerically, e.g. with the help of Simpson’s rule.

5.7.9.3 Numerical values

We first determine the vertical displacement at the midpoint of a square surface over
which a dynamic load is uniformly distributed. This displacement is compared, among
others, with that of the midpoint of a circle of equal area. There, the displacement is
given (without time factor) in the form:

w0 = Q
Gr0

(f1 + if2) (5.7.69)

Here, r0 is the radius of the loaded area, and f1 and f2 are the components of
displacement in different phase positions. If we reduce Equation (5.7.57) to the form:

ω0 = Q
√
π

2Ga
√

b0
(f1 + if2) (5.7.70)
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Then the expression (2a
√

b0/
√
π) is the radius of a circle whose surface is equal to

the rectangular surface (4ab). Normally, the vertical displacement of the midpoint of a
square load area is compared with the solution of Thomson & Kobori (1963) and with
the displacement of the midpoint of a circular load area of equal area. The functions
plotted (f1 and f2) are defined by Equations (5.7.69) and (5.7.70). Here a = b, i.e.
b0 = 1. Since the tensile stress at the surface of the half space acts against the positive
direction of displacement, the function values f1 are negative for a0 = 0.

However, while comparing the present results with the results of the circular are, in
Equation (5.7.32) for a0, the quantity a is to be replaced by r0 which is equal to the
distance of the edge from the midpoint of the loaded area. However, for the square, it
is referred to the length a which is the minimum distance of the edge from the midpoint
of the loaded area would have to be extended, i.e. the values calculated here would
approach those of the circular loaded area.

It may also be mentioned that with the help of Equation (5.7.57), for any ratio of
sites b0 of the rectangular loaded area, we can determine the vertical displacement of
any point of the half-space.

5.7.9.4 Particular possibilities of applications

Calculations of this type have been applied since the time of Reissner (1936) to the
vibration of foundations on the building sites. For this, we should have the solutions
of a boundary value problem in which a given displacement is impressed at the surface
of half-space. Stress boundary value problems are however easier to solve. Lysmer
(1965) approximately satisfied the displacement boundary condition for the base of
a foundation which is itself rigid (equal displacement of all the base surface points),
from the solution of the boundary value problems in the rotation symmetric case, by
concentric superimposition of circular loaded areas. In the case of n loaded areas we
get, for the displacement of n points, two systems of equations each with n solutions,
for which stress boundary value problem solved here, we can correspondingly deal
with foundations whose surface can be made up of rectangles. If the foundation plane
of the foundation is not to be considered as a rigid, the stress components can be
selected such that the displacement at the surface agrees with bending surface of the
foundation plate. The problem solved here, we can also deal with tilting vibration of a
foundation.

5.7.10 Rigid strip footing

A mathematical difficulty arises unless the stress distribution in the elastic medium
immediately beneath the rigid body is known or assumed. Reissner (1936) and Miller
and Pursey (1954) amongst others assumed, when considering a rigid circular body,
a constant stress distribution in the elastic medium for vertical oscillation and a stress
proportional to radial distance for rotation about an axis normal to the surface. Other
authors, namely Arnold et al. (1955), Biot (1943), Hsieh (1962) only to name a few,
assumed a stress distribution proportional to that obtained from considerations of
static loading case. An assumed stress distribution will not yield a constant linear or
angular displacement of the medium immediately under the rigid body as demanded
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from physical consideration and it is then necessary to find a mean value for the
displacement.

Awojobi & Grootenhuis (1965), Robertson (1966) solved this mixed boundary-
value problem for rigid circular punch pressed into elastic half-space by a dual integral
Equation Using a standard method the dual integral equations were reduced to a set of
Fredholm integral equation, a series solution of which was obtained for low frequencies
giving a perturbation of the static solution.

Karasudhi et al. (1968) studied the vertical, horizontal and rocking vibrations of
a body on the surface of an unloaded half plane. An oscillation displacement was
prescribed in the loaded region. The problem, thus, reduced to a mixed problem with
respect to the prescribed displacement and the stress at the footing-soil interface. Each
of these cases leads to a mixed boundary value problem represented by dual integral
equations, which are reduced to a single Fredholm integral Equation.

5.7.10.1 Governing equations

The coordinate system and significant direction for the vibration of a rectangular plate
of infinite length resting on an elastic half space is shown in Figure 5.7.17. The infinite
plate is along the z-axis and the elastic half space occupies the region y = 0. Also,
w = 0 and all derivatives with respect to z vanish.

Using harmonic time variation of the loading exp(iωt) and writing the response in
the form (u, v, 0)eiωt, the vector equation of motion may be written as

∇2e + ω2
1e = 0; ∇2φz + ω2

2φz = 0 (5.7.71)

in which

∇2 = ∂2

∂x2 + ∂2

∂y2 ; e and ϕz are the dilatation and the z-component of rotation

given by

bb

z,w

x,u

y,v

Figure 5.7.17 Coordinate axes and significant dimensions.
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e = ∂u
∂x

+ ∂v
∂y

and φz = ∂u
∂y

− ∂v
∂x

(5.7.72)

and ω1 = ω/VP;ω2 = ω/VS; VP = dilatational wave velocity = [(λ+2G)/ρ]1/2; VS =
shear wave velocity = [G/ρ]1/2, where λ and G are Lame’s parameters and ρ the mass
density of the medium. The solution of Equation (5.7.71) may be obtained in the form
of Fourier Transform of e and φz and these may be written as

e(x, y) = 1
2π

∞∫
−∞

ē(p, y)e−i pxdp; φz(x, y) = 1
2π

∞∫
−∞

φ̄z(p, y)e−i pxdp (5.7.73)

where ē = Ae−a1 y; φ̄z = Be−k2 y; k2
1 = p2 − ω2

1; k2
2 = p2 − ω2

2; A and B are arbitrary
constants of p, to be determined from the boundary conditions.

Using Equation (5.7.73), the normal stress σy, the shearing stress τxy and the
displacements u and v may be written as

σy(x, y) = − G

2πω2
2

∞∫
−∞

[(
k2

1

η2 − λ

G
p2

)
A
η2 e−k1y + 4ik2pBe−k2y

]
e−i pxdp;

τxy(x, y) = G

πω2
2

∞∫
−∞

[
− ik1p
η2 Ae−k1y + (k2

2 + p2)Be−k2y
]

e−i pxdp;

u(x, y) = 1
2π

∞∫
−∞

(
1

ω2
1

k1Ae−k1y − 2

ω2
2

k2Be−k2y

)
e−i pxdp;

v(x, y) = 1
2π

∞∫
−∞

(
1

ω2
1

k1Ae−k1y + 2

ω2
2

ipBe−k2y

)
e−i pxdp, (5.7.74)

in which, η = VS/VP = √(1 − 2ν)/2(1 − ν) and ν is the Poisson’s ratio.

5.7.10.2 Vertical vibration

With reference to Figure 5.7.17, the boundary conditions are

τxy(x, 0) = 0 : 0 = |x| < 8;

σy(x, 0) = 0 : b < |x| < 8;

v(x, 0) = v0 : 0 = |x| = b. (5.7.75)

where v0 is the specified constant amplitude of the vertical displacement.

Taking, σ̄ (p) = − G

ω2
2

[(
k2

1

η2 − λ

G
p2

)
A
η2 + 4ik2pB

]
, (5.7.76)
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σy in Equation (5.7.74) reduces to

σy(x, 0) = 1
2π

∞∫
−∞

σ̄ (p)e−ipxdp (5.7.77)

From τxy in Equation (5.7.74) and using σ̄ (p), we can evaluate the constants A and
B, function of p, as follows:

A = −ω
2
2η

2(k2
2 + p2)

GF(p)
σ̄ (p) ; B = − iω2

2pk1

GF(p)
σ̄ (p) (5.7.78)

where F(p) =
(
2p2 − ω2

2

)2 − 4p2
√(

p2 − ω2
1

) (
p2 − ω2

2

)
(5.7.79)

Using expression for v in Equation (5.7.74) and substituting for the constants A and
B, the boundary conditions for σy and v in Equation (5.7.75) and use of symmetry,
lead to the dual integral equation as follows

ω2
2

2πG

∞∫
−∞

k1(p)σ̄ (p) e−ipx

F(p)
dp = v0 : |x| < b (5.7.80)

∞∫
−∞

σ̄ (p) e−i pxdp = 0 : |x| > b (5.7.81)

and σy(x, 0) = 1
π

∞∫
0

σ̄ (p) cos (px) dp

Using notations, r = x/b; n = bp, f (n) = f (bp) = σ̄ (p); a0 = bω2 = a∗
0/η, these

equations reduce to the dual integral equation of the form

a2
0

∞∫
0

k1(n)
F(n)

f (n) cos(nr)dn = πGv0; 0 ≤ r ≤ 1 (5.7.82)

∞∫
0

f (n) cos(nr)dn = 0; r > 1. (5.7.83)

where

F(n)= (2n2 −a2
0)

2 −4n2k1(n)k2(n); k1(n)=
√
(n2 − a∗2

0 ); k2(n)=
√
(n2 − a2

0),

(5.7.84)

F(n) is known as the Rayleigh’s function and a0 is referred to as the frequency factor.
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To ensure that only outgoing waves are present, it is necessary to subtract one half
of the residue at the Rayleigh pole from the left hand side of Equation (5.7.80). The
residue can be shown to be equal to 2π ia2

0k1(ns) cos(nsr)/F′(ns), where ns is the root
of F(n) and F′(n) is (dF/dn).

Thus, Equations (5.7.82) and (5.7.83) reduce to

a2
0

∞∫
0

k1(ξ)

φ(ξ)
f (ξ) cos(ξ r)dξ − π ia2

0k1(ns)f (ns) cos(nsr)

F′(ns)
= πGv0; 0 ≤ r ≤ 1

(5.7.85)
∞∫

0

f (ξ) cos(ξ r)dξ = 0; r > 1 (5.7.86)

The dual integral equations above is reduced to Fredholm integral equation by
assuming a solution of the form

f (n) = C0J0(n)+
1∫

0

t1/2 θ(t)J0(nt)dt (5.7.87)

where J0 is the 0th order Bessel function of the first kind and C0 depends on a0 and ν
and it can be seen that Equation (5.7.86) is satisfied, with C0 and θ(t) to be determined
from Equation (5.7.85).

Differentiating and with some rearrangement Equation (5.7.84) may be written as

∞∫
0

[C1 + H(ξ)]f (ξ) sin(ξr)dξ − π ia2
0nsk1(ns)f (ns) sin(nsr)

F′(ns)
= 0; 0 ≤ r ≤ 1

(5.7.88)

in which C1 = −[2(1 − η2)]−1and H(n) = a2
0nk1(n)/F(n)− C1. (5.7.89)

Substituting Equation (5.7.87) into Equation (5.7.88) leads to

−C1θ(s) =
1∫

0

√
ts k(t, s)θ(t)dt + C0

√
s K(s) (5.7.90)

in which

k(t, s) =
∞∫

0

nH(n)J0(nt)J0(ns)dn − π ia2
0n2

s
k1(ns)

F′(ns)
J0(nst)J0(nss); and (5.7.91)

K(s) = k(1, s) (5.7.92)
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Applying contour integration shown in Figure 5.7.18, with integrand
[ζH(ζ )H(1)

0 (ζ t)J0(ζ s)] for t ≥ s where ζ = η + iμ, k(t, s) is evaluated in the form

k(t, s) = k1(t, s) t ≥ s

= k1(s, t) t ≤ s (5.7.93)

where

k1(t, s)

= ia2
0

β∫
0

ξ2
√
η2 − ξ2 H(2)

0 (a0ξ t)J0(a0ξs)

(2ξ2 − 1)2 + 4ξ2
√
η2 − ξ2

√
1 − ξ2

dξ

+ 4in2
2

1∫
β

ξ4(η2 − ξ2)
√

1 − ξ2 H(2)
0 (a0ξ t)J0(a0ξs)

(2ξ2 − 1)4 + 16ξ4(η2 − ξ2)(1 − ξ2)
dξ

− π ia2
0ξs(ξ

2
s − η2) (

√
ξ2

s − 1)H(2)
0 (a0ξst)J0(a0ξss)

4[2(2ξ2
s − 1)(

√
ξ2

s − η2)(
√
ξ2

s − 1)− 2(ξ2
s − η2)(ξ2

s − 1)− ξ2
s (2ξ2

s − η2 − 1)]
(5.7.94)

in which ξ = n/a0 and ξs = ns/a0; H(1)
m (ζ ) and H(2)

m (ζ ) are Hankel functions of
order m.

An exhaustive solution of Equation (5.7.90) is given in Karasudhi et al. (1968) and
an out line of its numerical implementation is given below:

1 Divide the unit interval into n-equal parts;
2 Let si be the ordinate of the mid-point of each interval, i.e. si = (2i − 1)/2n,

i = 1, 2, . . . , n.
3 Introduce kij = (sisj)1/2xk(si, sj), where k(si, sj) is evaluated numerically.

- 1, - 2 - 1, - 2

3

1, 2

- 3 - 2 - 1 21

Figure 5.7.18 Contour for infinite integration.
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Equation (5.7.90) is then approximated by a set of n-complex simultaneous
equations by applying trapezoidal rule to the finite integrals and may be written as

n∑
j=1

(kij + nC1δij)θ(sj) = −nC0
√

siK(si), (i = 1, 2, . . . , n) (5.7.95)

in which δij = 0 for i 	= j and = 1, otherwise.
When a0, ν and n are specified, Equation (5.7.95) can be solved numerically for

θ(sj).
After several trials, n = 10 is found to be sufficient to obtain a solution within 0.5%.

Normally, a closed form representation of [s1/2θ(s)] is obtained from the least square
approximation and for a0 ≤ 1, result is within 0.5% and for 1 ≤ a0 ≤ 1.5, the result
is within 1.0%. Hence, we can write

s1/2θ(s) = C0(A1s + A2s2) (5.7.96)

where A1 and A2 are complex coefficients determined by the curve fitting process and
depend on the values of a0 and ν.

Substituting Equation (5.7.96) into Equation (5.7.87), we may obtain

f (n) = C0[J0(n)+ A′
1J1(n)/n + A′

2J2(n)/n2] (5.7.97)

where A′
1 = A1 + A2 and A′

2 = −2A2.
Equation (5.7.97) satisfies only the stress boundary condition, Equation (5.7.83)

and the slope of the displacement, Equation (5.7.88).
To satisfy the displacement boundary condition of Equation (5.7.80), Equation

(5.7.97) is substituted into it leading to the evaluation of integrals of the form

a2
0

∞∫
0

α1(ξ)

F(ξ)
Jm(ξ)

ξm cos(ξr)dξ ; m = 0, 1, 2. (5.7.98)

Integrals are to be evaluated by using contour integration with the integrand
a2

0α1(ζ )H
(1)
m (ζ ) cos(ζ r)/ |F(ζ )ζm|. Procedure is similar to the one used in determining

k(t, s).
Values for the real and imaginary parts of C0 are determined for different values

of r in the interval 0 = r = 1. The variation of C0 is found to be less than 0.5% for
a0 = 1.0 and less than 1% for 1.0 = a0 = 1.5.

The vertical stress and the vertical contact force Pr per unit length is given by

σy(x, 0) = (C0/π)[(b2 − x2)−1/2 + A′
1(b

2 − x2)1/2/b2 + A′
2(b

2 − x2)3/2/3b4];
0 ≤ x < b (5.7.99)

Pr = C0[1 + A′
1/2 + A′

2/8] = πGv0(f1 + if2) (5.7.100)

where f1 and f2 are the equivalent stiffness and are given in Figure 5.7.19a.
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Figure 5.7.19a Equivalent stiffness versus frequency factor, vertical vibration.

Considering the system as having a single degree of freedom leads to the equation
of equilibrium as

Prei(ω t+φ) + Peiω t = [d2/dt2]mv0eiω t (5.7.101)

Assuming m = mass of the rigid body per unit length, and b1 = m/(ρb2) = mass
ratio, the non-dimensional amplitude is given by

V = |πGv0/P| = [(f1 + a2
0b0/π)

2 + f 2
2 ]−1/2, (5.7.102)

where P is the amplitude of the applied vertical force per unit length and, phase angle

θ = tan−1[f2/(f1 + a2
0b0/π)] (5.7.103)

Let the frequency factors at θ = π/2 and at the maximum amplitude be a∗
0 and ā∗

0
and the corresponding amplitudes beVmax and V̄max. These quantities are shown in
Figures 19b,c.

The static values are obtained corresponding to a0 = 0.
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Figure 5.7.19b Mass ratio at resonance, a∗
0 and at ā∗

0 (at δ = π/2): for all Poisson ratios.
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Figure 5.7.19c Mass ratio versus resonant amplitudes at a∗
0 and at ā∗

0 (at δ = π/2).

For this case f (n) = C0J0(n), using L’Hospital rule, Equation (5.7.85) reduces to
∞∫

0

f (n)
n

cos(nr)dn = 2πG(η2 − 1)v0 : 0 ≤ r ≤ 1. (5.7.104)

Equation (5.7.98) indicates that left hand side of the equation is singular. Differenti-
ating Equation (5.7.104) with respect to r gives the correct value for the slope and the
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problem can be specified only within an arbitrary displacement. C0 can be expressed
in terms of the static applied force P. By integration, C0 = P and the static vertical
stress, σy(x, 0) = P/π(b2 − x2)1/2.

5.7.10.3 Horizontal vibration

Boundary conditions are:

σy(x, 0) = 0 0 ≤ |x| < ∞ (5.7.105)

τxy(x, 0) = 0 0 < |x| < ∞ (5.7.106)

u0(x, 0) = u0 0 ≤ |x| ≤ b (5.7.107)

where u0 is the specified amplitude of the horizontal vibration.
The non-dimensional governing dual integral equation are given by

a2
0

∞∫
0

k2(ξ)

F(ξ)
f (ξ) cos(ξr)dξ − π ia2

0
k2(ns)

F′(ns)
f (ns) cos(nsr) = πGu0 (5.7.108)

∞∫
0

f (ξ) cos(ξr)dξ = 0 (5.7.109)

where f (η) is given by

τxy(x, 0) = 1
π

∞∫
0

f (bp) cos(px)dp (5.7.110)

Equations (5.7.108) and (5.7.109) are modified by using

H(ξ) = a2
0η

k2(ξ)

F(ξ)
− C1 (5.7.111)

where C1 is given by Equation (5.7.89).
Assuming f (n) similar to the one given in Equation (5.7.87), the non-homogeneous

Fredholm equation of the second kind may be represented by Equation (5.7.90), in
which
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k(t, s) =
∞∫

0

ξH(ξ)J0(ξ t)J0(ξs)dξ − π ia2
0n2

s
k2(ns)

F′(ns)
J0(nst)J0(nss) (5.7.112)

and K(s) = k(1, s) (5.7.113)

Using Equation (5.7.93) for k(t, s), it can be shown by using contour in Figure 5.7.6,
that

k1(t, s)

= ia2
0

η∫
0

ξ2
√

1 − ξ2 H(2)
0 (a0ξ t)J0(a0ξs)

(2ξ2 − 1)2 + 4ξ2
√
η2 − ξ2

√
1 − ξ2

dξ

+ ia2
0

1∫
η

ξ2(2ξ2 − 1)
√

1 − ξ2 H(2)
0 (a0ξ t)J0(a0ξs)

(2ξ2 − 1)2 + 4ξ2
√
η2 − ξ2

√
1 − ξ2

dξ

− π ia2
0ξs(ξ

2
s − η2) (

√
ξ2

s − 1)H(2)
0 (a0ξst)J0(a0ξss)

4[2(2ξ2
s − 1)(

√
ξ2

s − η2)(
√
ξ2

s − 1)− 2(ξ2
s − η2)(ξ2

s − 1)− ξ2
s (2ξ2

s − η2 − 1)]
(5.7.114)

Rewriting the Fredholm equation similar to Equation (5.7.95), θ(s) can be approx-
imated by Equation (5.7.96) and with sufficient accuracy. Hence f (n) is given by
Equation (5.7.97), which upon substitution into Equation (5.7.109), leads to an
equation for determining C0 and containing an infinite integral of the form

a2
0

∞∫
0

k2(n)
F(n)

Jm(n)
nm cos(nx)dn, where m = 0, 1, 2. (5.7.115)

The latter is evaluated by using the contour integration shown in Figure 5.7.18, the
integrand being {a2

0k2(n)H
(2)
m (ζ ) cos(ζ r)/[F(ζ )ζm]}.

Values for the real and imaginary parts of C0 are determined for different values
of r in the interval 0 = r = 1. The variation of C0 is found to be less than 0.5% for
n2 = 1.0 and less than 1% for 1.0 = n2 = 1.5.

The horizontal stress and the contact shear force Q per unit length along the z-axis
is given by

τxy(x, 0) = (C0/π)[(b2 −x2)−1/2 +A′
1(b

2 −x2)1/2/b2 +A′
2(b

2 −x2)3/2/3b4];
0≤x<b (5.7.116)

Q = C0[1 + A′
1/2 + A′

2/8] = πGu0(f1 + if2) (5.7.117)
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Figure 5.7.20a Equivalent stiffness versus frequency factor, uncoupled horizontal vibration.

where f1 and f2 are equivalent stiff nesses and are shown in Figure 5.7.20a, plotted
against a0. Assuming m = mass of the rigid body per unit length, and b0 = m/(ρb2) =
mass ratio, the non-dimensional amplitude is given by

U = |πGu0/Qr| = [(f1 + n2
2b0/π)

2 + f 2
2 ]−1/2,

Phase angle θ = tan−1[f2/(f1 + n2
2b0/π)] (5.7.118)

Let the frequency factors at θ = π/2 and at the maximum amplitude be
a∗

0 and ā∗
0 and the corresponding amplitudes be Vmax and V̄max. The result is shown

in Figures 20b,c.
In terms of the static applied force Q, C0 = Q, and the static shear stress distribu-

tion is

τxy(x, 0) = Q/π(b2 − x2)1/2. (5.7.119)

5.7.10.4 Rocking vibration

Boundary conditions for vertical cases are already given as:

τxy(x, 0) = 0 : 0 = |x| < 8;

σy(x, 0) = 0 : b < |x| < 8;

v(x, 0) = v0 : 0 = |x| = b. (5.7.120)
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Figure 5.7.20b Mass ratio at resonance, a∗
0 and at ā∗

0 (at δ = π/2): for all Poisson ratios.
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Figure 5.7.20c Amplitudes at resonance, a∗
0 and at ā∗

0 (at δ = π/2): for all Poisson ratios.

for rocking case v0 is replaced by ψx, where ψ is the amplitude of the angle of rocking.
The governing dual integral equations are

a2
0

∞∫
0

k2(ξ)

F(ξ)
f (ξ) cos(ξr)dξ − π ia2

0
α2(ns)

F′(ns)
f (ns) cos(nsr) = πGu0 0 = r = 1

(5.7.121)
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∞∫
0

f (ξ) cos(ξr)dξ = 0; r > 1 (5.7.122)

where f (ξ) is given by

σy(x, 0) = 1
π

∞∫
0

f (bp) sin(px)dp (5.7.123)

Assuming f (n) to be of the form

f (n) = C0J1(n)+
1∫

0

√
t θ(t)J1(nt)dt (5.7.124)

and using Equation (5.7.99), Equation (5.7.96) can be transformed into an non-
homogeneous Fredholm equation of the second degree and can be represented by
Equation (5.7.134), where k(t, s) is given by Equation (5.7.112) with J0 is replaced by
J1 and K(s) = k(1, s). Using Equations (5.7.93) for k(t, s), it can be shown that k1(t, s)
given by Equation (5.7.94) with J0 being replaced by J1 and H(2)

0 by H(2)
0 .

Rewriting the Fredholm equation in the form of Equation (5.7.95) θ(s) can be
approximated with good accuracy as

s1/2θ(s) = C0(A1s2 + A2s4) (5.7.125)

Substituting Equation (5.7.125) into Equation (5.7.124), we may obtain

f (n) = C0[J1(n)+ A′
1J2(n)/n + A′

2J3(n)/n2] (5.7.126)

where A′
1 = A1 + A2 and A′

2 = −2A2.
To determine C0, Equation (5.7.125) is substituted into Equation (5.7.121) leading

to the evaluation of integrals of the form

a2
0

∞∫
0

k1(ξ)

F(ξ)
Jm(ξ)

ξm−1 sin(ξr)dξ ; m = 1, 2, 3. (5.7.127)

Integrals are to be evaluated by using contour integration with the integrand
a2

0k1(ζ )H
(1)
m (ζ ) sin(ζ r)/|F(ζ )ζm−1|. Procedure is similar to the one used earlier.

Values for the real and imaginary parts of C0 are determined for different values
of r in the interval 0 = r = 1. The variation of C0 is found to be less than 0.5% for
a0 = 1.0 and less than 1% for 1.0 = a0 = 1.5.
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The contact stress and the torque per unit length along the z-axis is given by

σy(x, 0) = C0[x(b2 − x2)−1/2 + A′
1x(b2 − x2)1/2/b2

+ A′
2x(b2 − x2)3/2/3b4]/(πb); 0 ≤ x < b (5.7.128)

T = bC0[1/2 + A′
1/8 + A′

2/48] = πGb2ψa22 = πGb2ψ(f1 + if2) (5.7.129)

where f1 and f2 are equivalent stiffness, shown in Figure 5.7.21a.
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Figure 5.7.21a Equivalent stiffness versus frequency factor, rocking vibration.
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Figure 5.7.21b Mass ratio at resonance, a∗
0: for all Poisson ratios.
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Figure 5.7.21c Mass ratio versus amplitude at resonance, a∗
0: for all Poisson ratios.

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1 1.2

M
as

s 
ra

ti
o

s

Figure 5.7.21d Amplitudes at resonance, at ā∗
0 (at δ = π/2).
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Figure 5.7.21e Mass ratio versus amplitudes at resonance, at ā∗
0 (at δ = π/2).

The non-dimensional amplitude ψ is given by

ψ = |πGb2ψ/T| = [(f1 + n2
2J̃/π)2 + f 2

2 ]−1/2, (5.7.130)

where T is the amplitude of the applied torque per unit length along the z-axis and
J̃ the inertia ratio equal to (J/ρb4), where J denotes the mass polar inertia per unit
length of the rigid body about the axis of rocking and the phase angle is given by

δ = tan−1[f2/(f1 + a2
0J̃/π)] (5.7.131)

It can be shown that for a0 = 0, θ(s) = 0, yielding f (n) = C0J1(n). Results are
shown in Figures 21b,c,d,e.

5.7.11 Luco and Westmann solution for rigid strip footing

Luco and Westmann (1972) obtained a solution for the forced vibration of a rigid
rectangular footing of infinite length and width 2b perfectly bonded to the free surface
of an elastic half space is considered. The footing is subjected to vertical, shear and
moment forces with harmonic time-dependence. The motion of the mass less footing
is produced by line forces and moments with harmonic time dependence eiωt acting
on the strip. Using the theory of singular integral equations the problem reduced to
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Figure 5.7.22 Footing and the coordinates.

the evaluation of the numerical solution of two Fredholm integral Equations. The
statement problem is shown in Figure 5.7.22.

For this derivation Cartesian tensor notation has been used all through. If uieiωt

are the Cartesian components of the displacement vector, due to the nature of applied
forces, u3 = 0 and all derivatives with respect to x3 vanish. The x3-axis coincides with
the infinite direction of the strip. The space, x2 ≥ 0 is assumed to be homogeneous,
isotropic elastic half space. Under these conditions the problem is two-dimensional
and the equations of motion in the half space are given by

Gui,jj + (λ+ G)uj,ji + ω2ρui = 0, x2 ≥ 0; i, j = 1, 2 (5.7.132)

where λ and G are Lame’s constants and ρ is the density of the medium.
The displacement boundary conditions are

u1 = �1 |x1| < b, x2 = 0 (5.7.133)

u2 = �2 + ϕx1 |x1| < b, x2 = 0 (5.7.134)

in which �1 corresponds to the amplitude of the horizontal displacement of the strip,
�2 to the vertical displacement at the center of the strip, and ϕ is the amplitude of the
footing rotation.

The components of surface traction Ti must satisfy the conditions

Ti(x1) = −t2i(x1, 0) = 0, |x1| > b, i = 1, 2. (5.7.135)

in which τij represents the component of stress tensor referred to xi coordinate system.
Also, the weightless footing requires that

b

1∫
−1

T1(bξ)dξ = H; b

1∫
−1

T2(bξ)dξ = P; b2

1∫
−1

ξT2(bξ)dξ = M (5.7.136)
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where H, P, M are, respectively, the amplitude per unit length of the horizontal force,
vertical force, and the moment applied to the strip.

Luco and Westmann (1972) used Green’s function gij for the half space and
now the problem of determining the unknown surface traction under the footing is
reduced to

b∫
−b

g1i(x1 − ξ ;ω)Ti(ξ)dξ = �1

b∫
−b

g2i(x1 − ξ ;ω)Ti(ξ)dξ = (�2 + φx1), |x1| < b, (i = 1, 2) (5.7.137)

The above integral equations were solved for the values of T1 and T2 and subse-
quently the stress field and displacements were obtained by solving the boundary value
problem of class 1.

Differentiation of Equation (5.7.137) w. r. t. x1 and use of the variable x = x1/b,
leads to

1
π

1∫
−1

Ti(bξ)
ξ − x

dξ − η2εijTj(bx) = 2(1 − η2)

⎡
⎣Gφδ2i + a0

π

1∫
−1

Tj(bξ)Lij(x − ξ)dξ

⎤
⎦

|x| < 1, (i, j = 1, 2) (5.7.138)

where, eij is zero for i = j and ±1 if (i, j) is even or odd permutation of (1 and 2);
other parameters used are: a0 = ωb

√
ρ/G = bk; η = √[(1 − 2ν)/2(1 − ν)] = ratio of

shear and dilatation waves, ν = Poisson’s ratio.
The integrals on the left hand side of Equation (5.7.137) are to be interpreted in the

sense of a Cauchy principal value. The remaining terms are defined by

Lij(x − ξ) = (−1)i+j

∞∫
0

Hij(k, η) cos
[
a0k(x − ξ)+ δij

π

2

]
dk (5.7.139)

The left hand side of Equation (5.7.137) is uncoupled by recombining may be
written as

1
π

1∫
−1

ρi(ξ)

ξ − x
dξ + i(−1)iη2ρj(x) = 2

(
1 − η2

)⎡⎣Gφ − i
2π

1∫
−1

ρ
j(ξ)Kij(x−ξ)dξ

⎤
⎦

|x| < 1, (i, j = 1, 2)
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in which ρi(x) = T2(bx) − i (−1)iT1(bx), (i = 1, 2); i = √−1, and it finally leads to
the following system of Fredholm integral equations

ri(x)+ 1
π

1∫
−1

φij(x, ξ)rj(ξ)dξ = −(−1)i
2Gi
κ

(Ci + φx) ; |x| < 1, (i, j = 1, 2)

(5.7.140)

where ri(x) = ρi(x)/Xi(x); (5.7.141)

X1(x) = −i
√
κ√

1 − x2
exp

(
iθ ln

(
1 + x
1 − x

))
;

X2(x) = X1(x); κ = 3 − 4ν; θ = ln(κ)/(2π) and

φij(x, ξ) = κ i−2Xj(ξ)

⎡
⎣ 1∫

−1

Kij(t − ξ)− Kij(x − ξ)

Xi(t)(t − x)
dt

⎤
⎦ ; i, j = 1, 2 (no sum)

Also, K11(x) = 2a0

∞∫
0

H12(k, η) cos(a0kx)dk − ia0

∞∫
0

[H11(k, η)

+ H22(k, η) sin(a0kx)]dk

K21(x) = 2a0

∞∫
0

H21(k, η) cos(a0kx)dk − ia0

∞∫
0

[H11(k, η)

+ H22(k, η) sin(a0kx)]dk

K12(x) = ia0

∞∫
0

[H11(k, η)− H22(k, η) sin(a0kx)]dk = K21(k, η)

where

H11(k, η) = 1
2(1 − η2)

+ n′k
�0(k, η)

; H22(k, η) = 1
2(1 − η2)

+ nk
�0(k, η)

H12(k, η) = η2

1 − η2 + 2(k2 − 1)k2 − 2k2nn′

�0(k, η)
= −H21(k, η)

in which n =
√

k2 −η2; n′ =
√

k2 −1; Re[n], n′ ≥ 0; and�0(k, η)= (2k2−)2 −4k2nn′.
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ϕ, C1 and C2 are constants to be determined from Equation (5.7.136) and may be
written as

b

1∫
−1

X1(x)r1(x)dx = P + iH; b

1∫
−1

X2(x)r2(x)dx = P − iH;

b2

1∫
−1

[X1(x)r1(x)+ X2(x)r2(x)]xdx = 2M (5.7.142)

The coupled integral equation, Equation (5.7.140), permits the expression of r1 and
r2 in terms of ϕ1, C1 and C2. It is then possible to find out �1 and �2 from Equation
(5.7.137).

For an incompressible solid, the singularity at the edges of the strip footing reduces
to a square root type singularity. Under this condition the Cauchy singular integral
equations (Equation (5.7.138)) can be transformed into Fredholm integral equations
with simplified kernels.

5.7.11.1 Vertical vibration

Surface tractions used are

T1(bξ) = −2Gξ

⎡
⎢⎣A1(1 − ξ2)−1 +

1∫
|ξ |

v−1/2θ1(v)(v2 − ξ2)−1/2dv

⎤
⎥⎦

T2(bξ) = 2G

⎡
⎢⎣A2(1 − ξ2)−1/2 +

1∫
|ξ |

v1/2θ2(v)(v2 − ξ2)−1/2dv

⎤
⎥⎦ , |ξ | < 1.

(5.7.143)

in which, A1 A2 are unknown constants and θ1(v) and θ2(v) are functions to be
determined. It is assumed that v−1/2θ1(v) and v1/2θ2(v) are O(v) as v → 0.

In Equation (5.7.138) if we set ϕ = 0, and ν = 1/2 one may obtain the following
set of Fredholm integral equations

θi(u)−
1∫

0

Mij(u, v)θj(v) = AjMij(u, 1), 0 ≤ u ≤ 1, (i, j = 1, 2) (5.7.144)

where

M11(u, v) = 2a2
0
√

uv

∞∫
0

kH11(k, 0)J1(a0ku)J1(a0kv)dk;
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M22(u, v) = 2a2
0
√

uv

∞∫
0

kH22(k, 0)J0(a0ku)J0(a0kv)dk;

M12(u, v) = 2a2
0
√

uv

∞∫
0

kH12(k, 0)J1(a0ku)J0(a0kv)dk;

M21(u, v) = 2a2
0
√

uv

∞∫
0

kH12(k, 0)J0(a0ku)J1(a0kv)dk.

The integral equations given above in Equation (5.7.144) would give the values of
θ1(u) and θ2(u) in terms of the unknowns A1 and A2. These constants are determined
in turn by Equation (5.7.137) with �1 = ϕ = 0. Both the sides of Equation (5.7.137)
are differentiated with respect to x1 and the results evaluated at x1 = 0. An average
of the vertical displacement with weight bπ−1(b−x2

1)
−1/2 has been used to obtain �2

and hence we have

0 = −2

⎡
⎣AjN1j(1)+

1∫
0

N1j(v)θj(v)v1/2dv

⎤
⎦ ;

�2 = −2b

⎡
⎣AjN2j(1)+

1∫
0

N2j(v)θj(v)v1/2dv

⎤
⎦ (j = 1, 2) (5.7.145)

where

N11(v) = a0

∞∫
0

H11(k, 0)J1(a0kv)dk − 1/2v;

N12(v) = a0

∞∫
0

H12(k, 0)J0(a0kv)dk;

N21(v) =
∞∫

0

(2k2 − 1)k − 2knn′

�0(k, 0)
J0(a0k)J1(a0kv)dk;

N22(v) =
∞∫

0

n
�0(k, 0)

J0(a0k)J1(a0kv)dk

Equation (5.7.145) may be used to obtain A1 and A2 in terms of �2.
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Now, the amplitude of the applied vertical force is given by

P = 2πpb

⎡
⎣A2 +

1∫
0

v1/2θ2(v)dv

⎤
⎦ (5.7.146)

The dynamic compliance and corresponding stiffness may be obtained from

Cvv(a0) = πμ�2/P; kvv(a0) = 1/Cvv(a0) (5.7.147)

For low frequencies

T1(bx) = 0; T2(bx) = P

πb
√

1 − x2
|x| < 1. (5.7.148)

Using Equations (5.7.139), (5.7.147) leads to

Cvv(a0) = −1
2

[
ln
(a0

2

)
+ γ̄ + i

π

2

]
as a0 → 0; γ̄ = 0.577125 = Euler’s constant.

(5.7.149)

5.7.11.2 Coupled horizontal and rocking vibration

The surface traction components are

T1(bξ) = 2G

⎡
⎢⎣A1(1 − ξ2)−1/2 +

1∫
|ξ |

v1/2θ1(v)(v2 − ξ2)−1/2dv

⎤
⎥⎦

T2(bξ) = 2G

⎡
⎢⎣A2(1 − ξ2)−1/2 +

1∫
|ξ |

v−1/2θ2(v)(v2 − ξ2)−1/2dv

⎤
⎥⎦ |ξ | < 1

(5.7.150)

Using these expressions in Equation (5.7.138) and setting �2 = 0 and ν = 1/2
leads to a system of Fredholm integral equations also as given in Equation (5.7.142),
in which the kernels Mij(u, v) are the same as in Equation (5.7.142) except for the
replacement of the Bessel function of order one by the corresponding Bessel function
of order zero and vice-versa.
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Substitution from Equation (5.7.150) into Equation (5.7.137) leads to

�1 = −2b

⎡
⎣AjN1j(1)+

1∫
0

N1j(v)θj(v)v1/2dv

⎤
⎦

φ = −2

⎡
⎣AjN2j(1)+

1∫
0

N2j(v)θj(v)v1/2dv

⎤
⎦ (j = 1, 2) (5.7.151)

in which

N11(v) =
∞∫

0

n′

�0(k, 0)
J0(a0k)J0(a0kv)dk

N12(v) =
∞∫

0

(2k2 − 1)k − 2knn′

�0(k, 0)
J0(a0k)J1(a0kv)dk

N21(v) = a0

∞∫
0

H12(k, 0)J1(a0kv)dk;

N22(v) = a0

∞∫
0

H22(k, 0)J1(a0kv)dk − 1/2v

(5.7.152)

and an average with weight bπ−1(b2 − x2
1)

−1/2 has been used to obtain Equation
(5.7.151).

Both the sides of Equation (5.7.137) has been differentiated w.r.t. x to obtain
Equation (5.7.151) and the result is evaluated at the center of the strip.

The force displacement relationship is then reduced to

H = 2πGb

⎡
⎣A1 +

1∫
0

v1/2θ1(v)dv

⎤
⎦ ; M = 2Gb2

⎡
⎣A2 +

1∫
0

v1/2θ2(v)dv

⎤
⎦
(5.7.153)

Once the integral equations have been solved in term as of A1 and A2, these constants
can be determined in terms of �1 and ϕ using Equation (5.7.151). These lead to

{
�1
bφ

}
= 1
πb

[
CHH(a0) CHM(a0)

CMH(a0) CMM(a0)

]{
H

M/b

}
(5.7.154)

where CHM = CMH .
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CHH(a0) has the same asymptotic behaviour as Cvv(a0) when a0 tends to zero. To
obtain the corresponding integral equations and compliances for the vertical, rocking
and horizontal vibrations under relaxed conditions, it is necessary to set A1 and θ1 to
zero for the first two cases, and set A2 and θ2 to zero for the last case.

It should be noted that only the equations representing constraints on the verti-
cal displacement are considered for vertical and rocking vibrations, while only the
equations constraining the horizontal displacement are considered for the horizontal
vibrations. For solving integral equations the integrals are replaced by summations
obtained by using standard numerical techniques, like the Simpson’s rule. Once the
integral equations have been solved, numerical integration is used to evaluate the
applied forces and corresponding displacements. The kernels Mij, Nij are evaluated by
numerical integrations after transforming them by the use of contour integration.

5.7.11.3 Approximate evaluation of compliances

A first approximation to the force-displacement relationship for Poisson’s ratio other
than one half has been obtained by solving the dominant part of Equation (5.7.140).
This is given by the nonhomogeneous terms in Equation (5.7.140). Combining this
solution with Equations (5.7.140), (5.7.141) and (5.7.142) leads to the surface traction
for vertical vibration:

T1(ξb) = − 1
4π

(
1 + κ

κ

)
P
b

[X1(ξ)+ X2(ξ)]

T2(ξb) = − i
4π

(
1 + κ

κ

)
P
b

[X1(ξ)− X2(ξ)] |ξ | < 1

(5.7.155)

in the case of coupled horizontal-rocking vibration it is

T1(ξb) = G
κ

[C0
1{X1(ξ)− X2(ξ)} + φ0ξ{X1(ξ)+ X2(ξ)}]

T2(ξb) = G i
κ

[C0
1{X1(ξ)+ X2(ξ)} + φ0ξ{X1(ξ)− X2(ξ)}] (5.7.156)

in which C0
1 = −i[2θφ0 − 1 + κ

κ

H
b

]; φ0 = 1
2π

[
1 + κ

1 + θ2

] [
M + 2θbH

μb2

]
(5.7.157)

Substitution from Equation (5.7.152) in Equation (5.7.137) shows that the
corresponding displacement u2 under the strip for the vertical vibration is
given by
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u2(bx) = − P
2πG

⎡
⎣ ∞∫

0

n
�0(k, η)

cos(a0kx)M+
(

1
2

+ iθ , 1, 2ia0k
)

dk

+
∞∫

0

(2k2 − 1)k − 2knn′

�0(k, η)
cos(a0kx)M−

(
1
2

+ iθ , 1, 2ia0k
)

dk

⎤
⎦ ; |x|<1

(5.7.158)

in which M ± (a, b, z) = [M(a, b, z) ± M(ā, b, z)]e−z/2 where M(a, b, z) represents
Kummer’s confluent hypergeometric function.

Defining the average displacement under the strip footing as

�2 = 2
π

1∫
0

u2(bx)√
1 − x2

dx (5.7.159)

leads to the following estimate of the vertical compliance

Cvv(a0) = −1
2

⎡
⎣ ∞∫

0

n
�0(k, η)

J0(a0k)M+
(

1
2

+ iθ , 1, 2ia0k
)

dk

+
∞∫

0

(2k2 − 1)k − 2knn′

�0(k, η)
J0(a0k)M−

(
1
2

+ iθ , 1, 2ia0k
)

dk

⎤
⎦ (5.7.160)

Using a similar procedure compliance functions for horizontal and rocking compli-
ances may be obtained as

CHH(a0)

= −1
2

⎧⎨
⎩

∞∫
0

n′

�0(k, η)
J0(a0k)

[
M+

(
1
2

+ iθ , 1, 2ia0k
)

+ 2θa0kM−
(

3
2

+ iθ , 3, 2ia0k
)]

dk

+
∞∫

0

(2k2 − 1)k − 2knn′

�0(k, η)
J0(a0k)

[
M−

(
1
2

+ iθ , 1, 2ia0k
)

+ 2θa0kM+
(

3
2

+ iθ , 3, 2ia0k
)]

dk

⎫⎬
⎭

(5.7.161)

CHM(a0) = −a0

2

⎧⎨
⎩

∞∫
0

n′k
�0(k, η)

J0(a0k)
[
M−

(
3
2

+ iθ , 3, 2ia0k
)]

dk

+
∞∫

0

(2k2 − 1)k − 2knn′

�0(k, η)
J0(a0k)

[
M+

(
3
2

+ iθ , 3, 2ia0k
)]

dk

⎫⎬
⎭

(5.7.162)
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CMH(a0)

= −
⎧⎨
⎩

∞∫
0

n
�0(k, η)

J1(a0k)
[
M−

(
1
2

+ iθ , 1, 2ia0k
)

+ 2θa0kM+
(

3
2

+ iθ , 3, 2ia0k
)]

dk

+
∞∫

0

(2k2 − 1)k − 2kn′n
�0(k, η)

J1(a0k)

×
[
M+

(
1
2

+ iθ , 1, 2ia0k
)

+ 2θa0kM−
(

3
2

+ iθ , 3, 2ia0k
)]

dk
}

(5.7.163)

CMM(a0) = −a0

⎧⎨
⎩

∞∫
0

n
�0(k, η)

J1(a0k)M+
(

3
2

+ iθ , 3, 2ia0k
)

dk

+
∞∫

0

(2k2 − 1)k − 2kn′n
�0(k, η)

J1(a0k)M−
(

3
2

+ iθ , 3, 2ia0k
)

dk

⎫⎬
⎭

(5.7.164)

The corresponding approximation for the relaxed boundary conditions can be
obtained by setting θ = 0, in Equations (5.7.160) through (5.7.164).

5.7.12 Dynamic response of circular footings

The dynamic compliances for a larger frequency range is necessary for solving soil-
structure interaction problems, particularly under earthquake loading condition.
Further the knowledge of surface displacements is needed since these quantities are
being experimentally measured.

Luco and Westmann (1971) computed the various dynamic compliances of the
circular footing for a wide range of dimensionless frequency. Also presented are the
surface tractions and far-field displacements as a function of frequency.

The footing is modeled as a rigid circular disc with radius r0 resting on a homoge-
neous elastic half space. A cylindrical coordinate system r, θ , z is employed: the r−θ
plane coincides with the half space surface with the z-axis directed into the half space.
The origin of the coordinate system is located at the centre of the circular disc. The
steady state displacement vector (ur, uθ , uz)eiωt, corresponding to a harmonic loading
frequency ω, satisfies the elastic equations of motion. Hence in the solution the factor
eiωt is omitted. The basic criterion used is that since the loads are applied on a finite
region of the surface of the half space, the displacements must satisfy the appropriate
condition as (r2 + z2) tends to infinity.

Solutions of the equations of motion in cylindrical coordinates, satisfying the radia-
tion condition, for the displacements and components of stress τrz, τθz, σz at z = 0,
are specified in terms of the dimensionless variables r′ = r/r0, z′ = z/r0 are given by
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ur(r0r′, θ , r0z′) = −r0

∞∫
0

kF11(k, z′)J1(kr′)dk;

uθ (r0r′, θ , r0z′) = r0

∞∫
0

C1(k)
n2

e−n2z′
J1(kr′)dk;

uz(r0r′, θ , r0z′) = r0

∞∫
0

F21(k, z′)J0(kr′)dk; (5.7.165)

τrz(ar′, θ , 0) = −G

∞∫
0

kF31(k)J1(kr′)dk;

τθz(ar′, θ , 0) = −G

∞∫
0

C1(k)J1(kr′)dk

σz(ar′, θ , 0) = G

∞∫
0

F41(k)J1(kr′)dk and (5.7.166)

ur(r0r′, θ , r0z′) = r0

∞∫
0

[
F12(kz′)

∂J1(kr′)
∂r′ − C2(k)

J1(kr′)
r′ e−n2z′

]
dk cos θ

uθ (r0r′, θ , r0z′) = −r0

∞∫
0

[
F12(kz′)

J1(kr′)
r′ − C2(k)

∂J1(kr′)
∂r′ e−n2z′

]
dk sin θ

uz(r0r′, θ , r0z′) = r0

∞∫
0

F22(k, z′)J1(kr′)dk cos θ (5.7.167)

τrz(r0r′, θ , 0) = G

∞∫
0

[
F32(k)

∂J1(kr′)
∂r′ + n2C2(k)

J1(kr′)
r′

]
dk cos θ

τθz(r0r′, θ , 0) = −G

∞∫
0

[
F32(k)

J1(kr′)
r′ + n2C2(k)

∂J1(kr′)
∂r′

]
dk sin θ

σz(r0r′, θ , 0) = G

∞∫
0

F42(k)J1(kr′)dk cos θ (5.7.168)
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in which

F1i(k, z′) = −Ai(k)e−n1 z′ + n2Bi(k)e−n2z′
i = 1, 2

F2i(k, z′) = n1Ai(k)e−n1 z′ − k2Bi(k)e−n2z′
i = 1, 2

F3i(k) = 2n1Ai(k)+ (a2
0 − 2k2)Bi(k) i = 1, 2

F4i(k) = (a2
0 − 2k2)Ai(k)+ 2n2k2Bi(k) i = 1, 2

(5.7.169)

where n1 =
√

k2 − γ 2a2
0; n2 =

√
k2 − a2

0; Re n1, n2 ≥ 0; a2
0 = ωr0(ρ/G); γ 2 =

(1 − 2ν)/[2(1 − ν)] and ρ, G and ν represent density, shear modulus and Poisson’s
ratio, respectively.

Equations (5.7.165) and (5.7.166) have been used to solve the torsional and vertical
vibration response, while Equations (5.7.165) and (5.7.166) are used for the rocking
and horizontal vibrations.

5.7.12.1 Boundary conditions

1 In all four cases it has been assumed that the surface traction outside the disc is
zero.

2 For vertical and rocking vibrations, the vertical displacement under the disc is
prescribed while the disc-foundation interface is taken to be frictionless.

3 For horizontal vibrations, the horizontal displacements are prescribed under the
disc while it is assumed that the contact is such that the normal component of the
surface traction is zero everywhere.

The boundary conditions described above lead to sets of dual integral equations
in terms of the unknown functions Ai(k), Bi(k), Ci(k). By appropriate substitutions,
the dual integral equations reduce to Fredholm integral equations of the second kind,
which are to be solved numerically.

5.7.12.2 Tortional vibration

For torsional vibration of the rigid disc of amplitude αT , the displacement uθ and the
stress τθz under the disc, and the total applied torque T are given by

uθ (r0r′, θ , 0) = αTr0r′ (r′ ≤ 1) (5.7.170)

τθz(r0r′, θ , 0)

= −4GαT

π

⎡
⎣ r′

(1 − r′2)1/2
φ(1)−

1∫
r′

r′

(t2 − r′2)1/2
d
dt

[t−1/2φ(t)]dt

⎤
⎦ (r′ ≤ 1)

(5.7.171)
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T = 16GαTr3
0

1∫
0

tφ(t)dt (5.7.172)

in which φ(t) satisfies the Fredholm integral equation

φ(t)+
1∫

0

K(t, t′)φ(t′)dt′ = t (0 ≤ t ≤ 1) (5.7.173)

The kernel K(t, t′) for Equation (5.7.173) and other kernels to be appeared later
are listed in the Appendix. The expressions given therein have been obtained using
Equations (5.7.165) and (5.7.166) with A1 = B1 = 0 and

C1(k) = 4kαT

π

1∫
0

φ(t) sin(kt)dt (5.7.174)

5.7.12.3 Vertical vibration

For vertical vibrations of amplitude �V

uz(r0r′, θ , 0) = �V (r′ < 1) (5.7.175)

σz(r0r′, θ , 0) = − 2G�V

πr0(1 − ν)

⎡
⎣ φ(1)
(1 − r′2)1/2

−
1∫

r′

d
dtφ(t)dt

(t2 − r′2)1/2

⎤
⎦ (r′ < 1)

(5.7.176)

V = 4G�Vr0

(1 − ν)

1∫
0

φ(t)dt (5.7.177)

where V is the amplitude of the vertical force. The function φ(t) must satisfy the
Fredholm integral equation

φ(t)+
1∫

0

K(t, t′)φ(t′)dt′ = 1 (0 ≤ t ≤ 1) (5.7.178)

The expressions given in the Appendix have been obtained using Equations
(5.7.165) and (5.7.166) with C1 = 0 and

A1(k) = 1
1 − ν

[
(a2

0 − 2k2)

4n1n2k2 − (2k2 − a2
0)

2

]
ψ(k) ;

B1(k) = − 1
1 − ν

[
2n1

4n1n2k2 − (2k2 − a2
0)

2

]
ψ(k)

(5.7.179)
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where

ψ(k) = 2�Vk
πr0

∫ 1

0
φ(k) cos(kt)dt (5.7.180)

The far-field displacements (r � r0) on the surface of the half space, using Equations
(5.7.165), (5.7.179) and (5.7.180) are given by

uz(r, θ , 0) = −i
ωL0V
2β3ρ

RV (a0)H
(2)
0

(
ωr
CR

)
(r � r0)

ur(r, θ , 0) = i
ωM0V
2β3ρ

RV (a0)H
(2)
1

(
ωr
CR

)
(r � r0) (5.7.181)

where H(2)
0 and H(2)

1 are Hankel functions and

L0 = s
√

s2 − γ 2

F′(s)
; M0 = − s2[2√s2 − γ 2

√
s2 − 1 − (2s2 − 1)]
F′(s)

(5.7.182)

RV (a0) =
1∫

0

φ(t) cos(a0st)dt

/ 1∫
0

φ(t)dt (5.7.183)

in which

F(s) = 4s2
√

s2 − γ 2
√

s2 − 1 − (2s2 − 1)2 = 0;

F′(s) is the derivative of F(x) at x = s, β = (G/ρ)1/2 and CR = β/s is the velocity of
the Rayleigh wave.

5.7.12.4 Rocking vibration

For rocking vibrations of amplitude αM

uz(r0r′, θ , 0) = αMr0r′ cos θ (r′ < 1) (5.7.184)

σz(r0r′, θ , 0)

= − 4GαM

π(1 − ν)

⎡
⎣ r′φ(1)
(1 − r′2)1/2

−
1∫

r′

r′ d
dt [t−1φ(t)]dt

(t2 − r′2)1/2

⎤
⎦ cos θ (r′ < 1) (5.7.185)

M = 8GαMr3
0

1 − ν

1∫
0

tφ(t)dt (5.7.186)

where M is the amplitude of rocking moment. The function θ(t) satisfies a Fredholm
integral equation identical, except for the kernel, to Equation (5.7.172).
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The above results are based on Equation (5.7.167) and (5.7.168) with C2 = 0 and
A2, B2 given, respectively, by the right hand side of Equation (5.7.179) in which

ψ(k) = 4kαM

π

1∫
0

φ(t) sin(kt)dt (5.7.187)

The part of the far-field displacement on the surface of the half space corresponding
to Rayleigh wave is given by

uz(r, θ , 0) = − iω2sL0M
2β4ρ

RM(a0)H
(2)
1

(
ωr
CR

)
cos θ

ur(r, θ , 0) = iω2sL0M0M
4β4ρ

RM(a0)

[
H(2)

2

(
ωr
CR

)
− H(2)

0

(
ωr
CR

)]
cos θ

uϕ(r, θ , 0) = iω2sL0M0M
4β4ρ

RM(a0)

[
H(2)

2

(
ωr
CR

)
+ H(2)

0

(
ωr
CR

)]
sin θ (r � r0)

(5.7.188)

where L0, M0 are far-field displacement factors and

RM(a0) =
⎧⎨
⎩

1∫
0

φ(t) sin(a0st)dt

⎫⎬
⎭
/⎧⎨
⎩a0s

1∫
0

[
tφ(t)dt

]⎫⎬⎭ (5.7.189)

5.7.12.5 Horizontal vibrations

For horizontal vibration of amplitude �H

ur(r0r′, θ , 0) = �H cos θ uθ (r0r′, θ , 0) = −�H sin θ (r′ < 1) (5.7.190)

τrz(r0r′, θ , 0) = τ ∗
rz(r

′) cos θ τθz(r0r′, θ , 0) = τ ∗
θz(r

′) sin θ (r′ < 1) (5.7.191)

where

τ ∗
rz − τ ∗

ϕz = − 4G�H

πr0(2 − ν)

⎡
⎣2φ1(1)− νφ2(1)

(1 − r′2)1/2
−

1∫
r′

{
2 d

dtφ1(t)− νt−1 d
dt (tφ2(t))

dtφ2(t)
dt

(t2 − r′2)1/2

}
dt

⎤
⎦

τ ∗
rz + τ ∗

ϕz = 4G�H

πr0

⎡
⎣ r2φ2(1)
(1 − r′2)1/2

− r′2
1∫

r′

{
d
dt

(
t−2φ2(t)

)
(t2 − r′2)1/2

}
dt

⎤
⎦ (5.7.192)
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The amplitude of the horizontal force H applied to the disc is given by

H = 8Gr0�H

2 − ν

1∫
0

φ1(t)dt (5.7.193)

The functions φ1 and φ2 satisfy the pair of Fredholm integral equations given by

φ1(t)+
1∫

0

[K11(t, t′)φ1(t′)+ K12(t, t′)φ2(t′)] = 1

(1 − ν)φ2(t)+
1∫

0

[K21(t, t′)φ1(t′)+ K22(t, t′)φ2(t′)]dt′ = 0 (0 ≤ t ≤ 1)

(5.7.194)

The above expressions are obtained from Equations (5.7.167) and (5.7.168) by
using

A2(k)= − 4n2k

4n1n2k2 − (2k2 − a2
0)

2
ψ1(k); B2(k) = 2(a2

0 − 2k2)

4n1n2k2 − (2k2 − a2
0)

2
ψ1(k);

C2(k) = [2ψ2(k)]/[kn2] (5.7.195)

where

ψ1(k) = 2�Hk
πr0(2 − ν)

1∫
0

φ[(φ1(t)− φ2(t)) cos(kt)+ [φ2(t) sin(kt)]/kt]dt (5.7.196)

ψ2(k) = 2�Hk
πr0(2 − ν)

1∫
0

[− (φ1(t)+ (1 − ν)φ2(t)) cos(kt)+ [(1 − ν)φ2(t) sin(kt)]/kt]dt

(5.7.197)

The part of the far-field displacement on the surface of the half space corresponding
to the Rayleigh wave is given by

uz(r, θ , 0) = −i
ωM0H
2β3ρ

RH(a0)H
(2)
1

(
ωr
CR

)
cos θ

ur(r, θ , 0) = iωN0H
4β3ρ

RH(a0)

[
H(2)

2

(
ωr
CR

)
− H(2)

0

(
ωr
CR

)]
cos θ

uϕ(r, θ , 0) = iωN0H
4β3ρ

RH(a0)

[
H(2)

2

(
ωr
CR

)
+ H(2)

0

(
ωr
CR

)]
sin θ (r � r0) (5.7.198)
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in which

N0 = s(s2 − 1)1/2

F′(s)
;

RH(a0) =
⎡
⎣ 1∫

0

[φ1(t)− φ2(t)] cos(a0st)dt +
1∫

0

φ2(t)[sin(a0st)/a0st]dt

⎤
⎦/

⎡
⎣ 1∫

0

φ1(t)dt

⎤
⎦

(5.7.199)

5.7.12.6 Coupling motions

Let a harmonic horizontal force of amplitude H is applied to a perfectly bonded elastic
half space, a harmonic rocking motion αH is produced, in addition to the horizontal
displacement �H . Again when a rocking moment M is applied, a horizontal motion
�M is produced in addition to the rocking motion αM. These coupling motion αH and
�M are related by the reciprocity condition. Since the solutions given in (c) and (d) are
based on relaxed boundary conditions, only estimates of these coupled displacements
can be obtained.

Bycroft (1956) used generalized weighted averages as

ᾱH = 3

2πr3
0

2π∫
0

r0∫
0

r2

(r2
0 − r2)1/2

uz cos θdθ ; �̄M = 3
2πr0

2π∫
0

r0∫
0

[
ur cos θ − uθ sin θ

(r2
0 − r2)1/2

]
rdrdθ ;

(5.7.200)

where, uz is the vertical displacement produced by the horizontal force while ur and uθ
are the horizontal components of the displacement produced by the rocking moment.

Again, from Equation (5.7.199), we have

H�M = MαH (5.7.201)

Thus, using Equations (5.7.167), (5.7.168), (5.7.193), (5.7.194) and (5.7.197), one
can have

ᾱH = 3(1 − ν)

8π
H

Gr2
0

⎧⎨
⎩γ 2 + IH1(a0)+ γ 2

1∫
0

1 + t2

2t2 �(t)

×
⎡
⎣γ 2

1∫
0

1 + t2

2t2 �(t)
(

ln
(

1 − t
1 + t

)
+ 2t

1 + t2

)
dt −

1∫
0

t−1/2�(t)IH2(a0, t)dt

⎤
⎦

×
⎛
⎝ 1∫

0

φ1(t)dt

⎞
⎠

−1⎫⎪⎬
⎪⎭ (5.7.202)
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where �(t) = tφ1(t)−
t∫

0

φ1(t′)dt′ − tφ2(t) (5.7.203)

φ1(t), φ2(t) are solutions of Equations (5.7.194) and IH1(a0) and IH2(a0, t) are given
in the Appendix.

Similarly using Equations (5.7.167), (5.7.169), (5.7.185) and (5.7.187), we can have

�̄M = 1 − ν

8π
M

Gr2
0

⎡
⎣γ 2

1∫
0

φ(t)ln
(

1 + t
1 − t

)
dt +

1∫
0

φ(t)IM(a0, t)dt

⎤
⎦
⎡
⎣ 1∫

0

tφ(t)dt

⎤
⎦

−1

(5.7.204)

in which IM(a0, t) is also given in the Appendix and θ(t) is the solution of Equation
(5.7.173) for the rocking case.

5.7.12.7 Numerical solutions

The Fredholm integral equation for each case was solved numerically for a0 in the range
0 to 10 for varying Poisson’s ratio. The Fredholm integral equations were reduced to
a system of algebraic equations using finite differences. Integrals were evaluated using
Simpson’s rule with ten to twenty intervals. The kernels were evaluated by Filon’s
method of numerical integration.

As regarding error in the numerical evaluation, by doubling the number of intervals
the difference found was less than one percent for frequencies less than two, the error
increases for higher frequencies.

The dynamic compliances are defined by the matrix equation as follows

⎧⎪⎪⎨
⎪⎪⎩

αT
�V
αM
�H

⎫⎪⎪⎬
⎪⎪⎭

⎡
⎢⎢⎣

CT(a0) 0 0 0
0 CV (a0) 0 0
0 0 CM(a0) CMH(a0)

0 0 CHM(a0) CH(a0)

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

T
V
M
H

⎫⎪⎪⎬
⎪⎪⎭ (5.7.205)

and were evaluated using Equations (5.7.172), (5.7.177), (5.7.186), (5.7.173),
(5.7.200) and (5.7.204).

The static values obtained from above are:

CT(0) = 3
16

1

πr3
0

; CV (0) = 1
4

1 − ν

πr0
; CM(0) = 3

8
1 − ν

πr3
0

;

CH(0) = 1
8

2 − ν

πr0
; CHM(0) = CMH(0) = 3

16π
1 − 2ν

Gr2
0

(5.7.206)
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In the neighbourhood of the edge of the disc, the stresses are as given below

τθz(r0r′, 0, 0) = − 3

4πr3
0

TST
r′

(1 − r′2)1/2
; ST = φ(1)

3
∫ 1

0 tφ(t)dt
(torsion) as r′ → 1 −

σz(r0r′, 0, 0) = − V

2πr2
0

SV
1

(1 − r′2)1/2
; SV = φ(1)∫ 1

0 φ(t)dt
(vertical) as r′ → 1 −

σz(r0r′, 0, 0) = − 3M

2πr3
0

SM
r′

(1 − r′2)1/2
; SM = φ(1)

3
∫ 1

0 tφ(t)dt
(rocking) as r′ → 1 −

τ ∗
rz(r

′)− τ ∗
θz(r

′) = − H

πr2
0

SH1
1

(1 − r′2)1/2
;

SH1 = 2φ1(1)− νφ2(1)

2
∫ 1

0 φ1(t)dt
(horizontal) as r′ → 1 −

τ ∗
rz(r

′)+ τ ∗
θz(r

′) = − H

πr2
0

SH2
r′2

(1 − r′′2)1/2
;

SH2 = (2 − ν)φ2(1)

2
∫ 1

0 φ1(t)dt
(horizontal) as r′ → 1 − (5.7.207)

The coefficients L0, M0, N0 appearing in the expressions for the far-field are given in
Table 5.7.5. It can be seen that only for extremely low values of the dimensionless fre-
quency a0 = r0ω/β, the far-field displacement is approximated by the corresponding
displacement for a point load.

In Equation (5.7.205), when the force inputs are real, consider the following example
involving the torsion problem. If the resultant torque acting on the footing is T cos ωt,
then the response is given by

αT = T {Re[CT ] cosωt − Im[CT ] sinωt} = T |CT | cos(ωt + δ) (5.7.208)

where, |CT | = {(Re[CT ])2 + (Im[CT ])2}1/2; δ = tan−1
[

Im[CT ]
Re[CT ]

]
(5.7.209)

Table 5.7.5

ν γ 2 s L0 M0 N0

1/2 0 1.0468 0.1139 0.0620 0.0337
1/3 1/4 1.0724 0.1752 0.1066 0.0681
1/4 1/3 1.0877 0.1996 0.1360 0.0926
0 1/2 1.1441 0.3254 0.2558 0.2011
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APPENDIX

(a) Torsional case

The kernel is given by

K(t, t′) = L(t + t′)− L(|t − t′|) (a1)

where

L(t) = 0.5a0[J1(a0t)− iH1(a0t)] (a2)

in which J1 and H1 stand for Bessel and Struve functions of order one.
The asymptotic expansions of the compliance for low and high frequencies are

CT(a0) = 3

16Gr3
0

{[
1 + a2

0 − 34
525

a4
0 + · · ·

]
− i
π

[
4
9

a3
0 − 16

225
a5

0 + · · ·
]}

as a0 → 0

(a3)

CT(a0) = 3

16Gr3
0

{[
125

3
1

(πa0)2
+ · · ·

]
− i

4

[
32
3

1
a0

+ 64
3

sin(2a0 − π/4)
√
πa5/2

0

+ · · ·
]}

as a0 → ∞ (a4)

(b) Vertical case

The kernel is given by

K(t, t′) = L(t + t′)+ L(|t − t′|) (b1)

in which

L(t) = −ia0

4π(1 − ν)

⎡
⎣4πs(s2 − γ 2)1/2e−ia0st

F′(s)
+

γ∫
0

ξ(γ 2 − ξ2)1/2e−ia0ξ t

�1(ξ , γ )
dξ

⎤
⎦

+ −ia0

4π(1 − ν)

⎡
⎣ 1∫
γ

ξ2(ξ2 − γ 2)(1 − ξ2)1/2e−ia0ξ t

�2(ξ , γ )
dξ

⎤
⎦ (b2)

where

�1(ξ , γ ) = (γ 2 − ξ2)1/2(1 − ξ2)1/2ξ2 + (ξ2 − 1/2)2

�2(ξ , γ ) = (γ 2 − ξ2)(1 − ξ2)ξ4 + (ξ2 − 1/2)4
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The asymptotic expansion of the compliance for low frequencies

CV (a0) =
(

1 − ν

4Gr0

){[
1 +

(
2πI2 − 6I2

1

3π2

)
a2

0 +
(

19I2
2 + 84I1I3 − 120πI4

180π2

)
a4

0 + · · ·
]}

− i
π

(
1 − ν

4Gr0

)[
I1a0 +

(
πI3 − 4I1I3

3π

)
a3

0 + · · ·
]

as a0 → 0 (b3)

where I1, I2, I3 and I4 are as given below (Robertson, 1966) for n = 1, 2, 3, 4.

In = (1 − γ 2)

[−π(s2 − γ 2)1/2sn

F′(s)

]
+(1−γ 2)

⎡
⎣ γ∫

0

ξn(γ 2 − ξ2)1/2dξ
(ξ2 − 1/2)2 + (γ 2−ξ2)1/2(1−ξ2)1/2ξ2

⎤
⎦

+ (γ 2 − ξ2)1/2

⎡
⎣ 1∫
γ

ξn+2(γ 2 − ξ2)(1 − ξ2)1/2dξ
(ξ2 − 1/2)4 + (ξ2 − γ 2)(1 − ξ2)ξ4

⎤
⎦ (b4)

In-values have been computed numerically over the range 0 ≤ γ 2 ≤ 0.5 using
Simpson’s rule and are shown in Table 5.7.6.

Table 5.7.6

γ 2 n In γ 2 n In γ 2 n In

0.00 1 2.62118 0.10 1 2.51526 0.25 1 2.45791
2 2.35291 2 2.29358 2 2.28989
3 2.21709 3 2.20102 3 2.26230
4 2.15658 4 2.17479 4 2.29960
5 2.14177 5 2.18908 5 2.37603
6 2.15660 6 2.23066 6 2.48038
7 2.19196 7 2.29213 7 2.60706
8 2.24252 8 2.36915 8 2.75320

0.33 1 2.48050 1 2.53203 1 2.59471
2 2.35514 2 2.45891 2 2.57800
3 2.37570 3 2.53543 3 2.71486
4 2.46463 4 2.68599 4 2.93351
5 2.59652 5 2.88676 5 3.21258
6 2.76109 6 3.12898 6 3.54560
7 2.95385 7 3.40978 7 3.93203
8 3.17304 8 3.72909 8 4.37433

0.48 1 2.64472 0.49 1 2.66372 0.50 1 2.68862
2 2.67176 2 2.70740 2 2.74876
3 2.85636 3 2.91042 3 2.97068
4 3.13010 4 3.20571 4 3.28871
5 3.47400 5 3.57528 5 3.68589
6 3.88380 6 4.01582 6 4.15998
7 4.36133 7 4.53024 7 4.71504
8 4.91170 8 5.12484 8 5.35874
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(c) Rocking case

The kernel is

K(t, t′) = −[L(t + t′)− L(|t − t′|)] (c1)

where L(t) is given by Equation (b2).
The asymptotic expansion of the compliance for low frequencies is given by

CM(a0) = 3(1 − ν)

8Gr3
0

[
1 +

(
2
5

I2

π

)
a2

0 −
(

90πI4 + I2
2

525π2

)
a4

0 + · · ·
]

− i
π

(
3(1 − ν)

8Gr3
0

)[(
I3

3

)
a0 −

(
I5

15

)
a3

0 + · · ·
]

as a0 → 0 (c2)

(d) Horizontal case

The kernel for t ≥ t′ is given by

K11(t, t′) = − ia2
0(tt

′)1/2

4(2 − ν)

1∫
0

[G1(ξ)+ G2(ξ)]H
(2)
−1/2(a0tξ)J−1/2(a0t′ξ)dξ

K12(t, t′) = − ia2
0(tt

′)1/2

4(2 − ν)

1∫
0

[G1(ξ)− (1 − ν)G2(ξ)]H
(2)
−1/2(a0tξ)J3/2(a0t′ξ)dξ

K21(t, t′) = − ia2
0(tt

′)1/2

4(2 − ν)

1∫
0

[G1(ξ)− (1 − ν)G2(ξ)]H
(2)
3/2(a0tξ)J−1/2(a0t′ξ)dξ

K22(t, t′) = − ia2
0(tt

′)1/2

4(2 − ν)

1∫
0

[G1(ξ)+ (1 − ν)2G2(ξ)]H(2)
3/2(a0tξ)J3/2(a0t′ξ)dξ

(d1)

where

G1(ξ) = 4π(s2 − 1)1/2s2

F′(s)
δ(ξ − s)+ (1 − ξ2)1/2ξ2

�1(ξ , γ )
H(γ − ξ)

+ (1 − ξ2)1/2(ξ2 − 1/2)2ξ2

�2(ξ , γ )
H(ξ − γ )

G2 = 4ξ2√
1 − ξ2

(d2)

where, δ(ξ) is Dirac’s delta function and H(ξ) is the Heaviside step function.
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For t′ > t, the kernels can be evaluated by use of the relationships

K11(t, t′) = K11(t′, t); K12(t, t′) = K21(t′, t); K22(t, t′) = K22(t′, t). (d3)

The asymptotic expansion of CH is given by

CH(a0)

= 2 − ν

8Gr0
[{1 − (C2 + C2

1)a
2
0 + · · ·} − i{a0C1 + (C3 − 2C1C2 − C3

1)a
3
0 + · · ·}]

as a0 → 0 (d4)

where the constants C1, C2, C3 are given in Luco (1971).

(e) Coupling case

The functions related to this case are as follows

IH1(a0) = − i
√

2π
4(1 − ν)

{
−4πs

(
2
√

s2 − γ 2
√

s2 − 1 − (2s2 − 1)
F′(s)

)
H(2)

1/2(a0s)J3/2(a0s)

+
1∫
γ

k
√

k2 − γ 2
√

1 − k2 (k2 − 1/2)
�2(k, γ )

H(2)
1/2(a0k)J3/2(a0k)dk

−4i
π

∞∫
0

[√
k2 + γ 2

√
1 + k2 − (k2 + 1/2)
�3(k, γ )

k + γ 2

k(1 − γ 2)

]
K1/2(a0k)J3/2(a0k)dk

⎫⎬
⎭

(e1)

IH2(a0, t) = − ia0
√

2π
4(1 − ν)

{
−4π

(
2
√

s2−γ 2
√

s2−1−(2s2−1)
F′(s)

)
s2H(2)

3/2(a0s)J3/2(a0st)

+
1∫
γ

k2
√

k2 − γ 2
√

1 − k2 (k2 − 1/2)
�2(k, γ )

H(2)
3/2(a0k)J3/2(a0kt)dk

−4i
π

∞∫
0

[√
k2 + γ 2

√
1 + k2 − (k2 + 1/2)
�3(k, γ )

k2 + γ 2

(1 − γ 2)

]
K3/2(a0k)I3/2(a0kt)dk

⎫⎬
⎭

(e2)

IH1(a0) = − 1
2(1 − ν)

{
4π

(
2
√

s2 − γ 2
√

s2 − 1 − (2s2 − 1)
F′(s)

)
seia0s sin(a0st)



Concepts in structural and soil dynamics 805

−
1∫
γ

k
√

k2 − γ 2
√

1 − k2 (k2 − 1/2)
�2(k, γ )

e−ia0k sin(a0kt)dk

+2

∞∫
0

[(
k
√

k2 + γ 2
√

1 + k2 − (k2 + 1/2)
�3(k, γ )

)
k+ γ 2

k(1 − γ 2)

]
e−ia0k sin h(a0kt)dk

⎫⎬
⎭
(e3)

in which, �3(k, γ ) = √
k2 + 1

√
k2 + γ 2k2 − (2k2 + 1)2 and K1/2, I3/2 are modified

Bessel functions of the second and first kind.

5.7.13 Vibration of an elastic half space under rectangular
loading

The motion of a footing block can be described by six co-ordinates correspond-
ing to two orthogonal horizontal translations, a vertical translation, rocking about
two mutually perpendicular horizontal axes. The vertical translation mode and tor-
sional rotational mode occurs as uncoupled motions when a complete symmetry exists.
Present study is confined to the vertical, horizontal and rocking modes of vibration of
a rectangular foundation (Dasgupta & Kallam 2006).

5.7.13.1 Rectangular Footing Vibrations

For homogenous isotropic elastic body, the displacement vector satisfies the following
equation

(λ+ G)
{
∂�

∂x
,
∂�

∂y
,
∂�

∂z

}
+ G∇2 {u, v, w} = ρ

∂2

∂t2
{u, v, w} (5.7.210)

where,

� = ∂u
∂x

+ ∂u
∂y

+ ∂w
∂z

= dilatation;

∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 = Laplacian operator.

By eliminating the displacement components u, v and w, the wave equation for the
dilatation is obtained as

(
∇2 − 1

V2
s

∂2

∂t2

)
� = 0 (5.7.211)

where Vs =
√
λ+2G
ρ

= dilatational wave velocity.
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To solve Equation (5.7.211) a triple Fourier Transform (F) of � on x, y and t has
been introduced where

F3 (�) =
(

1
2π

) 3
2

∞∫
−∞

∞∫
−∞

∞∫
−∞

�(x, y, z, t) e−i(βx+γ y+ωt)dxdydt = � (5.7.212)

Its inverse is then defined by the equation F−3(�) = �.
It can be shown that

(
1

2π

) 3
2

∞∫
−∞

∞∫
−∞

∞∫
−∞

(
∂2�

∂x2 ,
∂2�

∂y2 ,
∂2�

∂t2

)
e−i(βx+γ y+ωt)dxdydt

= −
(
β2, γ 2,ω2

)
�(β, γ , z,ω) (5.7.213)

So the tripple Fourier transform of Equation (5.7.211) becomes

[
d2

dz2 − {(β2 + γ 2)− h2}
]
� = 0 (5.7.214)

With the solution

� = Ae−α1z + A′e+α1z where α2
1 = β2 + γ 2 − h2; h2 = ω2

V2
s

. (5.7.215)

In Equation (5.7.215), we must take A′ = 0 in order to eliminate the physically
inconsistent solution for an exponentially increasing � with z. Thus, the solution to
Equation (5.7.231) is reduced to

� = Ae−α1z (5.7.216)

Inverting Equation (5.7.216)

�(x, y, z, t) = F−3 (Ae−α1z)

=
(

1
2π

) 3
2

∞∫
−∞

∞∫
−∞

∞∫
−∞

A (β, γ ,ω) e−α1z+i(βx+γ y+ωt)dβdγdω

(5.7.217)

We introduce now the multiple Fourier transform of the displacement components
u, v and w in Equation (5.7.226).
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Making use of the solution for Equation (5.7.217), Equation (5.7.210) then becomes

(
d2

dz2 − (β2 + γ 2 − k2)

)
(u, v, w) =

(
k2

h2 − 1

)
Ae−α1z (iβ, iγ ,α1) (5.7.218)

where α2
2 = β2 + γ 2 − k2; k2

h2 − 1 = V2
p

V2
s

− 1 = λ+G
G ; k2 = ω2

V2
s

: Vs =
√

G
ρ

= shear

wave velocity. The independent solutions of u, v and w in Equation (5.7.218) are then,

(u, v, w) = (iβ, iγ ,α1)
A
h2 e−α1z + (B, C, D) e−α2z (5.7.219)

And its inverse can be written as

(u, v, w) = F−3
{
(iβ, iγ ,α1)

A
h2 e−α1z + (B, C, D) e−α2z

}
(5.7.220)

The general solutions for the displacements are expressed by the following

(u, v, w) = F−3
{
(iβ, iγ ,α1)

A
h2 e−α1z +

(
B, C, − i

α2
(βB + γC)

)
e−α2z

}
(5.7.221)

where A, B and C are to be determined from the boundary conditions.
Assume that the boundary conditions are to be specified in terms of stresses which

can be determined from the displacements of Equation (5.7.221).
These are

τxz]z=0 = −GF−3
{

2iα1β

h2 Ae−α1z +
(

1
α2
(β2 + α2

2)B + βγ

α2
C
)

e−α2z
}

τyz
]
z=0 = −GF−3

{
2iα1γ

h2 Ae−α1z +
(
βγ

α2
B + 1

α2
(γ 2 + α2

2)C
)

e−α2z
}

σz]z=0 = −GF−3
{
(2α2 + k2)

A
h2 e−α1z − 2i (βB + γC) e−α2z

}
(5.7.222)

5.7.13.2 Ground compliance of a rectangular foundation

In estimating the dynamical behavior of an above-ground structure, the motion of
the foundation is defined in terms of the ground compliance which is a function of
the elastic properties of the ground, the shape of the foundation and the frequency
of oscillation. In this section we consider a rectangular foundation of dimensions of
the half-space boundary.

In the dynamical problem the stress distribution under the foundation is not known
since it depends on the displacement which is yet unknown. Thus we will adopt the
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procedure used by others, of assuming a stress distribution under the foundation and
solving for corresponding displacement.

We designate the stress distribution under the foundation to be qj (x, y, t) where
then subscript j defines the type loading. Its Fourier transform is given by

F3qj (x, y, t) = qj (x, y, t) =
(

1
2π

) 3
2

∞∫
−∞

∞∫
−∞

∞∫
−∞

q (ξ , η, ζ )e−i(βξ+γ η+ωζ)dξdηdζ

(5.7.223)

Furthermore, by assuming the function of the stress distribution to be separable, i.e.

qj (x, y, t) = qj (x, y)Q (t) (5.7.224)

We have, FQ (t) =
(

1
2π

) 1
2 ∫

Q (ζ )e−iωζdζ = Q (ω)

Then the Fourier transform of

qj (x, y, t) = Q (ω)

2π

∞∫
−∞

∞∫
−∞

qj (ξ , η)e−i(βξ+γ η)dξdη (5.7.225)

This way solving dynamic problems of rectangular footings is adopted by Thomson
and Kobori to obtain dynamic compliance at centre of rectangular footings in vertical
mode of vibrations. Our present attempt is to obtain dynamic compliance at any point
of the rectangular footings for all modes of vibrations adopting the same procedure
as Thomson and Kobori. In this investigation we will consider the following types of
loading

1 vertical loading
2 horizontal loading
3 loading produced by the rocking of the foundation about its centerline.

5.7.13.3 Vertical loading

The boundary stress are defined as

τxz = 0; τyz = 0; σz = qv (x, y)Q (t) (5.7.226)

Taking the triple Fourier transform of the stresses as given by Equation (5.7.238)
and substituting in Equations (5.7.225) and (5.7.226) we obtain three Equations for
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the arbitrary functions A, B and C.

2iα1β

h2 Ae−α1z +
(

1
α2
(β2 + α2

2)B + βγ

α2
C
)

e−α2z = 0 (5.7.227)

2iα1γ

h2 Ae−α1z +
(
βγ

α2
B + 1

α2
(γ 2 + α2

2)C
)

e−α2z = 0 (5.7.228)

(2α2 + k2)
A
h2 e−α1z − 2i (βB + γC) e−α2z

= −Q (ω)

2πG

∞∫
−∞

∞∫
−∞

qV (ξ , η)e−i(βξ+γ η)dξdη (5.7.229)

Assuming qv (ξ , η) to be a uniform stress −q0 = constant, in which case the right
side of the Equation (5.7.229) becomes

q0Q (ω)

2πG

b∫
−b

e−iβξdξ

c∫
−c

e−iγ ηdη = 4q0

2πG
sin βb sin γ c

βγ
Q (ω) (5.7.230)

Then Equation (5.7.229) can be written as

(2α2 + k2)
A
h2 e−α1z − 2i (βB + γC) e−α2z = 4q0

2πG
sin βb sin γ c

βγ
Q (ω) (5.7.231)

Solving Equations (5.7.227), (5.7.228) and (5.7.231), A, B and C are obtained as

A = 4q0

2πG

(
sin βb sin γ c

βγ

)
h2
[
2
(
β2 + γ 2

)− k2
]

F (β, γ )
Q (ω)

B = −i
4q0

2πG

(
sin βb sin γ c

βγ

)
2α1α2β

F (β, γ )
Q (ω) (5.7.232)

C = −i
4q0

2πG

(
sin βb sin γ c

βγ

)
2α1α2γ

F (β, γ )
Q (ω)

where F (β,γ ) = [2(β2 + γ 2)− k2] − 4α1α2(β
2 + γ 2)

Now the compliance in the vertical direction at the center of the rectangular
foundation can be determined from Equation (5.7.221)

w = F−3
[
α1e−α1z

h2 − i (βB + γC)
α2

e−α2z
]

(5.7.233)
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For z = 0

w = F−3
[
α1A
h2 − i (βB + γC)

α2

]
(5.7.234)

w = 1

(2π)
3
2

∞∫
−∞

∞∫
−∞

∞∫
−∞

wei(βx+γ y+ωt)dγdβdω (5.7.235)

Now

βB + γC = β

[
−i

4q0

2πG

(
sin βb sin γ c

βγ

)
2α1α2β

F (β, γ )
Q (ω)

]

+ γ

[
−i

4q0

2πG

(
sin βb sin γ c

βγ

)
2α1α2γ

F (β, γ )
Q (ω)

]

= −i
4q0

2πG

(
sin βb sin γ c

βγ

)
2α1α2γ

F (β, γ )
[β2 + γ 2]Q (ω) (5.7.236)

w (β, γ ,ω) = −4q0α1k2

2πG

(
sin βb sin γ c

βγ

)
Q (ω)

F (β, γ )
(5.7.237)

w = 1

(2π)
3
2

∞∫
−∞

∞∫
−∞

∞∫
−∞

− 4q0

2πG

(
sin βb sin γ c

βγ

)
α1k2

F (β, γ )
Q (ω)ei(βx+γ y+ωt)dγdβdω

(5.7.238)

Omitting eiωt

w]z=0

pvQ (t)
= −1
π2bcG

∞∫
0

∞∫
0

α1k2

F (β, γ )
sin βb sinγ c

βγ
cosβx cos γ ydβdγ (5.7.239)

The ground compliance for vertical dynamic load obtained was in terms of dou-
ble infinite integrals for numerical evaluation of this integral certain simplification is
necessary, this can be done by transformation of coordinates to reduce one of infinite
integral to finite one and render the integrals in a form more suitable for computation.

Omitting the time factor Q(t) Equation (5.7.239) can be written in the following
form

wcG
pv

= 1
π2b

∞∫
0

∞∫
0

α1k2

F (β, γ )
sin βb sinγ c

βγ
cosβx cos γ ydβdγ (5.7.240)

Making the following substitution

β = r′ cos θ ; γ = r′ sin θ ⇒ β2 + γ 2 = r′2; dβdγ = r′dr′dθ
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And substituting

h = ω

c1
= c2

c1

ω

c2
= nk; where n = √(1 − 2ν)/[2 (1−ν)]; ν = Poisson’s ratio.

The finite integral form of the Equation (5.7.240) is

wcG
pv

= 1
π2b

∞∫
0

π

2∫
0

[
k2
√

r′2 − n2k2

F
(
r′, k

)
][

sin
(
r′b cos θ

)
sin
(
r′c sin θ

)
r′2 sin θ cos θ

]

× [cos
(
r′x cos θ

)
cos
(
r′y sin θ

)]
r′dθdr′ (5.7.241)

substituting r′ = rk and ωb
Vs

= bk = a0, Equation (5.7.241) becomes

wcG
pv

= 1
π2b

∞∫
0

π

2∫
0

[√
r2 − n2

F (r)

][
sin (ra0 cos θ) sin

(
r c

ba0 sin θ
)

r sin θ cos θ

]

×
[
cos
(
r
x
b

a0 cos θ
)

cos
(
r
y
c

c
b

a0 sin θ
)]

drdθ (5.7.242)

where, F(r) = (2r2 − 1)2 − 4r2
√

r2 − n2
√

r2 − 1.
While numerical evaluation of the above integral some singularities due to the nature

of the Rayleigh function F(r) will occur. In order to avoid this error it is necessary to
subtract half the residual value at Rayleigh pole.

Thus Equation (5.7.242) must be added with the quantity

−i
πa0

π

2∫
0

√
z2

0 − n2

F′ (z0)

sin (z0a0 cos θ) sin
(
z0

c
ba0 sin θ

)
z0 sin θ cos θ

dθ (5.7.243)

5.7.13.4 Horizontal loading

In this case a horizontal shear load PH is applied to the foundation in the direction of
X, leading to the boundary conditions

σz = 0; τyz = 0; τxz = qH (x, y, t) = −q0Q (t)

Assuming again that the distribution of shear stress under the foundation is
to be uniform and is equal to −q0 proceeding as in vertical case the quantities A,
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B and C are

A = i
4q0

2πG

(
sin βb sin γ c

βγ

)
2βα2h2

F (β, γ )
Q (ω)

B = 4q0

2πG

(
sin βb sin γ c

βγ

)
(2α2

2 + k2)(γ 2 + α2
2)− 4α1α2γ

2

α2F(β, γ )
Q(ω)

C = − 4q0

2πG

(
sin βb sin γ c

βγ

)
(2α2

2 + k2 − 4α1α2)

α2F(β, γ )
Q(ω)

Then the compliance in horizontal direction can be found out by substituting these
A, B and C values in Equation (5.7.221) and solving the equation same as vertical
case. The final expression for ground compliance in horizontal case then becomes.

u]z=0

pHQ (t)
= 1
π2bcG

∞∫
0

∞∫
0

[
F (β, γ )− β2[k2 − 4α2 (α1 − α2)]

α2F (β, γ )

]

×
[

sin βb sinγ c
βγ

cosβx cos γ y
]

dβdγ (5.7.244)

Making the substitutions same as in vertical case to make the infinite integral to finite
the simplified expression for ground compliance for horizontal case then becomes.

ucG
pH

= 1
π2a0

∞∫
0

π

2∫
0

[
F(r) sin2 θ − (r2 − 1) cos2 θ√

r2 − 1F (r)

][
sin (ra0 cos θ) sin(r c

ba0 sin θ)

r sin θ cos θ

]

×
[
cos
(
r
x
b

a0 cos θ
)

cos
(
r
y
c

c
b

a0 sin θ
)]

drdθ (5.7.245)

While evaluating the numerical values, singularities will occur due to nature of the
Rayleigh function one at the Rayleigh pole and other at r = 1 in order to avoid errors
due to these singularities the above Equation should be added with the following
quantity

− i
πa0

π

2∫
0

⎡
⎢⎣ (1 − i) sin2 θ√

2
−
√

z2
0 − 1

f ′ (z0)
cos2 θ

⎤
⎥⎦

×
[

sin (z0a0 cos θ) sin
(
z0

c
ba0 sin θ

)
z0 sin θ cos θ

cos
(
z0

x
b

a0 cos θ
)

cos
(
z0

y
c

c
b

a0 sin θ
)]

dθ

(5.7.246)
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5.7.13.5 Rocking loading

In this case foundation is assumed to undergo rotation about the x axis. The shear
stress under the foundation is assumed to be zero as in the case (a) and the normal
stress is assumed to increase linearly with y, the boundary conditions for the shear is
same as vertical loading and additional boundary condition is given by

σz]z=0 = −q0
y
c

Q (t)

And the total moment MR is MR = 4
3q0bc2

Substituting these boundary conditions in Equation (5.7.222) and solving those
Equations values of A, B and C can be found out. Substituting the values of A, B and
C in Equation (5.7.223) and proceeding as in the case of vertical motion, the final
expression for vertical compliance at any point can be obtained as

w = −q0Q (t) i
π2Gc

∞∫
−∞

∞∫
−∞

α1k2

F (β, γ )
sin βb
β

(
sin γ c
γ 2 − c cos γ c

γ

)
ei(βx+γ y)dβdγ

(5.7.247)

On simplification above equation becomes

w = 3MRQ (t)
π2Gbc3

∞∫
0

∞∫
0

α1k2

F (β, γ )
sin βb sin γ y

βγ

[
sin γ c
γ

− c cos γ c
]

cosβxdβdγ

(5.7.248)

Making the substitutions same as in vertical case to make the infinite integral to
finite the simplified expression for vertical ground compliance at any point in rocking
mode of vibrations becomes

wGc2

MR
= 3
π2a0

∞∫
0

π

2∫
0

√
r2 − n2

F (r)

[
sin
( c

ba0r sin θ
)

c
ba0r sin θ

− cos
( c

b
a0r sin θ

)]

×
[

sin (a0r cos θ) sin
( c

b
y
c a0r sin θ

)
cos
(x

ba0r cos θ
)

r sin θ cos θ

]
drdθ (5.7.249)

Rotation φ is then obtained as φ = w]z=0,y=c,x=0

c

φGc3

MR
= 3
π2a0

∞∫
0

π

2∫
0

√
r2 − n2

F (r)

[
sin
( c

ba0r sin θ
)

c
ba0r sin θ

− cos
( c

b
a0r sin θ

)]

×
[

sin (a0r cos θ) sin
( c

ba0r sin θ
)

r sin θ cos θ

]
drdθ (5.7.250)
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While evaluating the numerical values singularities will occur due to nature of the
Rayleigh function at the Rayleigh pole in order to avoid errors due to these singularities
the above Equation should be added with the following quantity

φGc3

MR
= − 3i

πa0

π

2∫
0

√
z2

0 − n2

F (z0)

[
sin
( c

ba0z0 sin θ
)

c
ba0z0 sin θ

− cos
( c

b
a0z0 sin θ

)]

×
[

sin (a0z0 cos θ) sin
( c

ba0z0 sin θ
)

z0 sin θ cos θ

]
dθ (5.7.251)

5.7.13.6 Zero frequency (static) displacement

The above derived equations are not suitable for zero frequency case a0 = 0, this
limiting case ω = 0 is solved in this section and a closed form solution is presented
here.

5.7.13.7 Vertical loading

In Equation (5.7.241) for k → 0; lim
k→0

[
k2

√
r′2−n2k2

F(r′,k)

]
= 1

2r′(n2−1) , and

Equation (5.7.241) will become

wcG
pv

]
ω=0

= 1
π2b

∞∫
0

π

2∫
0

[
1

2(n2 − 1)

]

×
[

sin
(
r′b cos θ

)
sin
(
r′c sin θ

)
r′2 sin θ cos θ

]

× [cos(r′x cos θ) cos(r′y sin θ)]dθdr′ (5.7.252)

Simplifying the above equation it can be expressed as

wcG
pv

]
ω=0

= 1
16π(n2 − 1)

[I1 + I2 + I3 + I4]

where

I1,4 = c
b

(
1 ± y

c

) θ∫
0

dθ
cos θ

+
(
1 ± x

b

) ∫ π

2 −θ

0

dθ
cos θ

; θ = tan−1

(
1 ± x

b

1 ± y
c

)
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I2,3 = c
b

(
1 ± y

c

) θ∫
0

dθ
cos θ

+
(
1 ± x

b

) ∫ π

2 −θ

0

dθ
cos θ

; θ = tan−1

(
1 ± x

b

1 ± y
c

)

5.7.13.8 Horizontal loading

The limiting value for static case will become

lim
k→0

[
F(r′, k)− r′2 cos2 θ [4r′2 − 3k2 − 4

√
r′2 − k2

√
r′2 − n2k]

F(r′, k)
√

r′2 − k2

]

= 1
r′

[
1 − cos2 θ(2n2 − 1)

2(n2 − 1)

]

The expression for zero frequency displacement then become

ucG
PH

]
ω=0

= 1
π2b

∞∫
0

π

2∫
0

[
1 − cos2 θ(2n2 − 1)

2(n2 − 1)

]

×
[

sin(r′b cos θ) sin(r′c sin θ)
r′2 sin θ cos θ

]

× [cos(r′x cos θ) cos(r′y sin θ)]dr′dθ

On simplification as in vertical case the above equation can be written as

wcG
pH

]
ω=0

= I1 + I2

4π
−
(

2n2 − 1
8π
(
n2 − 1

)
)

I3 −
(

2n2 − 1
8π
(
n2 − 1

)
)

I2 (5.7.253)

I1 = c
b

(
1 ± y

c

) θ∫
0

dθ
cos θ

θ= tan−1

(
1 ± x

b

1 ± y
c

)

I2 =
(
1 ± x

b

) π

2 −θ∫
0

dθ
cos θ

θ= tan−1

(
1 ± x

b

1 ± y
c

)

I3 = c
b

(
1 ± y

c

)
sin θ +

(
1 ± x

b

)
cosθ θ= tan−1

(
1 ± x

b

1 ± y
c

)
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5.7.13.9 Rocking loading

Form Equation (5.7.251) by applying limits the final equation for rocking will become

φGc3

MR
= 3

2π2 c
b (n

2 − 1)

∞∫
0

π

2∫
0

[
sin
( c

b r sin θ
)

sin(r cos θ) sin
( c

b r sin θ
)

r3 sin2 θ cos θ

− cos
( c

b r sin θ
)

sin(r cos θ) sin
( c

b r sin θ
)

r2 sin θ cos θ

]
drdθ

(5.7.254)

5.7.13.10 Programming algorithm

The equations we have to evaluate are complex functions and require special con-
sideration. In evaluation of the integration it is necessary to use 96 points Gaussian
quadrature because of the complicity of the sine and cosine functions. A closer interval
should be needed to account these variations of sine and cosine functions. More over
the entire interval should be divided in to parts to account for nature of function f (r).
The function f (r) has the following characteristics (0 to 0.5) → real, (0.5 to Pn) →
real, (Pn to 1) → complex, [1 to z0 root of equation f (r)] → positive real and (z0 to
8) → negative real.

5.7.13.11 Algorithm for dynamic case

1 Suitable values of Poisson’s ratio, frequency ratio and also x/b, y/c, c/b values
are selected.

2 Numerical value of the function f (r) its derivative and f ′(r) were computed.
3 The compliance functions were evaluated by Gaussian double integration method.
4 96 Gauss points method was used for evaluation of the integral.
5 While evaluation of the integral the interval should be divided into parts to account

for the complicities in evaluation of function f (r).
6 The intervals are (0 to 0.5), (0.5 to pn), (pn to 1), [1 to z0 (root of equation f (r)]

and (z0 to 8).
7 The interval z0 to 8 can be evaluated by substituting 1

r instead of r in the integral.
8 The value suggested in the literature should be subtracted to account for

singularities occur due to nature of the Rayleigh function f (r).

5.7.13.12 Algorithm for static case

1 equation and derived and are presented in the literature, for vertical and horizontal
case these are simplified to single integral form where numerical values found by
integrating the terms and applying the limits.

2 To find numerical values in rotational case Gaussian double integration method
3 was used with a substitution r = 2α

(1+xi)
− α, where α = 1.
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For c/b = 1.0 and  = 0.25.

Figure 5.7.23 Comparison of non dimensional static vertical displacement vrs. c/b value for v = 0.25.

A numerical solution is presented for all three modes of vibrations of a rectangu-
lar footing resting on semi-infinite, homogeneous, isotropic, elastic medium. Fourier
triple integration technique followed by Thomson and Kobori’s was followed to solve
the above problem. Solutions obtained for vertical, horizontal, rotation modes of
vibrations The derived expressions are use full to find compliance functions for three
modes of vibrations at any point of the footing. The expressions for zero frequency
displacements i.e. static non-dimensional displacements are also obtained by applying
limits to the above derived equations (Figs. 5.7.23 to 25).
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(a) For  = 0.25

(b) For  = 0.33

Figure 5.7.24 Non dimensional static displacement vrs. c/b values.

Compliance functions at any point of the rectangular footing are obtained for all
three modes of vibrations by solving the integral expressions by using Gaussian double
integration method. Compliance functions f1 and f2 at centre of the footing were drawn
against frequency ratio for all three modes of vibrations. Plots are also made for compli-
ance functions against the distance away from center of the footing. Non dimensional
static displacement factors are also been obtained and are presented against c/b ratio.
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(a) For  = 0.25

(b) For  = 0.33

Figure 5.7.25 Non dimensional static displacement away from center of the footing.

Magnification factor (M) has been calculated against different frequency ratios for
the different mass ratio of 0, 5 and 10 and for various lengths to with ratio of the
footing. Plots are also made between mass ratio against frequency ratio and mass
ratio against magnification factor at resonant frequency. Comparisons are also made
with the previous studies. These comparisons shows that the results obtained are in
good agreement with the previous studies.
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5.8 VIBRATION OF EMBEDDED FOOTINGS

5.8.1 Embedment effect on foundation

In previous section we had shown some theoretical developments of machine foun-
dation resting on elastic half space and its mechanical analog. One of the major
idealization in the above model is it is assumed that the foundation is resting on ground.
In reality foundations are embedded in ground and experimental investigations have
proved that the embedment effect do have considerable effect on the dynamic response
of the foundation. Frankly speaking a rigorous analytical solution for the problem is
still eluding us. A number of researchers in India and abroad have worked on this
problem and we provide herein the pioneering few.

5.8.1.1 Novak and Berdugo’s solution

Following Baranov’s (1967) formulation, Novak and his colleagues (Novak and Bere-
dugo, 1972; Novak et al. 1978) proposed a simplified model to compute the dynamic
response of partially or fully embedded circular foundation. The soil at the side of
foundation is considered to be decoupled from the soil at the base of the foundation
and is treated as a Winkler model. Its stiffness parameters are formulated from vibra-
tions of a horizontal, mass less, rigid, circular body of the foundation, contained in a
horizontal layer of unit thickness in plane strain condition (no variation of displace-
ment along the thickness of the layer). In this treatment, the soil medium at the side
of the foundation is viewed as a stack of mutually uncoupled horizontal layers. Figure
5.8.1 shows the model of the embedded footing-soil system, and the forces acting on
the foundation. The basic governing equation is given by

mẅ(t) = P(t)− Rz(t)− Nz(t) (5.8.1)

in which, m, w(t), P(t), Rz(t), Nz(t) are respectively the mass, vertical displacement,
time dependent vertical excitation force, dynamic vertical reaction at the base and the
dynamic vertical reaction along the side of the footing.

P(t)

Nz(t)
Nz(t)

Rz(t)r0

w(t)

H

h

Oc.g.
w(t)

Gs, s

G, 

Figure 5.8.1 Vertically oscillating embedded footing.
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5.8.1.2 Vibration in vertical direction

It has been assumed that the footing is a rigid cylindrical body with radius, r0; the
dynamic reaction at the base is independent of the depth of the footing; there is a
perfect bond between the sides of the footing and the soil; the excitation force is
harmonic and acts along the vertical direction and the soil is elastic.

The footing base displacement and elastic halfspace reaction is given by

Rz(t) = Gr0(C1 + C2)z(t) (5.8.2)

in which C1 = −f1

f 2
1 + f 2

2

; C2 = f2

f 2
1 + f 2

2

(5.8.3)

where f1,2 are compliance functions of the elastic half space as obtained from Bycroft’s
solution and depending on the dimensionless frequency a0 = ωr0

√
ρ/G, Poisson’s ratio

and the stress distribution at the footing base, G = shear modulus of halfspace and
r0 = radius of the footing.

The dynamic soil reaction, Nz(t), acting on the vertical sides of the footing is
given by

Nz(t) =
�∫

0

s(z, t)dz (5.8.4)

in which s = s(z, t) is the Baranov’s solution for unit reaction (independent of z) and
is given by

s(t) = Gs(S1 + iS2)w(t) (5.8.5)

and Nz(t) =
�∫

0

s(z, t)dz = Gs�(S1 + iS2)w(t) (5.8.6)

S1 and S2 are shown in Figure 5.8.2 and also given by

S1 = 2πa0
J1(a0)J0(a0)+ Y1(a0)Y0(a0)

J2
0(a0)+ Y2

0 (a0)
; S2 = 4

J2
0(a0)+ Y2

0 (a0)
(5.8.7)

in which J0 J1, Y0, Y1 are respectively Bessel functions of the first kind and of order zero
and one and Bessel functions of the second kind and order zero and one; all of them
have argument a0.

Substituting Rz and Nz in Equation (5.8.1) one can obtain

mẅ(t)+ Gr0

[
C1 + iC2 + Gs

G
�

r0
(S1 + iS2)

]
w(t) = P(t) (5.8.8)

With excitation P(t) = P0 exp(iωt), the steady state response is w(t) = w exp(iωt)
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Variation of S1 and S2 with ao
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Figure 5.8.2 Variation of S1 and S2.

Variation of C1 and C2 for Poisson's ratio = 0.25
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Figure 5.8.3 Variation of C1 and C2.

The frequency dependent stiffness and damping may be computed as

k = Gr0

[
C1 + Gs

G
�

r0
S1

]
; c = Gr0

[
C2 + Gs

G
�

r0
S2

]
(5.8.9)

Variation of C1 and C2 are shown in Figure 5.8.3.
The real part of the vibration is

w(t) = w0 cos(ωt + φ) (5.8.10)

in which the amplitude is given by

w0 = P0√
(k − mω2)2 + (cω)2

= P0/k√[
1 − (ω/ωn)

2]2 + 4D2 (ω/ωn)
2

(5.8.11)
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Phase shift, φ = tan−1
(

cω
k−mω2

)
and the damping ratio, D = c

2mωn
and the natural

undamped frequency of an embedded foundation is given by

ω0 =
√

k
m

=
√

Gr0

m

(
C1 + Gs

G
�

r0
S1

)
(5.8.12)

for a rotating mass (me) type of vibrator P0 = meeω2, where e = eccentricity of the
rotating mass. Some times we introduce the dimensionless amplitude A = w0m/(mee).

The response of footings embedded in a stratum can be analysed using the proper
functions f1 and f2 to compute the stiffness and damping parameters C1,2. The side
reactions remain the same.

Stiffness and damping parameters are given in Table 5.8.1 and Table 5.8.2.

5.8.1.3 Simplified design parameters

Amplitudes and resonant frequencies can be considerably simplified if stiffness param-
eters C1 and S1 are assumed as frequency independent and parameters C2 and S2 as
proportional to dimensionless frequency, a0.

These assumptions are justified for the embedment parameters S1 and S2 if a0 ≥ 0.1,
as they do for a halfspace; C2 for a stratum is less linear but very small, thus adding
little to the total damping. However, constancy of C1 may be questioned, it seems
acceptable in the shown frequency range [Table 5.8.1 and Table 5.8.2]. Thus, C1 = C̄1
and S1 = S̄1 and C2 = C̄2a0 and S2 = S̄2a0.

The constant stiffness parameters C̄1 and S̄1 may be substituted in Equation (5.8.9)
to obtain the frequency independent stiffness constant and the natural undamped
frequency ωn may be computed directly from them.

Table 5.8.1 Stiffness and damping parameters for halfspace and side layers.

Constant Validity
ν Halfspace values parameters range

0.0 C1 = 4.00 − 0.08356 a0 + 0.6346 a2
0 C̄1 = 3.90 0 ≤ a0 ≤ 1.5

−2.600 a3
0 + 1.801 a4

0 − 0.3646 a5
0

C2 = 3.438 a0 + 0.5742 a2
0 − 1.154 a3

0 + 0.7433 a2
0 C̄2 = 3.50

0.25 C1 = 5.37 + 0.346 a0 − 1.41 a2
0 C̄1 = 5.20 0 ≤ a0 ≤ 1.5

C2 = 5.06 a0 C̄2 = 5.00
0.5 C1 = 8.00 + 2.180 a0 − 12.63 a2

0 C̄1 = 7.50 0 ≤ a0 ≤ 1.5
+20.73 a3

0 − 16.47 a4
0 + 4.458 a5

0
C2 = 7.414 a0 − 2.986 a2

0 + 4.324 a3
0 − 1.782 a4

0 C̄2 = 6.80

Side layer
Any S1 = 0.2153 a0 + 2.760 a0/(a0 + 0.06084) S̄1 = 2.70 0 ≤ a0 ≤ 2.0
value S2 = 6.059 + 0.7022 a0/(a0 + 0.01616) S̄2 = 6.70



824 Dynamics of Structure and Foundation: 1. Fundamentals

Table 5.8.2 Stiffness and damping parameters for stratum below foundation.

Constant Validity
h̄/r0 Stratum ν = 0.25 parameters range

1.0 C1 = 12.23 − 1.178a0 − 0.3056a2
0− C̄1 = 10.0 0 ≤ a0 ≤ 1.5

1.177 a3
0 + 0.4160a4

0
C2 = 0.2395a2

0 + 0.5646a3
0 + 0.0227a4

0− C̄2 = 0.30
0.3403a5

0 + 0.203 a6
0

2.0 C1 = 8.13 + 0.8516a0 − 3.664a2
0 − 8.289a3

0+ C̄1 = 7.00 0 ≤ a0 ≤ 1.25
11.18a4

0 − 3.978a5
0

C2 = 0.004044a0 − 0.7386a2
0 + 13.27a3

0− C̄2 = 0.45
39.61a4

0 + 49.8a5
0 − 26.95a6

0 + 5.069a7
0

3.0 C1 = 7.04 + 0.4659a0 − 6.989a2
0 C̄1 = 5.5 0 ≤ a0 ≤ 0.81

C2 = 0.7361a2
0 − 1.462a3

0 + 3.573a4
0 C̄2 = 0.65

4.0 C1 = 6.579 − 0.2422a0 − 0.3889a2
0 − 29.69a3

0+ C̄1 = 4.30 0 ≤ a0 ≤ 0.62
7.711a4

0 + 76.44a5
0 − 77.42a6

0
C2 = 0.02804 a0 + 3.02 a2

0 + 7.458 a3
0 − 184.2 a4

0+ C̄2 = 1.00
655.7a5

0 − 804.9a6
0 + 314.2a7

0

The frequency independent damping constant for embedded footing can be com-
puted from

c = r2
0

√
ρG

[
C̄2 + S̄2

�

r0

√
ρsGs

ρG

]
and

D = 1

2
√

b1

[
C̄2 + S̄2

�

r0

√
ρsGs

ρG

]/[
C̄1 + Gs

G
�

r0
S̄1

]
(5.8.13)

in which the mass ratio b1 = m/ρr3
0.

The amplitude at natural frequency ωn (slightly smaller than the maximum
amplitude) is

w0(ωn) = P0

k
1

2D
= mee

m
1

2D
(for frequency dependent force amplitude).

(5.8.14)

For horizontal direction, considering a cylindrical block of radius r0 and height H
and embedded to a depth h subject to a force Px(t) = Pxeiwt the equation of motion
is expressed as

mẍ(t) = P(t)− Rx(t)− Nx(t) (5.8.15)

where Rx(t) = Gr0(Cx1 + Cx2)x(t) and Nx(t) = Gsh(Sx1 + iSx2)x(t) where Sx1 and
Sx2 are parameters which are function of dimensionless frequency number a = ωr0/vs.
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Thus we have

mẍ(t)+ Gr0(Cx1 + iCx2)x(t)+ Gsh(Sx1 + iSx2)x(t) = Px(t)

or, mẍ(t)+ Gr0

[(
Cx1 + Gs

G
h
r0

Sx1

)
+ i

(
Cx2 + Gs

G
h
r0

Sx2

)]
x(t) = Pxeiωt (5.8.16)

Seperating the real imaginary part we have

kx = Gr0

[(
Cx1 + Gs

G
h
r0

Sx1

)]
and cx = Gr0

ω

[(
Cx2 + Gs

G
h
r0

Sx2

)]
(5.8.17)

Here both kx, cx are frequency dependent.
Beredugo and Novak proved that the values kx, cx may be approximated by

frequency independent values for all practical purposes by substitution:

Cx1 = C̄x1, Cx2 = C̄x2, Sx1 = S̄x1, Sx2 = S̄x2

The values of Cx1, C̄x1,Cx2, C̄x2, Sx1, S̄x1,Sx2, S̄x2 are as shown in Table 5.8.3.
Based on the above, frequency independent stiffness and damping value is given by

kx = Gr0

[(
C̄x1 + Gs

G
h
r0

S̄x1

)]
and cx = √

ρGr2
0

[(
C̄x2 + h

r0

√
ρsGs

ρG
S̄x2

)]

(5.8.18)

Table 5.8.3 Values of Cx1, C̄x1, Cx2, C̄x2, Sx1, S̄x1, Sx2, S̄x2.

Poisson’s Valdity Constant
ratio Half space functions range parameters

0.0 Cx1 = 4.571 − 4.653a0 + 89.09a0
a0+19.14 0 ≤ a0 ≤ 2.0 C̄x1 = 4.30

0.0 Cx2 = 2.536a0 − 0.1345a0
a0−1.923 0 ≤ a0 ≤ 2.0 Cx2 = 2.70

0.5 Cx1 = 5.333 − 1.584a0 + 10.39a0
a0+6.522 0 ≤ a0 ≤ 2.0 C̄x1 = 5.10

0.5 Cx2 = 2.923a0 − 0.1741a0
a0−1.927 0 ≤ a0 ≤ 2.0 C̄x2 = 3.15

0.0 Sx1 = 0.2328a0 + 3.609a0
a0+0.06159 0.2 ≤ a0 ≤ 1.5 S̄x1 = 3.60

0.0 Sx1 = 150.3a0 − 3630a2
0 + 3948a3

0 − 1934a4
0 + 3488a5

0 0.0 ≤ a0 ≤ 0.2 S̄x1 = 3.60
0.0 Sx2 = 7.334a0 + 0.8652a0

a0+0.00874 0 ≤ a0 ≤ 1.5 S̄x2 = 8.20
0.25 Sx1 = 2.474 + 4.119a0 − 4.320a2

0 + 2.057a3
0 − 0.362a4

0 0.2 ≤ a0 ≤ 2.0 S̄x1 = 4.00
0.25 Sx1 = 1.468

√
a0 + 5.662 4

√
a0 0.0 ≤ a0 ≤ 0.2 S̄x1 = 4.00

0.25 Sx2 = 0.83a0 + 41.59a0
3.90+a0

0 ≤ a0 ≤ 1.5 S̄x2 = 9.10
0.4 Sx1 = 2.824 + 4.776a0 − 5.539a2

0 + 2.445a3
0 − 0.394a4

0 0.2 ≤ a0 ≤ 2.0 S̄x1 = 4.10
0.4 Sx1 = −1.796

√
a0 + 6.539 4

√
a0 0.0 ≤ a0 ≤ 0.2 S̄x1 = 4.10

0.4 Sx2 = 0.96a0 + 56.55a0
4.68+a0

0 ≤ a0 ≤ 1.5 S̄x2 = 10.60
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ωx =
√

kx

m
, ccr = 2

√
kxm and D = cx/ccr (5.8.19)

x(t) = Pxeiωt

kx
√
(1 − r2)2 + (2Dr)2

, where r = ω

ωn
. (5.8.20)

5.8.1.4 Rocking motion

Cylinder embedded in soil to a depth h under rocking is shown in Figure 5.8.4 and the
equation of motion in this case is given by

Jφφ̈(t)+ Gr3
0(Cφ1 + iCφ2)φ(t)+ Gs

[
r2
0h(Sφ1 + iSφ2)+ h3

3
(Sx1 + iSx2)

]

φ(t) = My(t) (5.8.21)

which gives

Jφφ̈(t)+ Gr3
0

[
(Cφ1+iCφ2)+ Gs

G

{
h
r0
(Sφ1 + iSφ2)+ 1

3

(
h
r0

)2

(Sx1 + iSx2)

}]

φ(t) = Myeiωt (5.8.22)

Separating the real and imaginary part we have

kφ = Gr3
0

[
Cφ1 + Gs

G
h
r0

(
Sφ1 + h2

3r2
0

Sx1

)]
,

My(t)

Top of soil

H

h

ρ0

Figure 5.8.4 Cyclinder embedded in soil to a depth h under rocking.
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Table 5.8.4

Poisson’s Valdity Constant
ratio Half space functions range parameters

0.0 Cφ1 = 2.654 + 0.1962a0 − 1.729a2
0 + 1.485a3

0 − 0 < a0 < 1.0 C̄φ1 = 2.5
0.4881 a4

0 + 0.03498a5
0

0.0 Cφ2 = 0.008025a0 + 0.01583a2
0 + 0.2035a3

0 + 0 < a0 < 1.0 C̄φ2 = 0.43
1.202a4

0 − 1.448a5
0 + 0.4491a6

0

Any Sφ1 = 3.142 − 0.421a0 − 4.209a2
0 + 7.165a3

0 − 0 < a0 < 1.5 S̄φ1 = 2.5
value 4.667a4

0 + 1.093a5
0

Any Sφ2 = 0.0144a0 + 5.262a2
0 − 4.177a3

0 + S̄φ2 = 1.80
value 1.643a4

0 − 0.2542a5
0

cφ = Gr3
0

ω

[
Cφ2 + Gs

G

(
h
r0

)(
Sφ2 + 1

3

(
h2

r2
0

)
Sx2

)]
(5.8.23)

Beredugo and Novak proved that the values kφ , cφ may be approximated by
frequency independnet values for all practical purposes by substitution.

Cφ1 = C̄φ1, Cφ2 = C̄φ2, Sφ1 = S̄φ1, Sφ2 = S̄φ2 etc.

The values are as shown in Table 5.8.4.
The frequency independent stiffness and damping value are thus given by

kφ = Gr3
0

[
C̄φ1 + Gs

G
h
r0

(
S̄φ1 + h2

3r2
0

S̄x1

)]
and

cφ = √
ρGr4

0

[
C̄φ2 + Gs

G

(
h
r0

)(
S̄φ2 + 1

3

(
h2

r2
0

)
S̄x2

)]
(5.8.24)

ωφ =
√

kφ
Jφ

, ccr = 2
√

kφJφ and D = cφ/ccr (5.8.25)

φ(t) = Myeiωt

kφ
√(

1 − r2
)2 + (2Dr)2

, where r = ω

ωφ
(5.8.26)



828 Dynamics of Structure and Foundation: 1. Fundamentals

5.8.1.5 Coupled sliding and rocking motion

In this case as shown in Figure 5.8.5, the motion is coupled (translation and rocking)
which gives rise to two equations of motion:

mẍ(t) = P(t)− Rx(t)− Nx(t) and Jφφ̈(t) = My(t)− Rφ(t)− Nφ(t) (5.8.27)

where,

Rx(t) = Gr0 (Cx1 + iCx2) [x(t)− Zcφ(t)]

and Rφ(t) = Gr3
0(Cφ1 + iCφ2)φ(t)− Gr0(Cx1 + iCx2)[x(t)Zc − Z2

cφ(t)]; (5.8.28)

Nx(t) = Gr0

(
h
r0

)
(Sx1 + iSx2)

[
x(t)+

(
h
2

− Zc

)
φ(t)

]
;

Nφ(t) = Gr3
0

{(
h
r0

)
(Sφ1 + iSφ2)+

[
h2

3r2
0

− hZc

r2
0

+ Z2
c

r2
0

]}
φ(t)

+ 1
r0

(
h

2r0
− Zc

r0

)
(Sx1 + iSx2) x(t) (5.8.29)

Substituting the above in equations of motion and writing in matrix notation
we have

[
mx 0
0 Jφ

] [
ẍ
φ̈

]
+
[

cx cxφ
cxφ cφ

]{
ẋ
φ̇

}
+
[

kx kxφ
kxφ kφ

]{
x
φ

}
=
{

Px
My

}
eiωmt (5.8.30)

r0

H

x(t)

Top of soil

h
Zc

Figure 5.8.5 Coupled rocking and sliding motion of an embedded cylindrical foundation.
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where

kx = Gr0

(
Cx1 + Gs

G
h
r0

Sx1

)

kφ=Gr3
0

[
Cφ1+

(
Zc

r2
0

)
Cx1+ Gs

G

(
h
r0

)
Sφ1+

(
Gs

G

)(
h
r0

){
h2

3r2
0

+ Z2
c

r2
0

− hZc

r2
0

}
Sx1

]

kxφ = −Gr0

[
ZcCx1 +

(
Gs

G

)(
h
r0

)(
Zc − h

2

)
Sx1

]

cx = √
ρGr2

0

(
Cx2 +

(
h
r0

)√
ρs

ρ

Gs

G
Sx2

)

cφ = √
ρGr4

0

[
Cφ2 +

(
Zc

r2
0

)2

Cx2 + h
r0

√
ρsGs

ρG

{
Sφ2 +

(
h2

3r2
0

+ Z2
c

r2
0

− hZc

r2
0

)
Sx2

}]

cxφ = −√ρGr2
0

[
ZcCx2 +

(
h
r0

)√
ρsGs

ρG

(
Zc − h

2

)
Sx2

]

For practical analysis as stated earlier Cx1 = C̄x1, Cx2 = C̄x2, Sx1 = S̄x1 etc. can be
used values are given earlier in the Table 5.8.4).

Once the stiffness, damping and inertial properties are known standard modal
technique may be applied to derive the natural frequencies and the amplitude of the
vibration.

5.8.2 Research carried out in India

In India significant researches has been carried out on response of embedded footing.
Almost at the same time Novak and Berdugo (1972) published their paper on

dynamic response of embedded foundation Anandakrishnan and Krishanswamy
(1973) published a paper on vertical response of embedded foundation.

5.8.2.1 Anandakrishnan and Krishnaswamy’s model

The mathematical model proposed by them is as shown in Figure 5.8.6.
Following Lysmer’s notation as proposed earlier the equation of motion proposed

by them is

mz̈ +
[

3.4r2
0

1 − ν

√
ρG + F

]
ż + 4Gr0

1 − ν
z = P(t) (5.8.31)

where F =
[

1
2K0H2ρgμf + CaH

]
Lp

K0 = Coefficient of earth pressure at rest; ρg = Wt density of soil; μf = Coefficient
of kinematic friction; Ca = Adhesion between the soil and the sides of embedded
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F/2F/2

Figure 5.8.6 Mathematical model of Anandakrishnan & Krishnaswamy 1973.

footing usually considered as 1 to 2% of the undrained cohesive strength of the soil
and Lp = Perimeter Length of the embedded footing.

Unfortunately the research was not further extended for lateral and rocking mode
and neither any comparison available with other established methods like Novak or
Wolf.

Sridharan et al. (1981) developed a procedure for vertical vibration of footings in
similar line to what was proposed by Anandakrishnan and the results obtained are
found to be of similar nature.

5.8.2.2 Vijayavargiya’s method

Vijayavargiya (1981) developed a practical procedure for embedded response of foun-
dation for all modes based on Barkan’s parameters and a lumped mass model. The
mathematical model as proposed is shown in Figure 5.8.7.

Equivalent vertical stiffness of soil

Kze = CuBL + 2Cτavh (L + B) (5.8.32)

where, Cu = Coefficient of uniform compression determined at base of foundation;
Cτav = Average value of coefficient of elastic uniform shear at the ground surface

and base of foundation; h = Depth of embedment; B = Width of foundation and L =
Length of foundation.

Equation of motion is given by

mz̈ + Kzez = P0 sinωmt (5.8.33)

The amplitude of vibration is given by the expression

δz =
(

P0
Kze

)
sinωmt

1 − r2 (5.8.34)
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h
H

Kze

B

P0 sinωmt

Figure 5.8.7 Model for vertical vibration of Foundation (Vijayavargiya 1981).

where r = ratio of the operating frequency of the machine and the natural frequency
of the foundation.

For sliding motion stiffness proposed is as follows

Kxe = CτhBL + 2CuavBh(L + B) (5.8.35)

in which, Kxe = equivalent vertical stiffness of soil; Cuav = average coefficient of
uniform compression at ground level and base of foundation and Cτh = coefficient of
elastic uniform shear at the base of foundation.

Equation of motion is given by

mẍ + Kxex = P0 sinωmt (5.8.36)

The amplitude of vibration is given by the expression

δx = (P0/Kxe) sinωmt
1 − r2 (5.8.37)

Similarly for rocking motion the equivalent rocking stiffness is expressed as

Kφe = CφhI − WZc + CφavL
24

(
16h3 − 12Hh2

)
+ 2CφavI0 + Cτav

hLB2

2
(5.8.38)

where, Cφh = Coefficient of non uniform compression at base of foundation; Cφav =
average value of non uniform compression at ground level and base of foundation;
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Zc = Height of combined c.g of machine + foundation from center of base; W =
weight of the foundation; I = LB3/12, I0 = Bh3/3; ωφ = √

Kφe/Jφ ; and Jf = mass
moment of inertia of the foundation system.

The rotational amplitude is given by

δφ = (My/Kφe) sinωmt

1 − r2 (5.8.39)

For coupled sliding and rocking motion the equation of motion is given by

[
M 0
0 Jφ

]{
ẍ
φ̈

}
+
[

Kxx Kxφ
Kφx Kφφ

]{
x
φ

}
=
{

Px
My

}
sinωmt (5.8.40)

where

Kxx = CτhBL + 2Cuavh(B + L); Kxφ = CφavL(h2 − 2hZc)− CτhBLZc

Kφφ = CφhI + Cτ hBLZ2
c −WZc + 2CψavIy + CτavLh

B2

2
+ 2

3
Cφav[Z3

c + (h − Zc)
3]

here

Kψ = 0.75Cu; Kφx = −
[
CτhBLZc +2CuavLh

(
Zc − h

3

)
+2Cτav

(
Zc − h

3

)
Lh
]

and Iy = hB3

12
+ BhL2

4
.

Vijayavargiya’s method needs to be compared to other established methods to eval-
uate how they compare in terms of frequency and amplitude. The method however
does not take into cognizance damping effect of soil and as such would show infinite
amplitude at resonance or very high value near ωm/ωn → 1. This is however actually
not the case in reality for due to presence of damping. The amplitude could be more,
but shows a finite value near resonance.

This is surely a limitation of the method for practical use especially in brown field
project, where often due to lack of space the foundation size cannot be modified and the
rotating equipment is thus allowed to operate at close proximity of the resonant zone
taking the advantage of soil damping and controlling the amplitude within acceptable
limit.

5.8.2.3 Dasgupta and Rao’s model for dynamic response of foundation

Dasgupta and Rao (1976) presented a comprehensive analysis for machine foundation
under dynamic loading based on finite element analysis for two dimensional (plane
stress and plane strain) axisymmetric and three-dimensional model. This procedure
takes into cognizance the silent transmitting boundaries essential to dissipate away
the propagating waves to infinity. The details of the approach and the results are
discussed elsewhere (Kameswara Rao 1998).
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5.8.3 Energy transmitted from a circular area

Miller and Pursey (1955) presented the analysis of a normal stress, applied to a
circular area r ≤ a, and varying harmonically with time. For the far-field where
0 ≤ θ < π /2, the displacements are

uR = − a2

2G
e−iR

R
cos(k2 − 2 sin2 θ)

F0 sin θ
and

uθ = − ia2k2

2G
e−ikR

R
sin 2θ(k2 sin2 θ − 1)

F0(k sin θ)
(5.8.41)

The surface wave results are given for ν = 1/4

ur(r, 0) = 0.215
a2e

iπ
4

G
√

r
e−1.88ir and uy(r, 0) = 0.316

a2e
iπ
4

G
√

r
e−1.88ir (5.8.42)

For ν = 1/3, 0.215, 0.316 and 1.884 are to be replaced by 0.182, 0.286 and 2.145,
respectively.

Miller and Pursey computed the partition of energy among the dilatational, shear
and the surface waves due to an oscillating normal point force. The variation, shown
in Figure 5.8.8, is given by Woods in an informative way. The compressional and shear
waves propagate out in hemispherical wavefronts. The spacing of the wavefronts is
in accord with their differing velocities. The relative amplitude of particle motion
is shown. Also shown are the Rayleigh surface waves, with vertical and horizontal
displacement components shown on the leftward- and rightward-propagating parts of
the wave. The various powers of r−n (n = .5,1,2) give the geometric attenuation of

Wave type Percentage of
Total energy

Rayleigh
Shear
Compression

67
26
07

Figure 5.8.8 Distribution of displacement and energy in dilatation, shear and surface waves from a
harmonic normal load on a half-space for v = 0.25.
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the displacement amplitudes with radial distance r. The shear window indicates the
portion of the shear wave along which amplitudes are greatest. It has been shown that
the Rayleigh wave carries around 67 per cent of the total energy and undergoing more
gradual amplitude attenuation.

Based on above it may again be concluded that the most important wave which
affects the response of a foundation under earthquake and dynamic loading from a
machine it is the Rayleigh wave which has maximum influence.

5.9 FINITE ELEMENT SOLUTION FOR FOUNDATION DYNAMICS

5.9.1 Soil dynamics and finite element analysis

Finite Element Analysis as we know developed as a numerical computational tool for
analysis of continuum. Considering the fact that soil medium is a continuum (though
often heterogeneous in its properties due to layering) it is but obvious that Finite
Element has a significant application in problems related to propagation of waves (be
from machine foundation or earthquake) in soil.

However unlike structural analysis a three dimensional analysis of soil or a
soil-structure interaction problem is rarely carried out in practice for it becomes signif-
icantly cost and schedule prohibitive. In many cases for practical engineering problems
a two dimensional analysis would mostly suffice. However unlike structural analysis,
problem of dynamic analysis related to soil has some unique problem of its own which
needs special attention. While a structure would usually have a finite boundary of its
own a soil medium is usually infinite.

For a foundation resting over soil if we try to find out the dynamic response of the
footing and have boundary cut off at say 1.5 to 2 times its width (which would be fine
for static load case) we may arrive at an answer which could have significant error. The
reason for this is that the waves propagating from the foundation would reflect back
from such boundary and would induce spurious modes in the foundation resulting in
erroneous results85.

Since the wave propagating in the soil should not reflect back to the foundation
the intuitive logic to arrive at a correct model would be to take the boundary away
at a sufficient distance so that the waves cannot reflect back. While doing this for a
single foundation or a machine foundation does not pose significant problem. However
for a comprehensive dynamic soil structure interaction problem where the complete
structure is taken into cognizance86 this could become prohibitively expensive in terms
of cost, data input and complex in terms of interpretation.

Above has been a source of many a debate and discussions both in academic and
industrial circle undertaking such task of dynamic soil structure interaction.

So what are the options we have to address this issue as mentioned above?
Possible solutions are as follows

• Accept the inevitable and come up with a model with thousands of degrees of
freedoms taking the mesh boundary to a significant distance away from the source.

85 This is often termed as the box effect for such analysis.
86 Like reactor building in a Nuclear power Plant or a dam-fluid – soil interaction analysis etc.
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• Consider frequency independent spring elements to define the soil properties at
the soil-structure boundary87.

• Use finite element up to a certain depth below the structure and then use special
elements to cater to the condition that waves do not reflect back88.

• Use infinite finite elements a special type of finite element having shape func-
tion which decays exponentially to zero as the position vector r approaches
infinity.

We will discuss each of the above in some detail below.

5.9.2 Use of structural boundary conditions

If we decide to use static boundary like hinges and rollers like we do in structures,
we need to take the boundary sufficiently away from the foundation to give cor-
rect response of the footing. However the question remains – what is this sufficient
distance?

For earthquake analysis the depth is usually taken to bedrock level from which the
seismic waves usually propagate89. However for lateral direction there are no clear
guidelines and one has to possibly proceed with a trial and error to arrive at a solution
when two successive runs would nearly give same results it is assumed that the results
have converged and boundaries taken are sufficient.

Shown in Figure 5.9.1, are the conceptual steps that may be used to find out the
boundary of a soil medium overlying bedrock where progressive increase is made in
lateral direction to arrive at a safe distance where chances of wave reflection is greatly
minimized.

It can be well inferred from above that depending on the geometry of the structure
and soil parameters there could be cases when the soil model (even for a 2D problem)
could be significant and cost of analysis could be quite high.

For machine foundation it is not necessary to go upto the bedrock level in vertical
direction and the rule of thumb (if at all such 2D FEM model is used) to take the
boundary at 1.5 to 2 times the Rayleigh wave length. For lateral direction again a trial
and error as discussed earlier to be used.

5.9.3 Use of spring or boundary elements

It is for this use of frequency independent springs and dashpots coupled with structures
has remained the most popular and effective technique in design offices to find out the
coupled response of soil-structure system. The advantages could be summarized as
hereafter.

1 The analysis is surely more economic than using detailed finite element of
the soil.

87 By far the most popular model adapted by the structural engineers.
88 Often known as Silent or transmitting boundaries for infinite domain problem.
89 In some cases site would have no bedrock when level at which the shear wave velocity approaches

600 m/sec is usually considered the bedrock level.



836 Dynamics of Structure and Foundation: 1. Fundamentals

Trial 1 Trial 2

Trial 3

Figure 5.9.1 Trial increment of soil boundary in lateral direction to cater to wave transmittal.

2 In majority of the case we are more interested to know the response of the structure
itself due to the presence of the underlying soil and not vice-versa thus spring or
the boundary elements adequately serves the purpose in most of the cases.

3 Techniques are available albeit in an approximate way to force the radiation damp-
ing in the modal damping matrix thus to cater to the radiation as well as material
damping of the system90.

4 For machine foundations which are usually resting or embedded on ground the
method is good enough to provide results which matches well with exact elasto-
dynamic response based on half space theory and usually does not warrant further
sophistication in mathematical modeling.

90 Refer Chapter 1 (Vol. 2) on dynamic soil-structure interaction where we have worked out a frame-soil
interaction problem considering this effect.
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Finite Boundary

Bunker

(typ)

Blast load on surface

Figure 5.9.2 Underground bunker with blast load on the soil surface.

However it should also be pointed out that in spite of its versatility and simplicity
in use it is possibly the most abused method in practice. In most of the cases especially
under earthquake the values chosen are not correct and so are the damping values for
rarely does the basic characteristics of soil-stiffness degradation and enhancement of
damping under high strain is catered to. Engineers are mostly found to blindly assume
the shear modulus data given in soil report and adapt them for seismic analysis and
arrive at a wrong result. Very few realize that the data furnished in soil report is low
strain and may be directly used for machine foundation and not for seismic analysis91.

5.9.4 Use of transmitting/silent boundaries with finite elements

There are certain types of problem where finite element modeling of soil is inevitable.
As shown in Figure 5.9.2, we show an underground structure whose response needs

to be determined under blast load on surface which is transient in nature. In such case
trying to model the soil with structural boundary conditions where the waves do not
reflect back can make the model significantly large.

In such cases one of the effective methods used is to use finite element model to a
certain depth below and around the structure (as shown by dark lines) and then use
special absorbing elements which would absorb away the energy from there onwards.

91 This topic is also addressed in detail with worked out problems in Chapter 1 (Vol. 1).
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It is obvious that in such case considerable economy in analysis can be achieved
as the model size is reduced significantly. We will discuss some of these boundary
elements in detail hereafter.

We have shown at the outset of this chapter that when waves propagate through
the soil medium which is considered elastic and homogeneous three types of waves
are generated in it namely compression or P waves, shear or S waves and Rayleigh
waves which create significant response at the surface. Thus if we have to apply these
absorbing boundaries at a finite depth they should be good enough to absorb all three
type of waves as mentioned above.

To start with we first describe the standard viscous boundaries which are capable
of absorbing the P and S waves.

5.9.5 Standard viscous and Rayleigh boundary elements

As shown in Figure 5.9.3 is a soil element through which waves are propagating in
positive x direction.

The dynamic equilibrium equation of motion as per De Alembert’s theory is thus
given as

−σxx − ρ
∂2u
∂t2 + σxx + ∂σxx

∂x
= 0 orρ

∂2u
∂t2 − ∂σxx

∂x
= 0 (5.9.1)

Considering σxx = λεxx = λ∂u
∂x we have ρ ∂

2u
∂t2 = λ∂

2u
∂x2 , where λ is the Lame’s constant.

This gives

∂2u
∂t2 = V2

p
∂2u
∂x2 (5.9.2)

where Vp is velocity of the P wave propagating through the medium.
Solution to the above partial differential equation of motion is given by

u(x, t) = U
[
sin

(
ωt − ωx

Vp

)
+ cos

(
ωt − ωx

Vp

)]
(5.9.3)

where ω = Arbitrary frequency of the harmonic motion.

∂2u
∂t2

∂x

Figure 5.9.3 Wave propagation through a soil element.
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Differentiating above with respect to t we have

u̇(x, t) = Uω
[
cos

(
ωt − ωx

Vp

)
− sin

(
ωt − ωx

Vp

)]
(5.9.4)

Considering εxx = ∂u
∂x = −Uω

Vp

[
cos

(
ωt − ωx

Vp

)
− sin

(
ωt − ωx

Vp

)]
= − u̇(x,t)

Vp

Again considering σxx = λεxx

σxx = −λ u̇(x, t)
Vp

= −ρV2
p

u̇(x, t)
Vp

= −ρVpu̇(x, t) (5.9.5)

Now, if we multiply this stress by the area of the soil element (say A) we get a force
in negative x direction

Fx = σxxA = −ρVpAu̇(x, t) (5.9.6)

Thus we see that Fx is force, which is identical to the force in a simple viscous
damper whose value is equal to ρvpA.

Therefore instead of going to a large distance after the finite depth (modeled by finite
element) a boundary condition can be created which will allow the P waves to pass
without any reflection and allow the strain energy to radiate away from the source.

In lieu of Vp if we consider Vs (where Vs =
√

G
/
ρ) it can be proved by same

arguments that there exists another set of force given by

Fz = −ρvsAẇ(z, t) (5.9.7)

Instead of modeling to a large depth, the model can now be reduced to a model as
shown in Figure 5.9.4.

Above caters to the transmittal of the P and S waves through the idealized viscous
dampers while modeling infinite domain by finite boundary. The above viscous bound-
aries though are valid for P and S waves cannot transmit Rayleigh waves that transmit
a major part of the energy.

Lysmer and Kuhlemeyer (1969) proposed a similar expression like standard viscous
boundaries for absorption of such Rayleigh waves given by

Fz = α1ρvpAẇ(x, t) and Fx = α2ρvsAu̇(x, t) (5.9.8)

where α1 = ηR

Sp

[
1 −

(
1 − 2S2

p

) ẇ(nz)
u(nz)

]
and α2 = ηR

[
1 + u̇(nz)

w(nz)

]
in which,

w = Displacement in vertical z direction;
u = Displacement in horizontal x direction and
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Blast Load

vpLw(z, t) at each node vs Lu(x, t) at each node

L is the average distance between two nodes

Figure 5.9.4 Underground bunker with viscous dampers at boundary.

Values of Lysmer's Variables for
Poisson's Ratio = 0.25
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Figure 5.9.5 Values of Lysmer’s variables for Poisson’s ratio = 0.25.

n = ω
VR

,ω = Frequency of the system;
VR = Velocity of Rayleigh Wave, Vs = Velocity of Shear wave;
Vp = Velocity of compression wave.

ηR = Vs

VR
, Sp = Vs

Vp
=
√

1 − 2ν
2(1 − ν)

(5.9.9)

For Poisson’s Ratio of ν = 0.25 values of α1 and α2 are as shown in Figure 5.9.5.
For Poisson’s ratio = 0.3, Dasgupta (1976) has given a similar solution wherein the

Rayleigh viscous absorbers are expressed as

Fz = α1ẇ and Fx = α2u̇ (5.9.10)
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1 VpL

2 VsL

Blast Load 

Vs Lu(x,t) at each node

VpLw(z,t) at each node

Figure 5.9.6 Underground bunker with Rayleigh and viscous dampers at boundary.

where

α1 = G
VR

[
−1.380e−0.885nz + 0.641e−0.362nz

0.566e−0.885nz − 0.320e−0.362nz

]
and

α2 = G
VR

[
−1.131e−0.885nz − e−0.362nz

0.566e−0.885nz − e−0.362nz

]

Based on above the final model for the problem posed reduces to the one shown in
Figure 5.9.6.

5.9.6 Paraxial boundaries

These types of Boundaries are improved boundaries over what we derived earlier and
can absorb all the three types of waves (P, S, and R).

Considering the wave equation in two dimensions we have

∂2u
∂x2 + ∂2u

∂z2 = 1
V2

s

∂2u
∂t2 where Vs =

√
G
ρ

(5.9.11)

Solution to the above equation in exponential form is given (Cohen and Jennings
1984) by

u = e[i(ωt−nxx−nzz)] (5.9.12)
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Substituting the above in the two dimensional wave equation yields

n2
x + n2

z − ω2

V2
s

= 0

which can be further expressed as

n2
x − ω2

V2
s

[
1 − n2

z V2
s

ω2

]
= 0

or

[
nx + ω

Vs

√
1 −

(
nzVs
ω

)2
][

nx − ω
Vs

√
1 −

(
nzVs
ω

)2
]

= 0 (5.9.13)

For outgoing waves as the second term is only valid hence we have

nx = ω

Vs

√
1 −

(
nzVs

ω

)2

Above when expanded to first two terms of Taylor series gives

nx − ω

Vs
+ Vs

2ω
n2

z = 0 or nx
ω

Vs
+ n2

z

2
− ω2

V2
s

= 0

The above actually represents a differential equation of the form

1
Vs

∂

∂t

[
∂u
∂x

]
− 1

2
∂2u
∂z2 + 1

V2
s

∂2u
∂t2 = 0 (5.9.14)

The above equation in approximate way permits propagation of all the three type
of waves in positive x direction.

If we consider only the first term of the Taylor series only we have

nx − ω

Vs
= 0 or

∂u
∂x

+ 1
Vs

∂u
∂t

= 0 (5.9.15)

Multiplying each of the term by G we have

G
∂u
∂x

+ G
Vs

∂u
∂t

= 0 or τxz + ρVsu̇ = 0 (5.9.16)

Thus it is seen paraxial boundaries are nothing but an improved form of standard
viscous dampers.
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Finite element

Infinite element

Figure 5.9.7 Structure resting on infinite soil modeled by finite and infinite element.

5.9.7 Infinite finite elements

We will not derive the detailed mathematics involved in such elements for the same
has already been done in Chapter 4 (Vol. 1) under Static soil structure interaction.
Wherein these elements can be attached to the finite elements at a certain depth wherein
it automatically takes care of the propagation of waves to infinity (Figure 5.9.7).
This method has been used in many practical problems related to infinite boundary
problems (Bettes & Zienkiwicz 1977; Kim & Bang 2000).

One of the major limitations of using the viscous damper is that it cannot be used
directly in commonly used commercially available finite element software available in
the market.

Either one has to develop his own software or use special purpose program that can
cater to this feature.

However Softwares like SASSI (Lysmer et al), FLUSH, ANSYS or SAP 2000 have
this feature and may be used for such interaction analysis.

We will not discuss further on this topic here anymore. The detail of modelling
and application of the same will be elaborated further with results in the chapter on
Numerical and Analytical methods in Civil engineering (Chapter 2 (Vol. 1)) wherein
we have dealt with Finite Element Theory and Application in detail pertaining to
various discipline in civil engineering.

5.9.8 Epilogue

We had stated at the outset that the topic is still a growing technology and lots of
researches need to be carried out to get clear answer on many issues like

• Liquefaction (this we have dealt in the chapter of Earthquake Engineering).
• Three dimensional constitutive model for 3D Finite Element analysis.
• Instrumented observed data from real field.
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• Effect of layering of soil and its anisotropic effect.
• Dynamic consolidation etc.

The section basically highlights the theoretical developments which took place in
various areas of soil dynamics from continuum mechanics to the present state of art
as practiced in the profession.

SUGGESTED FURTHER READING
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1 Timoshenko, S.P. & Young, D.H. 1964, Vibration Problems in Engineering, 3rd edn,
Affiliated East-West Press, Pvt. Ltd., New Delhi.
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4 Chopra, A.K. 1996, Dynamics of Structure: Theory and application to Earthquake
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NY.

Advanced topics in structural dynamics
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Mass.
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